JP3211712B2 - Vibration welding method of resin molding - Google Patents
Vibration welding method of resin moldingInfo
- Publication number
- JP3211712B2 JP3211712B2 JP07601097A JP7601097A JP3211712B2 JP 3211712 B2 JP3211712 B2 JP 3211712B2 JP 07601097 A JP07601097 A JP 07601097A JP 7601097 A JP7601097 A JP 7601097A JP 3211712 B2 JP3211712 B2 JP 3211712B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- welding
- vibration
- resin
- welded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/32—Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
- B29C66/322—Providing cavities in the joined article to collect the burr
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/06—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/13—Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
- B29C66/131—Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
- B29C66/1312—Single flange to flange joints, the parts to be joined being rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/302—Particular design of joint configurations the area to be joined comprising melt initiators
- B29C66/3022—Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
- B29C66/30223—Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/54—Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/832—Reciprocating joining or pressing tools
- B29C66/8322—Joining or pressing tools reciprocating along one axis
- B29C66/83221—Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/92—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/922—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/9231—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the displacement of the joining tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/92—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/924—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/9241—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
- B29C66/92441—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time
- B29C66/92443—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/92—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
- B29C66/929—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
- B29C66/9292—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams
- B29C66/92921—Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams in specific relation to time, e.g. pressure-time diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/96—Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
- B29C66/964—Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving trial and error
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/94—Measuring or controlling the joining process by measuring or controlling the time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/95—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
- B29C66/959—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
- B29C66/9592—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明が属する技術分野】本発明は、一対の樹脂成形体
に相対振動を付加してその当接面を互いに摩擦させ摩擦
で発生する熱で当接部分を溶融させて両者を一体化しそ
の後振動の付加を停止し、溶融部分を凝固させて溶接す
る樹脂成形体の振動溶着方法に関するものである。本発
明は樹脂成形体を溶接して一体化する樹脂成形業界で使
用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of applying a relative vibration to a pair of resin moldings to rub their contact surfaces with each other and to melt the contact portions by heat generated by the friction, thereby integrating the two and then vibrating. And a method for vibration welding a resin molded body in which a molten portion is solidified and welded. INDUSTRIAL APPLICABILITY The present invention is used in the resin molding industry where a resin molded body is welded and integrated.
【0002】[0002]
【従来の技術】従来、小物部品であっても形状が不規
則、複雑であったり、エンジニアリングプラスチックな
どの複合材料を使用する場合に,複数個に分割して部分
的に成形した後、Oリング、ビス、接着剤などで一体化
している。最近、この接合方法において振動溶着方法が
取り入れられている。2. Description of the Related Art Conventionally, when a small part has an irregular or complicated shape, or when a composite material such as engineering plastic is used, it is divided into a plurality of parts and then partially molded to form an O-ring. , Screws, adhesives, etc. Recently, a vibration welding method has been adopted in this joining method.
【0003】この振動溶着方法は、一対の成形体に所定
の加圧力を付与した状態で当接しこの状態で両者間に相
対振動を与え、当接部分を摩擦熱で溶融させて溶着する
ものである。通常、相対振動は当接面と平行に数mmの
振動を負荷し、中心周波数240Hz、最大出力3.7
KWのパワーサプライが搭載されたミニバイブレーショ
ンウエルダー等が使用されている。[0003] In this vibration welding method, a pair of compacts are brought into contact with a predetermined pressing force applied thereto, and in this state, a relative vibration is applied between the two, and the contact portions are fused by frictional heat and welded. is there. Normally, relative vibration applies a vibration of several mm parallel to the contact surface, a center frequency of 240 Hz, and a maximum output of 3.7.
A mini vibration welder equipped with a KW power supply is used.
【0004】従来の溶着方法では、一定の加圧下で振動
を負荷して成形体の当接部分の樹脂を溶融し、その状態
で振動を停止し、加圧した状態で固化させていた。振動
付加中に同じ加圧力を付与し続けるため、当接部分の樹
脂が定量以上に溶融したり、溶融した樹脂が振動により
当接部よりはみだしバリ状となったり、逆に当接面に必
要な量の溶融した樹脂が残らず溶着部の溶着強度が低下
するという不具合があった。In the conventional welding method, vibration is applied under a certain pressure to melt the resin in the abutting portion of the molded body, the vibration is stopped in that state, and the resin is solidified in the pressed state. Since the same pressure is continuously applied during vibration application, the resin in the contact part melts more than a certain amount, the molten resin protrudes from the contact part due to vibration, and becomes burrs, and conversely it is necessary for the contact surface There was a problem that the welding strength of the welded portion was reduced without leaving a sufficient amount of the molten resin.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、樹脂成形体を振動溶着する際、
溶着部位に負荷する溶着圧力を適切に制御して溶着強度
の高い振動溶着方法を提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended for vibration welding of a resin molded article.
An object of the present invention is to provide a vibration welding method having a high welding strength by appropriately controlling a welding pressure applied to a welding portion.
