JP3212451B2 - Predicting spontaneous ignition of coal - Google Patents

Predicting spontaneous ignition of coal

Info

Publication number
JP3212451B2
JP3212451B2 JP18934494A JP18934494A JP3212451B2 JP 3212451 B2 JP3212451 B2 JP 3212451B2 JP 18934494 A JP18934494 A JP 18934494A JP 18934494 A JP18934494 A JP 18934494A JP 3212451 B2 JP3212451 B2 JP 3212451B2
Authority
JP
Japan
Prior art keywords
coal
gas
temperature
substance
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18934494A
Other languages
Japanese (ja)
Other versions
JPH0854362A (en
Inventor
康則 宮崎
正和 立石
昭雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18934494A priority Critical patent/JP3212451B2/en
Publication of JPH0854362A publication Critical patent/JPH0854362A/en
Application granted granted Critical
Publication of JP3212451B2 publication Critical patent/JP3212451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、石炭貯蔵施設等におい
て石炭の自然発火を予知する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting spontaneous ignition of coal in a coal storage facility or the like.

【0002】[0002]

【従来の技術】従来、石炭貯蔵施設における石炭の自然
発火を予知する手段としては、次のような方法が用いら
れてきた。一つは赤外線温度計を用いて貯蔵石炭を上部
から監視する方法である。しかしながら、この方法は石
炭の表面温度を検出するものであり、主として石炭層内
部における蓄熱現象によってもたらされる自然発火の予
知には、充分な指標を与えることができなかった。
2. Description of the Related Art Conventionally, the following method has been used as a means for predicting spontaneous combustion of coal in a coal storage facility. One is to monitor the stored coal from above using an infrared thermometer. However, this method detects the surface temperature of coal, and has not been able to provide a sufficient index for predicting spontaneous combustion mainly caused by a heat storage phenomenon inside the coal seam.

【0003】もう一つは石炭自身から発生するガスを検
出する方法である。このときの対象ガスとしては一酸化
炭素(CO),二酸化炭素(CO2),メタン(CH4),
エタン(C2 6),プロパン(C3 8),エチレン(C
2 4),プロピレン(C3 6)等が用いられる。
The other is to detect gas generated from coal itself.
It is a way to get out. At this time, the target gas is monoxide
Carbon (CO), carbon dioxide (COTwo), Methane (CHFour),
Ethane (CTwoH6), Propane (CThreeH8), Ethylene (C
TwoHFour), Propylene (CThreeH 6) Etc. are used.

【0004】しかしながら、これらの発生ガスの特性は
石炭の種類、すなわち石炭の粒度、表面積、石炭化度、
化学成分等によって異なり、あらかじめ炭種毎に発生ガ
ス特性を充分把握しておく必要があった。
However, the characteristics of these generated gases depend on the type of coal, that is, the particle size, surface area, degree of coalification,
It depends on the chemical composition and the like, and it is necessary to sufficiently understand the generated gas characteristics for each coal type in advance.

【0005】[0005]

【発明が解決しようとする課題】以上のように赤外線温
度計による温度監視では、自然発火の原因となる石炭層
内部の蓄熱状況を検知できないため、補助的な手段でし
かありえなかった。また石炭からの発生ガスを検知する
方法では、炭種毎の発生ガス特性を事前に把握しておく
必要があり、通常数炭種が混在する石炭貯蔵施設におい
ては予知評価が困難であった。
As described above, the temperature monitoring by the infrared thermometer cannot be used to detect the heat storage state inside the coal seam, which causes spontaneous ignition, and therefore can only be an auxiliary means. In addition, in the method of detecting gas generated from coal, it is necessary to grasp in advance the characteristics of gas generated for each type of coal, and it has been difficult to make a predictive evaluation in a coal storage facility where several types of coal are usually mixed.

【0006】本発明は貯蔵炭の種類に関係なく、自然発
火を精度高く予知しうる方法を提供することを課題とし
ている。
An object of the present invention is to provide a method capable of accurately predicting spontaneous ignition regardless of the type of stored coal.

【0007】[0007]

【課題を解決するための手段】以上の状況に鑑み、本発
明においては、貯蔵する石炭にあらかじめ30〜100
℃で分解する物質を所定量混入し、石炭の内部蓄熱によ
る温度上昇に伴って発生する該混入物質の熱分解生成物
を検出することによって、石炭の自然発火を予知できる
ようにするものである。
SUMMARY OF THE INVENTION In view of the above situation, in the present invention, 30 to 100 pieces of coal are stored in advance.
A predetermined amount of a substance that decomposes at ℃ is mixed, and by detecting a pyrolysis product of the mixed substance generated with a rise in temperature due to internal heat storage of the coal, it is possible to predict spontaneous ignition of the coal. .

【0008】本発明による予知方法において石炭に混入
する物質としては、例えば炭酸アンモニウム一水塩を用
いて発生するアンモニアガスを検出する。その他、本発
明により石炭に混入する物質の例としてはカルバミン酸
アンモニウム(NH4 CO2 NH2 ,分解温度;59
℃)やチオ硫酸カルシウム六水和物(CaS2 3 ・6
2 O,分解温度;60℃),亜ジチオン酸ナトリウム
二水和物(Na2 2 4 ・2H2 O,分解温度;52
℃),亜硫酸アンモニウム一水和物((NH4)2 SO3
・H2 O,分解温度;60〜70℃)等がある。
[0008] In the prediction method according to the present invention, ammonia gas generated using, for example, ammonium carbonate monohydrate is detected as a substance mixed into coal. Other examples of the substance mixed into the coal according to the present invention include ammonium carbamate (NH 4 CO 2 NH 2 , decomposition temperature: 59).
° C) and calcium thiosulfate hexahydrate (CaS 2 O 3 .6)
H 2 O, decomposition temperature; 60 ° C.), sodium dithionite dihydrate (Na 2 S 2 O 4 .2H 2 O, decomposition temperature; 52)
° C), ammonium sulfite monohydrate ((NH 4 ) 2 SO 3
H 2 O, decomposition temperature; 60 to 70 ° C.).

【0009】また、これらの化合物の他、所定温度以下
で分解又は溶融する高分子材料等の物質中に検出すべき
ガスを閉じ込めたものを貯蔵石炭に混入する形態として
もよい。
Further, in addition to these compounds, a material in which a gas to be detected is contained in a substance such as a polymer material which decomposes or melts at a predetermined temperature or lower may be mixed into the stored coal.

【0010】[0010]

【作用】本発明では前記した手段を採用するため、石炭
中に混入する物質の熱的特性を充分把握していれば、数
種の石炭を混在させて貯蔵する石炭貯蔵施設において
も、混入物質の熱分解生成物を検知することにより、正
確な自然発火予知を実現できる。
According to the present invention, since the above-mentioned means are employed, if the thermal characteristics of the substance mixed in the coal are sufficiently understood, the mixed substance can be used even in a coal storage facility for storing several types of coal in a mixed state. By detecting the pyrolysis products of, accurate prediction of spontaneous ignition can be realized.

【0011】[0011]

【実施例】以下、本発明による予知方法の実施の態様に
ついて具体的に説明する。本発明の手法を説明するため
の石炭への混入物質として、ここでは炭酸アンモニウム
一水塩〔(NH4)2 CO3 ・H2 O〕を用いた。炭酸ア
ンモニウム一水塩の熱分解曲線を図1に示す。これは炭
酸アンモニウム一水塩約20mgを空気10ml/min流通
下、1℃/minで加熱していき、その重量減少率(%)を
測定したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the prediction method according to the present invention will be specifically described below. Here, ammonium carbonate monohydrate [(NH 4 ) 2 CO 3 .H 2 O] was used as a contaminant in coal for explaining the method of the present invention. FIG. 1 shows the thermal decomposition curve of ammonium carbonate monohydrate. In this method, about 20 mg of ammonium carbonate monohydrate was heated at 1 ° C./min while flowing 10 ml / min of air, and the weight loss rate (%) was measured.

【0012】これによると、炭酸アンモニウム一水塩は
約60℃から分解し始め、約95℃で完全に分解が完了
する。このことは60〜95℃の間でその熱分解生成物
であるアンモニアガス(NH3)を発生することを意味す
る。
According to this, ammonium carbonate monohydrate starts to decompose at about 60 ° C. and is completely decomposed at about 95 ° C. This means that the thermal decomposition product of ammonia gas (NH 3 ) is generated between 60 and 95 ° C.