【0006】[0006]
【課題を解決するための手段】本発明の振動溶着法は、
一対の成形体を互いに圧接し振動を与えることにより溶
着する振動溶着方法であって、第1圧接圧力で圧接した
状態で振動を付加し、振動を付加した後直ちに圧接圧力
を連続的に低下させて0.5〜5.0秒で第2圧接圧力
に到達させ、この状態で圧接しつつ振動の付加を所定期
間継続して溶着することを特徴とする。According to the vibration welding method of the present invention,
This is a vibration welding method in which a pair of compacts are pressed against each other and welded by applying vibration, wherein vibration is applied in a state of being pressed at a first pressure, and the pressure is continuously reduced immediately after the vibration is applied. 0.5 to 5.0 seconds in 2nd pressure
To reach, the addition of vibration while pressed in this state continuously for a predetermined time period characterized by welding.
【0007】第2圧接圧力は第1圧接圧力の4/5〜1
/5であるのが好ましい。また、溶着する一対の成形体
の間隔が所定間隔狭くなった時に振動の付与を停止する
ようにするのが好ましい。また、振動を付加した後直ち
に圧接圧力を連続的に低下させる。振動を付加した後直
ちにとは、できるだけ速やかにということで所定振動が
安定して付加された後速やかに連続的に圧力を低下させ
るという意味である。具体的には振動付加の入力後5秒
以内程度をいう。The second pressure is 4/5 to 1 of the first pressure.
/ 5 is preferred. Further, it is preferable that the application of vibration is stopped when the interval between the pair of compacts to be welded becomes narrower by a predetermined interval. Immediately after the vibration is applied, the press contact pressure is continuously reduced. Immediately after the vibration is applied means that the pressure is continuously reduced as soon as possible after the predetermined vibration is stably applied. Specifically, it means within about 5 seconds after the input of vibration addition.
【0008】本発明の振動溶着法は、第1圧接圧力であ
る最大圧接圧力で圧接した状態で振動を開始し、直ちに
圧接圧力を低下させ、0.5〜5.0秒で第2圧接圧力
に至らしめる。この第2圧接圧力でさらに所定時間振動
の付与を続け、振動の付与をやめる。この後しばらく第
2圧接圧力で加圧を続け溶接を終えるものである。本発
明の方法では、振動付与開始時に最大圧接圧力である第
1圧接圧力で加圧しているため、振動付与開始時にもっ
とも投入エネルギーが高くなり、発熱量も多くなってい
る。そして時間の経過とともに圧接圧力が低下し、投入
エネルギーも少なくなり、発熱量も少なくなる。従っ
て、溶着面では、振動付加開始時に最も発熱し、徐々に
発熱量が低下する。According to the vibration welding method of the present invention, the vibration is started in a state of being pressed at the maximum pressing pressure which is the first pressing pressure, the pressure is immediately reduced, and the second pressing pressure is reduced in 0.5 to 5.0 seconds . To reach. The application of the vibration is further continued for a predetermined time at the second pressure, and the application of the vibration is stopped. Thereafter, pressurization is continued at the second press contact pressure for a while to complete welding. In the method of the present invention, since the pressurization is performed at the first press-contact pressure, which is the maximum press-contact pressure at the start of the application of the vibration, the input energy is the highest at the start of the application of the vibration, and the calorific value is also large. Then, as the time elapses, the pressing pressure decreases, the input energy decreases, and the calorific value also decreases. Therefore, the welding surface generates the most heat at the start of vibration application, and the amount of heat generation gradually decreases.
【0009】振動溶着において溶着面がすべて均一に加
熱されれば溶着は比較的簡単にできる。しかし成形体の
形状が複雑であったり、溶着面が分散している場合、均
一な発熱を期待することはできない。単位溶着面あたり
の発熱量の多い部分はその他の部分に比べ早く加熱され
て溶融する。加熱溶融するとその部分が極めて柔らかく
なり圧接圧力を保持できない。このため圧接圧力はその
他の未だ溶融していない溶着部分で受け持つことにな
る。すなわち、圧接圧力が変わらないとするとその他の
溶着部分は単位面積当たり圧接圧力が増大することにな
る。この単位面積当たりの圧接圧力の増大はより後で溶
融する部分程大きくなる。発明者はこの後で溶融する部
分に付加される極めて大きい単位面積当たりの圧接圧力
が溶着不良の最大の原因であると考えた。If all welding surfaces are uniformly heated in vibration welding, welding can be relatively easily performed. However, when the shape of the molded body is complicated or the welding surface is dispersed, uniform heat generation cannot be expected. A portion having a large calorific value per unit welding surface is heated and melted faster than other portions. When heated and melted, the portion becomes extremely soft and cannot maintain the pressing pressure. For this reason, the press-contact pressure is taken over by the other welding parts that have not yet been melted. That is, if the pressure does not change, the pressure of the other welded portions increases per unit area. The increase in the press-contact pressure per unit area increases as the portion melts later. The inventor has considered that the extremely large pressing pressure per unit area applied to a portion to be subsequently melted is the largest cause of poor welding.
【0010】本発明の方法では、圧接圧力は連続的に低
下する。したがって、溶着面の溶融が部分的に異なって
も、溶融していない部分の単位面積当たりの圧接圧力は
さほどには変化しない。このようにしてこの部分の発熱
は維持され時間の経過とともに溶融に十分な発熱となり
溶融する。溶融した部分の圧接圧力は直ちに極めて小さ
くなるため、その部分における発熱は多くない。したが
つて過剰な発熱が抑制され、不必要な多くの溶融が避け
られる。これにより溶着面全体が比較的均一に加熱され
る。従って、より確実な溶着が可能となり、また、過溶
融等の問題も回避できる。[0010] In the method of the present invention, the pressing pressure is continuously reduced. Therefore, even if the melting of the welding surface is partially different, the pressing pressure per unit area of the unmelted portion does not change so much. In this way, the heat generated in this portion is maintained, and with the passage of time, sufficient heat is generated for melting, and the portion is melted. Since the pressing pressure of the melted portion immediately becomes extremely small, heat generation in that portion is not large. Thus, excessive heat generation is suppressed, and unnecessary unnecessary melting is avoided. Thereby, the entire welding surface is relatively uniformly heated. Therefore, more reliable welding can be performed, and problems such as overmelting can be avoided.
【0011】[0011]
【発明の実施の態様】本発明の振動溶着法は一対の成形
体を互いに圧接し振動溶着させながら圧接圧力を徐々に
減少させるものであり、本発明の振動溶着時の圧接圧力
および変位の変化を図1に示す。また、比較例として図
1と同様に従来の圧接圧力の減少しない振動溶着法にお
ける圧接圧力および変位の変化を図2に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The vibration welding method of the present invention is a method in which a pair of compacts are pressed against each other and the pressure is gradually reduced while vibrating and welding, and the change in the pressure and displacement during the vibration welding of the present invention. Is shown in FIG. FIG. 2 shows, as a comparative example, changes in the contact pressure and displacement in the conventional vibration welding method in which the contact pressure is not reduced, as in FIG.
【0012】本発明の方法では、第1圧接圧力から第2
圧接圧力に至る間に溶着に必要な熱を発生する必要があ
る。発熱量は振動の振幅が同じである場合、圧接圧力と
時間の積により求められる。また、圧接に必要な熱量は
振動溶接される一対の成形体の溶着面積、樹脂の種類、
成形体の温度等で定まる。多くの熱量が必要な場合、第
1圧接圧力を高くしたり、第2圧接圧力に至る時間を長
く採るようにすることにより可能となる。In the method of the present invention, the first pressing pressure is changed to the second pressing pressure.
It is necessary to generate the heat required for welding before reaching the pressure for pressing. When the amplitude of vibration is the same, the calorific value is determined by the product of the pressure and the time. The amount of heat required for pressure welding is determined by the welding area of a pair of compacts to be welded by vibration, the type of resin,
It is determined by the temperature of the compact. When a large amount of heat is required, this can be achieved by increasing the first pressure and increasing the time required to reach the second pressure.
【0013】この第1圧接圧力、第2圧接圧力およびこ
の間の時間は、第2圧接圧力は第1圧接圧力の4/5〜
1/5であり、第2圧接圧力に到達する時間は振動を付
加した後0.5〜5.0秒であるのが好ましい。第2圧
接圧力は少なくとも溶融した溶着面の溶融を維持するの
に十分な発熱が得られる圧接圧力である必要がある。よ
り好ましくは、さらに樹脂の溶融が増える程度の発熱が
あるようにするのが好ましい。この第2圧接圧力を維持
する期間は、溶融面の均一な溶融を達成する期間で、未
溶融の部分の溶融を促進して溶融に至らしめ、溶融した
部分の溶融を維持するものである。The first pressing pressure, the second pressing pressure and the time between them are such that the second pressing pressure is 4/5 to 1st pressing pressure.
It is preferably 1/5, and the time to reach the second press contact pressure is preferably 0.5 to 5.0 seconds after adding vibration. The second pressing pressure needs to be a pressing pressure at which heat generation sufficient to maintain at least the molten welding surface is obtained. More preferably, it is preferable to generate heat to such an extent that the melting of the resin increases. The period during which the second pressure is maintained is a period during which uniform melting of the melted surface is achieved, and promotes the melting of the unmelted portion to achieve melting, thereby maintaining the melting of the melted portion.
【0014】例えば、第1圧接圧力加圧時間を1秒と
し、第1圧接圧力が15、20、30、40kg/cm
2である各試料における第2圧接圧力を横軸に耐圧強度
を縦軸にし第1圧接圧力と耐圧強度の関係を図3に示し
て説明する。ここで、耐圧強度の測定方法は、溶着した
成形体を密閉し水圧で破裂させその最大値を測定した。
また、比較として従来の方法(加圧力が減少しない方
法)で溶着した試料の耐圧強度も図3中に示す。従来方
法において圧接圧力が低圧のときに耐圧強度が低いの
は、溶着する樹脂にそり等があり、これがうまく矯正で
きずに、溶着するからである。しかし、本発明の溶着で
の耐圧強度は従来方法の耐圧強度より高いことがわか
る。これは、第1圧接圧力で、成形後、変形していた溶
着部が高圧で圧縮されることによりそりが矯正され、す
ぐに溶着が始まり、溶着途中で低圧になり、溶着層を厚
くすることができるからである。しかし、第2圧接圧力
が20kg/cm2より高くなると、耐圧強度は比較例
より低くなる。この原因は、圧接圧力が高くなりすぎた
ため、高圧のため、溶着層が薄くなり、耐圧強度が低く
なるからである。また、第1圧接圧力が20kg/cm
2の時がもっとも高い耐圧強度を示している。For example, the first pressing pressure is 1 second, and the first pressing pressure is 15, 20, 30, 40 kg / cm.