【0013】次に、本発明の一実施の態様を図2を用い
て説明する。図2中、1は石炭貯蔵施設下の地面、2は
石炭貯蔵施設の壁、3は貯蔵石炭、4は石炭の払出し機
構(スクレッパー等)、5は石炭の投入機構(ベルトコ
ンベア等)、6は投入石炭、7は換気ダクト、8はガス
サンプリングライン、9はガス分析装置である。
Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 2, 1 is the ground below the coal storage facility, 2 is the wall of the coal storage facility, 3 is the stored coal, 4 is the coal discharging mechanism (scraper, etc.), 5 is the coal input mechanism (belt conveyor, etc.), 6 Is a coal input, 7 is a ventilation duct, 8 is a gas sampling line, and 9 is a gas analyzer.

【0014】このような構成において貯蔵施設に石炭を
投入する際、石炭に所定量の炭酸アンモニウム一水塩を
混入しておく。これにより、貯蔵石炭が酸化により蓄熱
し石炭層内部の温度が上昇し、約60℃を越えると混入
された炭酸アンモニウム一水塩が分解してアンモニアガ
ス(NH3)を発生する。
When charging coal into the storage facility in such a configuration, a predetermined amount of ammonium carbonate monohydrate is mixed into the coal. As a result, the stored coal stores heat due to oxidation, and the temperature inside the coal bed rises. When the temperature exceeds about 60 ° C., the mixed ammonium carbonate monohydrate is decomposed to generate ammonia gas (NH 3 ).

【0015】この発生したアンモニアガスは換気ダクト
7のファンによって吸引される気流に乗って換気ダクト
7に達する。このため、換気ダクト7にガスサンプリン
グライン8を設け、換気ダクト7を通過するガス中のア
ンモニアガスをガスクロマトグラフ等のガス分析装置9
で分析することにより、石炭の内部蓄熱温度を間接的に
知ることができる。
The generated ammonia gas reaches the ventilation duct 7 on the airflow sucked by the fan of the ventilation duct 7. For this purpose, a gas sampling line 8 is provided in the ventilation duct 7 so that the ammonia gas in the gas passing through the ventilation duct 7 can be analyzed by a gas analyzer 9 such as a gas chromatograph.
By analyzing the temperature, the internal heat storage temperature of the coal can be indirectly known.

【0016】このように本例ではアンモニアガスが検知
された場合、局部的ではあっても約60℃を越える石炭
層が存在することであり、必然的に次に生じる発火の危
険性を示すものである。石炭の発火温度は炭種によって
異なるが、一般的には100℃以上であるため、本例の
ように100℃以下で熱分解して発生するガスを検出す
ることにより自然発火を予知できる。
As described above, in this example, when ammonia gas is detected, the presence of a coal layer exceeding about 60 ° C., though local, indicates the danger of the next ignition. It is. Although the ignition temperature of coal differs depending on the type of coal, it is generally 100 ° C. or higher, so that spontaneous ignition can be predicted by detecting gas generated by thermal decomposition at 100 ° C. or lower as in this example.

【0017】本例では炭酸アンモニウム一水塩を用いて
説明したが、前述の通り100℃以下で熱分解して石炭
からの発生ガスと異なるガスを発生するものであれば、
選択的な指標物質となり得るので、本説明によって本発
明の範囲が限定されるものではない。
In the present embodiment, the explanation was made using ammonium carbonate monohydrate. However, as described above, any material that is thermally decomposed at a temperature of 100 ° C. or less to generate a gas different from the gas generated from coal may be used.
The description is not intended to limit the scope of the invention, as it can be a selective indicator.

【0018】すなわち、本発明の方法において貯蔵石炭
に混入する物質の例としては前記したように、カルバミ
ン酸アンモニウム(NH4 CO2 NH2 ,分解温度;5
9℃)やチオ硫酸カルシウム六水和物(CaS2 3
6H2 O,分解温度;60℃),亜ジチオン酸ナトリウ
ム二水和物(Na2 2 4 ・2H2 O,分解温度;5
2℃),亜硫酸アンモニウム一水和物((NH4)2 SO
3 ・H2 O,分解温度;60〜70℃)等がある。
That is, as an example of the substance mixed into the stored coal in the method of the present invention, as described above, ammonium carbamate (NH 4 CO 2 NH 2 , decomposition temperature: 5
9 ° C) and calcium thiosulfate hexahydrate (CaS 2 O 3.
6H 2 O, decomposition temperature; 60 ° C.), sodium dithionite dihydrate (Na 2 S 2 O 4 .2H 2 O, decomposition temperature; 5)
2 ° C.), ammonium sulfite monohydrate ((NH 4 ) 2 SO
3. H 2 O, decomposition temperature: 60 to 70 ° C.).

【0019】このうちカルバミン酸アンモニウムについ
ては、炭酸アンモニウム一水和物の際と同様、その分解
によって発生するアンモニアガスをガスクロマトグラフ
等のガス分析装置によって分析し、自然発火予知の指標
とする。
Among these, as for ammonium carbamate, similarly to the case of ammonium carbonate monohydrate, ammonia gas generated by its decomposition is analyzed by a gas analyzer such as a gas chromatograph and used as an index for predicting spontaneous ignition.

【0020】またチオ硫酸カルシウム六水和物や亜ジチ
オン酸ナトリウム二水和物においては、それらの分解に
よって発生する二酸化イオウガス(SO2)を例えば赤外
線吸収方式のSO2 分析計によって分析し、指標とす
る。
In the case of calcium thiosulfate hexahydrate and sodium dithionite dihydrate, sulfur dioxide gas (SO 2 ) generated by their decomposition is analyzed by, for example, an infrared absorption type SO 2 analyzer and used as an index. And

【0021】更に亜硫酸アンモニウム一水和物について
は、その分解によって発生するアンモニアガスに着目す
る場合はガスクロマト分析装置により、また発生する二
酸化イオウガスに着目する場合はSO2 分析計により測
定し、自然発火予知の指標とする。
Further, with respect to ammonium sulfite monohydrate, when the ammonia gas generated by its decomposition is focused on, it is measured by a gas chromatograph analyzer, and when the sulfur dioxide gas generated is focused, it is measured by an SO 2 analyzer. It is used as an indicator of ignition prediction.

【0022】これらを検知手段として使用する場合は、
炭酸アンモニウム一水塩の例で述べた通りであり、石炭
貯蔵施設等に取り付けられた換気ダクトにガスサンプリ
ングラインを設け、発生したアンモニアガスや二酸化イ
オウガスを所定のガス分析装置で測定することにより、
貯蔵施設における石炭内部の蓄熱温度を間接的に評価す
る。
When these are used as detecting means,
As described in the example of ammonium carbonate monohydrate, by providing a gas sampling line in a ventilation duct attached to a coal storage facility or the like, by measuring the generated ammonia gas or sulfur dioxide gas with a predetermined gas analyzer,
Indirectly evaluate the heat storage temperature inside the coal at the storage facility.

【0023】また指標物質の形態としては、前述したよ
うに直接貯蔵石炭に混入してもよいが、NH3 ガス等を
100℃以下で分解又は溶融する物質中に閉じ込めて混
入すること等も考えられる。
As a form of the indicator substance, as described above, the indicator substance may be directly mixed into the stored coal, but it is also conceivable that NH 3 gas or the like is trapped and mixed in a substance which decomposes or melts at 100 ° C. or lower. Can be

【0024】これは例えば100℃以下に転移温度を有
する高分子材料(例えばポリスチレン,ポリ塩化ビニ
ル,ポリビニルアルコール,ポリ酢酸ビニル等)を用い
て、指標ガスとなるアンモニアガス等をその中に内包さ
せ、貯炭層が蓄熱して昇温し該高分子材料が破壊するこ
とによって内部の指標ガス(アンモニアガス等)が放出
されるようにするものである。
For example, a polymer material having a transition temperature of 100 ° C. or less (eg, polystyrene, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, etc.) is used, and ammonia gas or the like serving as an indicator gas is contained therein. Further, when the coal storage layer accumulates heat, the temperature rises, and the polymer material is destroyed, so that the internal indicator gas (such as ammonia gas) is released.

【0025】この場合、指標ガスの放出は該高分子材料
の熱による破壊温度に左右される。このため、指標ガス
としては前述のアンモニアガスや二酸化イオウガスに限
定されることなく、ヘリウムやアルゴン等の不活性ガス
等が利用できるため、環境上も好ましいものとなる。な
お、ヘリウムやアルゴン等の不活性ガスを用いた場合の
ガス検出手段としては、四重極形の質量分析計等が利用
できる。
In this case, the release of the indicator gas depends on the temperature at which the polymer material is broken by heat. For this reason, the indicator gas is not limited to the above-mentioned ammonia gas or sulfur dioxide gas, but can be an inert gas such as helium or argon, and is therefore environmentally preferable. When an inert gas such as helium or argon is used, a quadrupole mass spectrometer or the like can be used as a gas detecting means.