FIG. 3 shows the relationship between the first pressure and the pressure resistance of the sample 2, which is the second pressure at the horizontal axis and the pressure resistance at the vertical axis. Here, the method of measuring the compressive strength was to seal the welded compact, rupture it with water pressure, and measure the maximum value.
FIG. 3 also shows the pressure resistance of a sample welded by a conventional method (a method in which the pressure is not reduced) for comparison. The reason why the pressure resistance is low when the pressing pressure is low in the conventional method is that the resin to be welded has a warp or the like, which cannot be corrected well and is welded. However, it can be seen that the pressure resistance of the welding of the present invention is higher than the pressure resistance of the conventional method. This is because the deformed welded portion is compressed at a high pressure at the first press contact pressure, the warp is corrected, the welding is started immediately, the pressure becomes low during the welding, and the welded layer is thickened. Because it can be. However, when the second pressure is higher than 20 kg / cm 2 , the pressure resistance is lower than that of the comparative example. This is because the welding pressure is too high and the pressure is high, so that the welded layer is thin and the pressure resistance is low. Also, the first pressing pressure is 20 kg / cm
The time of 2 indicates the highest compressive strength.
【0015】図3における第1圧接圧力の加圧時間を1
秒から2秒とした場合が図4に示されている。第1圧接
圧力を1秒から2秒とすることで、耐圧強度の値が全体
的に低下している。このため、第1圧接圧力の加圧時間
は短いほうが高い耐圧強度を得られる。このように第1
圧接圧力は、通常10〜30kg/cm2であることが
好ましい。また、第2圧接圧力は、5〜20kg/cm
2の範囲であることが好ましい。The pressurizing time of the first press contact pressure in FIG.
FIG. 4 shows a case where the time is changed from seconds to 2 seconds. By setting the first press contact pressure from 1 second to 2 seconds, the value of the pressure resistance is reduced as a whole. For this reason, the shorter the pressurization time of the first press contact pressure, the higher the pressure resistance. Thus the first
The pressing pressure is usually preferably from 10 to 30 kg / cm 2 . The second pressure is 5 to 20 kg / cm.
It is preferably in the range of 2 .
【0016】この第2圧接圧力の持続時間は試行錯誤で
最適時間を求めることができる。また、一対の成形体間
の間隔が所定間隔まで狭くなった時に振動の付与を止め
この期間の終了とする方法でも良い。これにより溶着面
全体が均一に溶融状態となる。この溶融面における成形
体の溶融量、すなわち溶着深さは1〜2mmが好まし
い。それは、この深さが強度を出せる値であり、これ以
上溶着しても強度は高くならず溶着バリが多く発生する
値である。そこで、当初から溶着バリのことも考えてこ
の値を使用する。The optimum duration of the second pressure can be determined by trial and error. Further, a method may be adopted in which the application of vibration is stopped when the interval between the pair of compacts is reduced to a predetermined interval, and the period ends. As a result, the entire welding surface is uniformly melted. The melting amount of the molded body on the melting surface, that is, the welding depth is preferably 1 to 2 mm. That is, this depth is a value at which strength can be obtained, and even if welding is performed further, the strength is not increased, and a large amount of welding burrs is generated. Therefore, this value is used in consideration of welding burrs from the beginning.