【0026】[0026]

【発明の効果】本発明によれば、貯蔵炭の種類に関係な
く、貯蔵石炭に混入した物質が発生するガスによって自
然発火の予知を精度よく行う方法が提供され、自然発火
に伴う火災等の災害を未然に防ぐことが可能となる。
According to the present invention, there is provided a method for accurately predicting spontaneous ignition by a gas generated by a substance mixed in the stored coal, regardless of the type of the stored coal. Disasters can be prevented before they occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発火予知方法で用いる物質の例として
の炭酸アンモニウム一水塩の熱分解曲線を示すグラフ。
FIG. 1 is a graph showing a thermal decomposition curve of ammonium carbonate monohydrate as an example of a substance used in the ignition prediction method of the present invention.

【図2】本発明の一実施態様を説明するための石炭貯蔵
施設と検知手段を組合せた状態を示す機器配置図。
FIG. 2 is an equipment layout diagram showing a state in which a coal storage facility and detection means are combined for explaining one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 貯蔵施設設置場所の地面 2 貯蔵施設の壁 3 貯蔵石炭 4 石炭払出し機構 5 石炭投入機構 6 投入中の石炭 7 換気ダクト(ファン) 8 ガスサンプリングライン 9 ガス分析装置 DESCRIPTION OF SYMBOLS 1 Ground of storage facility installation place 2 Wall of storage facility 3 Stored coal 4 Coal discharge mechanism 5 Coal input mechanism 6 Coal being charged 7 Ventilation duct (fan) 8 Gas sampling line 9 Gas analyzer

フロントページの続き (56)参考文献 特開 昭58−140633(JP,A) 特開 平1−113629(JP,A) 特開 昭58−147635(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 25/00 - 25/72 Continuation of the front page (56) References JP-A-58-140633 (JP, A) JP-A-1-113629 (JP, A) JP-A-58-147635 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) G01N 25/00-25/72

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石炭貯蔵施設に貯蔵する石炭に30〜1
00℃で分解してガスを発生する物質を混入し、石炭の
酸化、蓄熱によって該物質が分解する際に発生する前記
ガスを検出し、石炭の自然発火を事前に検知することを
特徴とする石炭の自然発火予知方法。
1. Coal stored in a coal storage facility has 30 to 1
Mixing a substance that decomposes at 00 ° C to generate a gas, detects the gas generated when the substance decomposes due to oxidation and heat storage of coal, and detects spontaneous combustion of coal in advance. A method for predicting spontaneous combustion of coal.
JP18934494A 1994-08-11 1994-08-11 Predicting spontaneous ignition of coal Expired - Fee Related JP3212451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18934494A JP3212451B2 (en) 1994-08-11 1994-08-11 Predicting spontaneous ignition of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18934494A JP3212451B2 (en) 1994-08-11 1994-08-11 Predicting spontaneous ignition of coal

Publications (2)

Publication Number Publication Date
JPH0854362A JPH0854362A (en) 1996-02-27
JP3212451B2 true JP3212451B2 (en) 2001-09-25

Family

ID=16239767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18934494A Expired - Fee Related JP3212451B2 (en) 1994-08-11 1994-08-11 Predicting spontaneous ignition of coal

Country Status (1)

Country Link
JP (1) JP3212451B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100532459C (en) * 2004-02-18 2009-08-26 财团法人川村理化学研究所 Organic and inorganic composite nanofiber, organic and inorganic composite structure and methods for producing the same
US7649041B2 (en) 2004-06-30 2010-01-19 Dic Corporation Aqueous coating composition
US8039111B2 (en) 2005-10-05 2011-10-18 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film
CN102313760A (en) * 2011-07-12 2012-01-11 黄翰文 Adiabatic spontaneous combustion triangle method for comprehensive evaluation and identification of coal spontaneous combustion risk
CN103454307A (en) * 2013-09-05 2013-12-18 中国矿业大学(北京) Full-stage coal spontaneous combustion experimental system
US9403950B2 (en) 2005-12-13 2016-08-02 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2619920A1 (en) * 2008-02-06 2009-08-06 Hydro-Quebec Method for measuring the temperature of the hot spot in an electric device containing oil
CN102175719B (en) * 2011-01-10 2013-06-12 王利兵 CCD visualization self-ignition point tester
CN105021652A (en) * 2015-07-31 2015-11-04 中山大学 Self-heating experimental simulation device for combustible solids
CN105510383B (en) * 2016-01-10 2017-03-15 西安科技大学 Coal shortest spontaneous combustion period and spontaneous fire characteristic parameter testing device and method
CN106290654B (en) * 2016-09-22 2019-02-05 安徽理工大学 A kind of coal spontaneous ignition symbolic gas experimental rig and its test method
CN108254407A (en) * 2017-12-26 2018-07-06 国网吉林省电力有限公司电力科学研究院 A kind of self-ignition of coal pile tendency judgement system and its application method
CN109030768B (en) * 2018-08-20 2020-02-21 中国矿业大学 Method for measuring shortest spontaneous combustion period of coal experiment
CN113009082B (en) * 2021-03-03 2022-11-18 山西绿巨人环境科技有限公司 Method for judging heat storage of flat ground continuously stacked waste rock hills without soil by pH value