【0017】溶着時間を横軸に溶着深さを縦軸にとった
図5に示されているように、比較例の溶着深さは実施例
と比較して低下している。図5は、均一な発熱が期待で
きない溶着面を有する成形体に振動溶着を行ったときの
溶着時間と溶着深さの関係を示した図です。実施例は、
第1圧接圧力での振動で未溶融の部分が生じても、第1
圧接圧力から第2圧接圧力へと連続的に低下する圧接圧
力および第2圧接圧力での振動により、溶融した部分が
過剰に溶融されることなく未溶融の部分を溶融させるた
め、溶融面に均一な溶融を生じさせます。しかしなが
ら、比較例は、溶着面に均一な発熱がなされずに未溶融
の部分が生じても、圧接圧力が変化しないため、均一な
溶融が生じないものであります。また、溶着深さの測定
が一対の成形体のそれぞれを保持する一対の冶具のそれ
ぞれに設けられた変移センサーを用いてなされているた
め、未溶融の部分が生じると、溶着深さが実際に溶融面
において溶融している溶融量より小さな値として測定さ
れます。このため比較例において所定の溶着強度を得る
ため溶着深さを設定どおりに得ようとすると溶着時間が
長く、溶融深さも深くなる。ここで、比較例において、
溶着深さと実際に溶融面において溶融している溶融量と
が異なるため、溶融面において実際に溶融している溶融
量を溶融深さとした。この時の溶融深さと溶着深さの差
がバリとなる。比較例では溶着深さの設定が1.5mm
であっても、実際には2mm以上溶融しているため、バ
リが発生する。発生したバリが問題を起こすため、バリ
の発生をおさえる必要がある。そこで、溶着深さを制御
する必要がある。制御の方法としては例えば、従来方法
で用いられている時間による制御がある。しかしなが
ら、時間での制御は、振動初期に樹脂の滑り等が発生し
た場合、溶着部の溶融が不十分となり、耐圧強度の不足
の原因になる。そのため、従来方法では溶着圧力を低圧
にすると、溶着強度が高くなるが、滑りの発生により溶
着深さが足りなくなり、耐圧強度が低くなってしまう。As shown in FIG. 5, where the welding time is plotted on the horizontal axis and the welding depth is plotted on the vertical axis, the welding depth of the comparative example is lower than that of the embodiment . Figure 5 shows that uniform heat generation is expected
When vibration welding is performed on a compact having a welding surface
This is a diagram showing the relationship between welding time and welding depth. Examples are
Even if an unmelted portion occurs due to vibration at the first pressure,
The pressure that continuously decreases from the pressure to the second pressure
By the force and the vibration at the second pressure, the melted part
For melting unmelted parts without excessive melting
Therefore, a uniform melting is generated on the melting surface. But
However, the comparative example is not melted without uniform heat generation on the welding surface.
Even if there is a part, the pressing pressure does not change,
It does not melt. Also, measurement of welding depth
Is a pair of jigs that hold each of a pair of compacts
It is done using the displacement sensor provided in each
Therefore, if unmelted parts occur, the welding depth will actually
Measured as a value smaller than the amount of melting at
Will be In Comparative Examples for this long welding time is to be obtained as per setting welding depth to obtain a predetermined welding strength, it becomes deeper melting depth. Here, in the comparative example,
The welding depth and the amount of melting actually on the melting surface
Is actually different from the melting surface
The amount was the melt depth. The difference between the melt depth and the welding depth of the time this is Bali. In the comparative example, the setting of the welding depth is 1.5 mm.
Even in this case, burrs are generated because they are actually melted by 2 mm or more. Since the generated burrs cause problems, it is necessary to suppress the generation of burrs. Therefore, it is necessary to control the welding depth. As a control method, for example, there is a time control used in the conventional method. However, in the case of time-based control, if the resin slips at the initial stage of vibration, the welded portion becomes insufficiently melted, causing insufficient pressure resistance. Therefore, in the conventional method, when the welding pressure is reduced, the welding strength is increased, but the welding depth is insufficient due to the occurrence of slip, and the pressure resistance is reduced.
【0018】このため、溶着の制御はより直接的な制御
が好ましく、溶着深さの監視は、溶着部の接合樹脂の溶
融を検知する装置及び溶融部近傍の樹脂位置の変位を測
定することで検知できる。例えば、接合樹脂の上下にセ
ンサーを付けその間隔を測定するか、溶着冶具間の間隔
を測定するか、あるいは両者を併用することにより樹脂
の溶着部の溶着深さを精度良く測定監視することができ
る。For this reason, more direct control of the welding is preferable, and the monitoring of the welding depth is performed by detecting the melting of the joining resin at the welded portion and measuring the displacement of the resin position near the welded portion. Can be detected. For example, it is possible to accurately measure and monitor the welding depth of the welded part of the resin by attaching sensors above and below the joining resin and measuring the interval, measuring the interval between welding jigs, or using both together. it can.
【0019】振動の付与を停止した後、同じ第2圧接圧
力を維持する。振動の付与はなされておらず、もはや溶
着面での発熱は無い。溶融した樹脂は周囲に熱を奪われ
て冷却され、凝固する。これにより一対の成形体は確実
に溶着される。この状態で第2圧接圧力の付与を停止
し、溶着して一体化された成形体を得る。なお、振動溶
着の振幅の大きさ、単位時間当たりの振動数等、より最
適な値とすべきである。これらの値は試行錯誤的に求め
ることができる。また、圧接は、溶接される一対の成形
体が傾いて押圧されないように溶着面全体が均一に押し
込まれるように注意する必要がある。After stopping the application of the vibration, the same second pressing pressure is maintained. Vibration is not given, and there is no longer heat generation at the welding surface. The molten resin is deprived of heat by the surroundings, is cooled, and solidifies. This ensures that the pair of compacts is welded. In this state, the application of the second pressing pressure is stopped, and an integrated molded body is obtained by welding. It should be noted that more optimal values such as the amplitude of vibration welding and the frequency per unit time should be used. These values can be determined by trial and error. In the pressure welding, it is necessary to take care that the entire welding surface is uniformly pushed in so that the pair of molded bodies to be welded are not inclined and pressed.
【0020】この方法により溶着面での樹脂のはみ出し
バリの発生などを防ぎ、溶着部には必要量の樹脂が溶融
接合して接合面での樹脂強度を高めることができる。な
お、本発明の樹脂成形体の振動溶着方法が適用できる樹
脂成形体としは、熱可塑性樹脂で成形された成形体であ
る。具体的には、ABS樹脂、スチレン樹脂、ポリエス
テル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプ
ロピレン樹脂及びそのガラス繊維入りの樹脂等の成形体
を挙げることができる。なお、成形方法は、射出成形、
押し出し成形等従来から知られた成形方法を採用でき
る。According to this method, it is possible to prevent the resin from protruding from the welding surface and to generate burrs, etc., and to melt-bond a required amount of the resin to the welding portion to increase the resin strength at the bonding surface. The resin molded article to which the method for vibration welding of the resin molded article of the present invention can be applied is a molded article formed of a thermoplastic resin. Specifically, molded articles such as an ABS resin, a styrene resin, a polyester resin, a polyamide resin, a polyethylene resin, a polypropylene resin, and a resin containing glass fibers thereof can be given. The molding method is injection molding,
A conventionally known molding method such as extrusion molding can be employed.
【0021】[0021]
【発明の作用効果】本発明の方法では、圧接圧力は連続
的に低下する。したがって、溶着面の溶融が部分的に異
なっても、溶融していない部分の単位面積当たりの圧接
圧力はさほどには変化しない。このようにしてこの部分
の発熱は維持され時間の経過とともに溶融に十分な発熱
となり溶融する。溶融した部分の圧接圧力は直ちに極め
て小さくなるため、その部分における発熱は多くない。
したがって過剰な発熱が抑制され、不必要な多くの溶融
が避けられる。これにより溶着面全体が比較的均一に加
熱される。従って、より確実な溶着が可能となり、ま
た、過溶融等の問題も回避できる。According to the method of the present invention, the pressing pressure is continuously reduced. Therefore, even if the melting of the welding surface is partially different, the pressing pressure per unit area of the unmelted portion does not change so much. In this way, the heat generated in this portion is maintained, and with the passage of time, sufficient heat is generated for melting, and the portion is melted. Since the pressing pressure of the melted portion immediately becomes extremely small, heat generation in that portion is not large.
Therefore, excessive heat generation is suppressed, and unnecessary melting is avoided. Thereby, the entire welding surface is relatively uniformly heated. Therefore, more reliable welding can be performed, and problems such as overmelting can be avoided.
【0022】また、溶着部の樹脂の溶融後、設定値以上
の加圧力が溶融部にかからないため、溶融樹脂が溶着部
よりはみださず、溶着部にのこり、硬化時に溶着層が厚
くなり、溶着部の樹脂強度が向上する。また、接合する
樹脂成形品の形状が複雑で、溶着初期における樹脂の溶
融始めの時間がバラバラであっても、第1圧接圧力より
第2圧接圧力に圧接圧力が低下する間にすべての溶着部
分が均一に溶融するため確実に溶着できる。Further, after the resin in the welded portion is melted, a pressing force of a set value or more is not applied to the welded portion, so that the molten resin does not protrude from the welded portion, stays in the welded portion, and the thickness of the welded layer is increased during curing. As a result, the resin strength of the welded portion is improved. Further, even if the shape of the resin molded product to be joined is complicated and the time at which the resin begins to melt in the initial stage of welding varies, all the welded portions are reduced while the pressure is reduced from the first pressure to the second pressure. Can be reliably welded because it is uniformly melted.
【0023】本発明の方法によれば、接合樹脂製品の溶
着強度のばらつきが少なくなり、複雑形状の樹脂製品で
も振動溶着の耐久強度を向上させることができ、樹脂製
品の信頼性が上がり低コスト化が可能となる。According to the method of the present invention, the variation in the welding strength of the joined resin product is reduced, and the durability of vibration welding can be improved even for a resin product having a complicated shape, and the reliability of the resin product is increased and the cost is reduced. Is possible.
【0024】[0024]
【実施例】以下実施例により具体的に説明する。本実施
例ではガラス繊維を35重量%含む6ナイロンを射出成
形して得られたインテークマニホールドの半割りした一
対の成形品を振動溶着するものである。溶着部分の断面
を模式的に図7に示す。上方の成形品1の下端中央の凸
部11が一方の溶着部分であり、下方の成形品2の上端
の凹部21が他方の溶着部分となる。上方の成形品1お
よび下方の成形品2にそれぞれ変位センサー31、32
を取り付け、両者間の間隔を経時的に測定した。なお、
変位センサーは図8に示すように溶着冶具41、42に
固定しても良い。The present invention will be described more specifically with reference to the following examples. In the present embodiment, a pair of molded products obtained by half-injecting an intake manifold obtained by injection molding 6 nylon containing 35% by weight of glass fiber is subjected to vibration welding. FIG. 7 schematically shows a cross section of the welded portion. The convex portion 11 at the center of the lower end of the upper molded product 1 is one welded portion, and the concave portion 21 at the upper end of the lower molded product 2 is the other welded portion. Displacement sensors 31, 32 are provided on the upper molded product 1 and the lower molded product 2, respectively.