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100532459C (en) * 2004-02-18 2009-08-26 财团法人川村理化学研究所 Organic and inorganic composite nanofiber, organic and inorganic composite structure and methods for producing the same
US7649041B2 (en) 2004-06-30 2010-01-19 Dic Corporation Aqueous coating composition
US8039111B2 (en) 2005-10-05 2011-10-18 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film
US9403950B2 (en) 2005-12-13 2016-08-02 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
CN102313760A (en) * 2011-07-12 2012-01-11 黄翰文 Adiabatic spontaneous combustion triangle method for comprehensive evaluation and identification of coal spontaneous combustion risk
CN102313760B (en) * 2011-07-12 2014-09-24 黄翰文 Adiabatic spontaneous combustion triangle method for comprehensive evaluation and identification of coal spontaneous combustion risk
CN103454307A (en) * 2013-09-05 2013-12-18 中国矿业大学(北京) Full-stage coal spontaneous combustion experimental system
CN103454307B (en) * 2013-09-05 2015-08-26 中国矿业大学(北京) Full stage coal spontaneous combustion experimental system

Also Published As

Publication number Publication date
JPH0854362A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JP3212451B2 (en) Predicting spontaneous ignition of coal
US10877011B2 (en) Systems and methods for monitoring for a gas analyte
Janssens et al. Oxygen consumption calorimetry
Yuan et al. The effect of ventilation on spontaneous heating of coal
EP3580548B1 (en) Early detection of smoldering powders in powder drying systems comprising a co gas detection system
JP7289953B2 (en) System and method for monitoring gas analytes
Hagen et al. The use of gaseous fire signatures as a mean to detect fires
Pratap et al. Investigation of levoglucosan decay in wood smoke smog-chamber experiments: The importance of aerosol loading, temperature, and vapor wall losses in interpreting results
Willstrand et al. Detection of fires in the toilet compartment and driver sleeping compartment of buses and coaches—Installation considerations based on full scale tests
Perera et al. Impact of air velocity on the detection of fires in conveyor belt haulageways
Patts et al. Reducing float coal dust: Field evaluation of an inline auxiliary fan scrubber
US6001308A (en) Detonation/deflagration precursor detection of gases, vapors, aerosols, and mixtures thereof
KR102104729B1 (en) How to detect fire precursor situations resulting from electrical circuit faults
Roser et al. Investigations of flame front propagation between interconnected process vessels. Development of a new flame front propagation time prediction model
JPH11268816A (en) Coal transporting device
Hakkarainen et al. Smoke gas analysis by Fourier transform infrared spectroscopy
US5789256A (en) Detonation/deflagration precursor detection of gases, vapors, aerosols, and mixtures thereof
Litton et al. Evaluation of sensors for mine fire detection using an atmospheric monitoring system.
Hull et al. Generation, sampling and quantification of toxic combustion products
Ingason Model scale tunnel fire tests
Jha et al. Investigation on fire potential of ventilation ducts
Perera et al. Evaluation of smoke and gas sensor responses for fires of common mine combustibles
Kuchta Diagnostics of sealed coal mine fires
Kulis et al. Heating of printed circuit board, wire insulation and electronic components for fire signature sensor evaluation
Willoughby Air Monitoring in the Rubber and Plastics Industries: What to Look For, how to Find It, what the Data Means

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010612

LAPS Cancellation because of no payment of annual fees