Was attached, and the interval between the two was measured over time. In addition,
The displacement sensor may be fixed to welding jigs 41 and 42 as shown in FIG.
【0025】なお、当接している溶着面積は14.4c
m2、成形材料の比重は1.37g/cm3、その比熱は
0.38cal/g℃である。振動溶着機としてはブラ
ンソンモデル2850を使用した。なお、振動溶着の振
幅は1.7mm、周波数は240Hzとした。振動溶着
は図1に示すように所定の第1圧接圧力で両成形体を押
しつけ、その状態で振動を付加し、直ちに圧接圧力を連
続的に低下させて所定時間に第2圧接圧力に低下させ、
その第2圧接圧力を維持し、所定時間で振動の付加を停
止し、その後も所定時間第2圧接圧力を維持し、溶着を
終えるものである。図1に示すように、溶着時間は振動
付加時間と等しい。また、振動の付加を止めた後の第2
圧接圧力の押圧時間が保圧時間となる。The welding area in contact is 14.4 c.
m 2 , the specific gravity of the molding material is 1.37 g / cm 3 , and the specific heat is 0.38 cal / g ° C. A Branson model 2850 was used as a vibration welding machine. The amplitude of the vibration welding was 1.7 mm and the frequency was 240 Hz. In the vibration welding, as shown in FIG. 1, both molded bodies are pressed at a predetermined first pressing pressure, vibration is applied in that state, and the pressing pressure is continuously reduced immediately and reduced to a second pressing pressure in a predetermined time. ,
The second press-contact pressure is maintained, the application of vibration is stopped for a predetermined time, and thereafter, the second press-contact pressure is maintained for a predetermined time to complete the welding. As shown in FIG. 1, the welding time is equal to the vibration addition time. In addition, the second after stopping the addition of vibration
The pressing time of the pressing pressure is the pressure holding time.
【0026】表1に溶着条件と溶着されたインテークマ
ニホールドの耐圧強度とを併せて示す。使用した樹脂
は、6ナイロンGF35%である。Table 1 also shows the welding conditions and the pressure resistance of the welded intake manifold. The resin used is 35% nylon 6 GF.
【0027】[0027]
【表1】 [Table 1]
【0028】本発明の振動溶着方法を用いることによ
り、試料No.1〜5と6および7〜11と12の比較
から耐圧強度が向上していることが確認される。また、
溶着条件として、第1圧接圧力から第2圧接圧力への変
化がない試料No.6および12、第1圧接圧力から第
2圧接圧力への圧力変動が連続的にゆっくりと行われる
試料No.1〜5および7〜11のほかに、第1圧接圧
力での振動後、第2圧接圧力へと圧力をゆっくりでなく
急激に低下させる溶着条件が考えられるが、このような
条件での溶着、つまり溶着途中で急激に圧力を変動させ
る溶着は、溶着不良が生じるため、溶着には不適とな
る。このため、第1圧接圧力から第2圧接圧力へは徐々
に圧力を下げる必要がある。By using the vibration welding method of the present invention, the sample No. Comparison of 1 to 5 and 6 and 7 to 11 and 12 confirms that the pressure resistance is improved. Also,
As the welding conditions, Sample No. having no change from the first pressure to the second pressure was used. Sample Nos. 6 and 12, in which the pressure change from the first pressure to the second pressure is continuously and slowly performed. In addition to 1 to 5 and 7 to 11, welding conditions in which after vibration at the first pressing pressure, the pressure is decreased not slowly but rapidly to the second pressing pressure can be considered. That is, welding in which the pressure is rapidly changed during welding is not suitable for welding because of poor welding. For this reason, it is necessary to gradually reduce the pressure from the first pressure to the second pressure.
【0029】[0029]
【図1】 本実施例の方法による、工程管理状態の説明
図である。FIG. 1 is an explanatory diagram of a process management state according to a method of the present embodiment.
【図2】 従来方法による、工程管理状態の説明図であ
る。FIG. 2 is an explanatory diagram of a process management state according to a conventional method.
【図3】 一次加圧時間を1秒とし加圧力を変えた場合
の耐圧強度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the primary pressurization time and the pressurizing strength when the pressurizing force is changed to 1 second.
【図4】 一次加圧時間を2秒とし加圧力を変えた場合
の耐圧強度との関係を示すグラフである。FIG. 4 is a graph showing a relationship between the primary pressurization time and the pressure resistance when the pressurizing force is changed to 2 seconds.
【図5】 本発明法と従来法における溶着深さを示すグ
ラフである。 FIG. 5 is a graph showing the welding depth in the method of the present invention and the conventional method.
It is rough.
【図6】 本実施例の検知方法を説明する模式図であ
る。 FIG. 6 is a schematic diagram illustrating a detection method according to the present embodiment.
You.
【図7】 本実施例の他の検知方法を説明する模式図で
ある。 FIG. 7 is a schematic diagram illustrating another detection method according to the present embodiment.
is there.
1、2:樹脂、 11、21:溶着部 31、32:変位センサー、 41、42:溶着冶具 O> 1, 2: resin, 11, 21: welding part 31, 32: displacement sensor, 41, 42: welding jig O>
Claims (3)
ことにより溶着する振動溶着方法であって、第1圧接圧
力で圧接した状態で振動を付加し、振動を付加した後直
ちに圧接圧力を連続的に低下させて0.5〜5.0秒で
第2圧接圧力に到達させ、この状態で圧接しつつ振動の
付加を所定期間継続して溶着することを特徴とする振動
溶着方法。1. A vibration welding method in which a pair of compacts are welded to each other by applying pressure and applying vibration, wherein vibration is applied in a state of being pressed at a first pressure and pressure is applied immediately after the vibration is applied. 0.5 to 5.0 seconds
Vibration welding method characterized in that to reach the second pressing pressure, the addition of vibration while pressed in this state continuously for a predetermined period of time to weld.
/5〜1/5である請求項1記載の樹脂成形体の振動溶
着方法。2. The second pressing pressure is 4 times the first pressing pressure.
/ 5-1 / 5 a vibration welding method of the resin molded body according to claim 1, wherein.
くなった時に振動の付与を停止する請求項1記載の樹脂
成形体の振動溶着方法。3. The method according to claim 1, wherein the application of the vibration is stopped when the interval between the pair of moldings is reduced to a predetermined interval.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07601097A JP3211712B2 (en) | 1997-03-27 | 1997-03-27 | Vibration welding method of resin molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07601097A JP3211712B2 (en) | 1997-03-27 | 1997-03-27 | Vibration welding method of resin molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10264255A JPH10264255A (en) | 1998-10-06 |
JP3211712B2 true JP3211712B2 (en) | 2001-09-25 |
Family
ID=13592858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07601097A Expired - Fee Related JP3211712B2 (en) | 1997-03-27 | 1997-03-27 | Vibration welding method of resin molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3211712B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19831665A1 (en) | 1998-07-15 | 2000-01-20 | Cyklop Gmbh | Welding thermoplastic strapping, especially of polypropylene, for packaging by measuring thickness changes in the strapping |
JP3733896B2 (en) | 2001-01-30 | 2006-01-11 | 株式会社デンソー | Vibration welding method |
JP4985957B2 (en) * | 2007-05-21 | 2012-07-25 | シンフォニアテクノロジー株式会社 | Vibration welding machine and vibration control method in the vibration welding machine |
JP5063466B2 (en) * | 2008-04-25 | 2012-10-31 | 日本プラスト株式会社 | Mounting structure for molded parts for vehicles |
JP2009295269A (en) * | 2009-07-22 | 2009-12-17 | Fujifilm Corp | Tape cartridge reel |
US10850347B2 (en) * | 2018-09-19 | 2020-12-01 | Apci, Llc | Linear friction welding system with pre-heating |
JP7495532B2 (en) * | 2021-02-10 | 2024-06-04 | 古河電気工業株式会社 | Manufacturing method of bipolar storage battery |
-
1997
- 1997-03-27 JP JP07601097A patent/JP3211712B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10264255A (en) | 1998-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5855706A (en) | Simultaneous amplitude and force profiling during ultrasonic welding of thermoplastic workpieces | |
US5658408A (en) | Method for processing workpieces by ultrasonic energy | |
Benatar et al. | Ultrasonic welding of plastics and polymeric composites | |
CN106238898A (en) | System and method for ultrasonic bonding | |
US9688017B2 (en) | Vibration welders with high frequency vibration, position motion control, and delayed weld motion | |
CN107498879A (en) | The ultra-sonic welded of thermoplastic composite | |
JP3211712B2 (en) | Vibration welding method of resin molding | |
Potente | Ultrasonic welding—Principles & theory | |
US6588644B2 (en) | Energy controller for vibration welder | |
CN101811364B (en) | Conjugation method for resin molding product | |
JP3812652B2 (en) | Ultrasonic welding method and welding apparatus for reinforcing tape piece to fastener tape | |
US20030094735A1 (en) | Methods of joining polymers using ultrasonic energy | |
JPS5874315A (en) | Ultrasonic bonding method of thermoplastic resin member | |
JP2012121156A (en) | Method of vibration welding | |
JPS6153943B2 (en) | ||
CN113954371A (en) | Ultrasonic hot-melt welding method and ultrasonic hot-melt welded assembly | |
Grewell | Amplitude and force profiling: Studies in ultrasonic welding of thermoplastics | |
JP6319341B2 (en) | Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method | |
JP5536560B2 (en) | Determination method of welding conditions | |
US11858223B2 (en) | Bond strip technology | |
JPS5859050A (en) | Welding method for resin | |
JP2019055537A (en) | Metal resin bonded body and method of producing the same | |
JP2017100408A (en) | Manufacturing method for bonded body | |
JPH02117815A (en) | Joining method of polymeric materials drawing-processed | |
JP2782415B2 (en) | Bonding of plastics by high frequency dielectric heating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |