JP3211402B2 - Rotating cylindrical viscometer - Google Patents

Rotating cylindrical viscometer

Info

Publication number
JP3211402B2
JP3211402B2 JP24951092A JP24951092A JP3211402B2 JP 3211402 B2 JP3211402 B2 JP 3211402B2 JP 24951092 A JP24951092 A JP 24951092A JP 24951092 A JP24951092 A JP 24951092A JP 3211402 B2 JP3211402 B2 JP 3211402B2
Authority
JP
Japan
Prior art keywords
temperature
current
propeller
viscosity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24951092A
Other languages
Japanese (ja)
Other versions
JPH06102164A (en
Inventor
清道 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24951092A priority Critical patent/JP3211402B2/en
Publication of JPH06102164A publication Critical patent/JPH06102164A/en
Application granted granted Critical
Publication of JP3211402B2 publication Critical patent/JP3211402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、回転円筒形粘度計に係
り、特に製糖プロセスの煎糖工程における缶液の流動性
を評価する結晶容積分率計として使用する粘度計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary cylindrical viscometer, and more particularly, to a viscometer used as a crystal volume fraction meter for evaluating the fluidity of a can solution in the decoction step of a sugar production process.

【0002】[0002]

【従来の技術】従来の回転円筒形粘度計(以下、単に粘
度計と称する。)は、図2に示す如く、励磁巻線1,電
機子巻線2及び、回転子3との組合わせからなる直流分
巻電動機4と、前記回転子3に直結されたプロペラ軸5
と、プロペラ軸5の先端に取り付けられ、かつ、粘度測
定物6の入ったかま7の中に設置されたプロペラ8とか
ら構成された粘度検出器9、更に、前記直流分巻電動機
4の励磁巻線1に定電流If10 を供給する定電流源回
路11と、電機子巻線2に直列に接続された抵抗器Rk
12を介して定電圧Va13 を供給する定電圧源回路1
4とからなる電動機駆動回路15、更には抵抗器Rk1
2により検出された電機子電流Ia16 を所定の電気信
号に変換して出力するゼロ点調整部17とスパン調整部
18とが設けられた増幅器19とから構成される。
2. Description of the Related Art As shown in FIG. 2, a conventional rotary cylindrical viscometer (hereinafter simply referred to as a viscometer) is obtained by combining an excitation winding 1, an armature winding 2 and a rotor 3. DC shunt motor 4 and a propeller shaft 5 directly connected to the rotor 3
And a propeller 8 attached to the tip of a propeller shaft 5 and installed in a kettle 7 containing a viscosity measuring object 6, and a excitation of the DC shunt motor 4 further. A constant current source circuit 11 for supplying a constant current If 10 to the winding 1 and a resistor Rk connected in series to the armature winding 2
Constant voltage source circuit 1 for supplying a constant voltage Va 13 via
4 and a resistor Rk1
2 comprises an amplifier 19 provided with a zero-point adjusting unit 17 for converting the armature current I a 16 detected by the second unit 2 into a predetermined electric signal and outputting the signal, and a span adjusting unit 18.

【0003】このように直流分巻電動機4を用いた粘度
計によると、電機子電流Ia16 と、粘度ηとの関係
は、一般に、
According to the viscometer using the DC shunt motor 4, the relationship between the armature current I a 16 and the viscosity η is generally

【0004】[0004]

【数1】 (Equation 1)

【0005】記号の説明 η0 :直流分巻電動機4の使用方法で決められる定数。Explanation of Symbols η 0 : Constant determined by the method of using DC shunt motor 4.

【0006】K :プロペラ8形状,直流分巻電動機4
の特性によって決められる定数。
K: Propeller 8 shape, DC shunt motor 4
A constant determined by the characteristics of

【0007】Φ :励磁巻線1により発生する磁束2
5。
Φ: magnetic flux 2 generated by exciting winding 1
5.

【0008】[0008]

【数2】 Φ=F・If …(数2) If :励磁巻線1に流れる電流10。Φ = F · I f (Equation 2) If : Current 10 flowing through the exciting winding 1.

【0009】F :直流分巻電動機4の物理的構造によ
り決まる電流−磁束変換定数。
F: a current-flux conversion constant determined by the physical structure of the DC shunt motor 4.

【0010】[0010]

【数3】 (Equation 3)

【0011】Ra :電機子巻線2の等価抵抗値Ra
0。
R a : Equivalent resistance value R a 2 of armature winding 2
0.

【0012】Rf :励磁巻線1の等価抵抗値Rf21。R f : an equivalent resistance R f 21 of the exciting winding 1.

【0013】RK :電機子電流Ia16が流れる検出用
抵抗器12の値Rk
R K : value R k of the detecting resistor 12 through which the armature current I a 16 flows.

【0014】Ia :電機子巻線2に流れる電流値16。I a : current value 16 flowing through armature winding 2

【0015】Va :電機子巻線2への供給電圧値13。V a : supply voltage value 13 to armature winding 2

【0016】N :直流分巻電動機4の回転数。N: the number of revolutions of the DC shunt motor 4

【0017】Kn :直流分巻電動機4の定数。K n : constant of DC shunt motor 4

【0018】Ia(N=0):回転子3が停止した時、電
機子巻線2に流れる電流値。
I a (N = 0): a current value flowing through the armature winding 2 when the rotor 3 stops.

【0019】[0019]

【数4】 (Equation 4)

【0020】[0020]

【数5】 VOUT=A(RK・Ia±B) …(数5) VOUT:増幅器19の出力値20。V OUT = A (R K · I a ± B) (Expression 5) V OUT : output value 20 of amplifier 19

【0021】(4mA〜20mA又は、1V〜5V) A :増幅器19のスパン調節部18のゲイン値。(4 mA to 20 mA or 1 V to 5 V) A: The gain value of the span adjustment unit 18 of the amplifier 19.

【0022】B :増幅器19のゼロ点調整部17のバ
イアス値。
B: Bias value of the zero point adjuster 17 of the amplifier 19

【0023】と表される。## EQU2 ##

【0024】これらの式により、プロペラ8に負荷が加
わらない時(この時、直流分巻電動機4の回転数Nが最
大となり、数3で表される電機子電流Ia16 が流れ
る。)を粘度η=0%と定め、更には、プロペラ8に負
荷が加わりプロペラ8が停止した点(この時、直流分巻
電動機4の回転数Nが零となり、数4で表される電機子
電流Ia16 が流れる。)を粘度η=100%と定めて
いる。この従来例では、粘度検出器9に定電圧Va
3,定電流If10を供給し、かつスイッチ22をOF
Fにすることで直流分巻電動機4の回転子3を停止さ
せ、この条件の元で電機子電流Ia(N=0)16を検出
し、増幅器19のゲインを可変しスパン調整を行ってい
る。また、スイッチ22をONし、直流分巻電動機4の
回転数Nが最大値となった時点で、増幅器19の加算部
23を介して印加されるゼロ点調整部17のバイアス値
21を調節することによりゼロ点調整を行っている。な
お、バイアス値の極性切替は切替スイッチ24にて行
う。
[0024] These equations, when the propeller 8 the load is not applied (at this time, the rotational speed N of the DC shunt-wound motor 4 is maximized, the armature current I a 16 represented by the number 3 flows.) The The viscosity η is set to 0%, and the point where the load is applied to the propeller 8 and the propeller 8 stops (at this time, the rotation speed N of the DC shunt motor 4 becomes zero, and the armature current I a 16 flows). The viscosity η is set to 100%. In this conventional example, a constant voltage V a 1 is applied to the viscosity detector 9.
3. Supply constant current If 10 and switch 22
By setting F, the rotor 3 of the DC shunt motor 4 is stopped, the armature current I a (N = 0) 16 is detected under this condition, the gain of the amplifier 19 is changed, and the span is adjusted. I have. Further, when the switch 22 is turned on and the rotation speed N of the DC shunt motor 4 reaches the maximum value, the bias value 21 of the zero point adjustment unit 17 applied via the addition unit 23 of the amplifier 19 is adjusted. By doing so, the zero point is adjusted. The polarity of the bias value is switched by the changeover switch 24.

【0025】上記した従来例の場合、直流分巻電動機4
の温度上昇,周囲温度の上昇により、数2の定数F:電
流−磁束変換定数が変動減少する(直流分巻電動機4の
励磁巻線1の固定子側鉄心26は温度特性を有してい
て、温度変化に対し磁気抵抗値が変わり励磁巻線電流I
f10 と磁束Φ25には比例関係が成立しなくなる。
尚、固定子側の心材として、従来、珪素鋼板が使用され
る場合が有る。珪素鋼板を用いた場合、温度影響が小さ
く、数2の定数Fの変動も少ないため、定電流源回路1
1の存在のみで、温度影響を極力無くすことが可能とな
る。しかしながら、珪素鋼板は、加工性が悪く且つコス
ト高でも有るため、実際には、鉄板、つまり固定子側鉄
心26を用いる場合が多い。)。その結果、励磁巻線電
流If10 に対する磁束Φ25が変動減少し、数3より
明らかなように電機子電流値Ia16が変動しドリフト
する。実験によれば、図3の曲線27の如く、直流分巻
電動機4の起動後、時間経過とともに電機子電流値Ia
16 が10%以上/hrドリフトし、その値は直流分
巻電動機4の温度上昇変化分に比例している。
In the case of the above conventional example, the DC shunt motor 4
(F): The current-flux conversion constant fluctuates and decreases due to the temperature rise and the ambient temperature rise (the stator-side iron core 26 of the exciting winding 1 of the DC shunt motor 4 has temperature characteristics. , The magnetic resistance changes with temperature and the exciting winding current I
The proportional relationship is no longer established between f 10 and the magnetic flux Φ25.
Note that, in some cases, a silicon steel plate is conventionally used as the core material on the stator side. When a silicon steel plate is used, since the influence of temperature is small and the variation of the constant F of Expression 2 is small, the constant current source circuit 1
Only by the presence of 1, it becomes possible to minimize the influence of temperature. However, since the silicon steel sheet has poor workability and high cost, in practice, an iron plate, that is, a stator-side iron core 26 is often used. ). As a result, the magnetic flux Φ25 to the exciting coil current I f 10 decreases fluctuation, the armature current value as than the number 3 is clear I a 16 drifts varies. According to the experiment, as indicated by the curve 27 in FIG. 3, after the DC shunt motor 4 is started, the armature current value I a with time elapses.
16 drifts by 10% or more / hr, and its value is proportional to the temperature rise change of the DC shunt motor 4.

【0026】[0026]

【発明が解決しようとする課題】以上により、増幅器1
9の出力VOUT20 のゼロ点レベルの安定度は極めて悪
く、発生するドリフトを抑えるために、増幅器19のゼ
ロ点/スパン幅調整は何回も繰返し行う必要があり、調
整に長時間要している。また、粘度計として安定性を保
つため、直流分巻電動機4のならし運転を必要とする等
使用上制限事項があり、短時間内に粘度計の使用,調整
をできない欠点を有している。
As described above, the amplifier 1
9, the stability of the zero point level of the output V OUT 20 is extremely poor, and the zero point / span width adjustment of the amplifier 19 needs to be repeated many times in order to suppress the generated drift, and the adjustment takes a long time. ing. In addition, in order to maintain the stability of the viscometer, there are restrictions on use such as necessitating a break-in operation of the DC shunt motor 4, and the viscometer cannot be used or adjusted within a short time. .

【0027】本発明の目的は、固定子側の心材として鉄
板を用いた粘度計の温度ドリフトを容易に補償すること
ができ、それにより調整を短時間内に良好に行うことが
できる回転円筒形粘度計を提供することにある。
An object of the present invention is to provide a rotating cylindrical type which can easily compensate for temperature drift of a viscometer using an iron plate as a core material on the stator side, thereby making it possible to perform an adjustment easily in a short time. It is to provide a viscometer.

【0028】[0028]

【課題を解決するための手段】上記目的を達成するため
の本発明の特徴は、測定対象に挿入されるプロペラ、当
該プロペラを回転させる回転子、鉄心に巻き付けられた
励磁巻線とを有する粘度検出器と、当該粘度検出器によ
って出力される電機子電流を所定の電気信号に変換する
増幅器とを有し、前記プロペラの回転負荷により生じる
電機子電流の変化を検出することによって測定物の粘度
を検出する回転円筒形粘度計において、前記鉄心の温度
を検出する温度センサを備え、当該温度センサによる検
出結果を基に前記粘度検出器からの出力を補正すること
である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is characterized by a viscosity having a propeller inserted into an object to be measured, a rotor for rotating the propeller, and an exciting winding wound around an iron core. A detector that converts an armature current output by the viscosity detector into a predetermined electric signal, and detects a change in the armature current caused by a rotational load of the propeller to detect a viscosity of the measured object. Is to provide a temperature sensor for detecting the temperature of the iron core, and to correct the output from the viscosity detector based on the detection result by the temperature sensor.

【0029】[0029]

【作用】本発明によれば、増幅器19の演算式は数6で
表される。
According to the present invention, the operational equation of the amplifier 19 is represented by the following equation (6).

【0030】[0030]

【数6】 VOUT=A(RK・Ia±B− 1 ・R s ・I s ) …(数6) K1 :電機子電流Ia16の温度ドリフト分を補正する
温度補償係数。
V OUT = A (R K × I a ± B− K 1 × R s × I s ) (Equation 6) K 1 : Temperature compensation coefficient for correcting the temperature drift of the armature current I a 16 .

【0031】Rs :温度センサ28の出力電流Is31
を電圧信号に変換する抵抗器30の値Rs。
R s : output current I s 31 of temperature sensor 28
Is converted to a voltage signal by the value Rs of the resistor 30.

【0032】Is :検出温度に比例した温度センサ28
の出力電流値31。
I s : temperature sensor 28 proportional to the detected temperature
Output current value 31.

【0033】数5と比較し、数6は第3項K1・Rs・I
sが追加されている。この第3項K1・Rs・Isは、温度
による電機子電流Ia16 の変動分(ドリフト)RK
△Iaを引算し零値にする項目で数7で表されるK1
合わせることにより精度良くドリフトを押さえることが
できる。
Compared to Equation 5, Equation 6 is the third term K 1 · R s · I
s has been added. The third term K 1 · R s · I s is the variation (drift) R K · of the armature current I a 16 due to temperature.
Drift can be suppressed with high precision by subtracting ΔI a to zero and adjusting it to K 1 represented by Expression 7.

【0034】[0034]

【数7】 (Equation 7)

【0035】したがって、直流分巻電動機4自体の発
熱,周囲温度の変化により磁束Φ25が変化し、電機子
電流Ia16 がドリフトしても増幅器19内部で温度補
償されるので、出力VOUT20 は、見かけ上ドリフトせ
ず安定な出力状態となる。以上のことは実験により立証
済であり、図3の曲線34はその結果を示している。
[0035] Thus, a DC shunt-wound motor 4 itself of the heating, the magnetic flux Φ25 is changed by a change in ambient temperature, since the armature current I a 16 is temperature compensated within amplifier 19 also drifts, the output V OUT 20 Becomes a stable output state without apparent drift. The above has been proved by experiments, and the curve 34 in FIG. 3 shows the result.

【0036】[0036]

【実施例】以下、本発明の実施例について説明する。図
1に本発明の一実施例を示す。図1において、図2で図
示した従来例と同一符号が付いているものは、同一の部
品・同一の機能を有するものである。本実施例が図2の
従来例と異なるのは、励磁巻線1の固定子側鉄心26に
設けた温度センサ28,温度センサ28の駆動電源Vs
29 ,温度に比例した温度センサ28の出力電流Is
1 を電圧に変換する電流検出抵抗器Rs30 及び、増
幅器19内で数6を構成する上で必要なパラメータ:温
度補償係数K133,電機子電流Ia16と温度センサ2
8の出力電流Is31 との加減演算を行うブロック32
が追加されている点である。
Embodiments of the present invention will be described below. FIG. 1 shows an embodiment of the present invention. In FIG. 1, components denoted by the same reference numerals as those of the conventional example shown in FIG. 2 have the same components and the same functions. This embodiment is different from the conventional example of FIG. 2 in that the temperature sensor 28 provided on the stator-side iron core 26 of the exciting winding 1 and the drive power source V s for the temperature sensor 28 are provided.
29, the output current Is 3 of the temperature sensor 28 proportional to the temperature.
1 to a voltage, a current detection resistor R s 30, and parameters necessary for forming Equation 6 in the amplifier 19: temperature compensation coefficient K 1 33, armature current I a 16, and temperature sensor 2
Block 32 for performing an addition / subtraction operation with the output current Is 31 of FIG.
Is added.

【0037】上記の構成において、今、スイッチ22を
「ON」すると定電流源回路11から定電流If10 が
流れ、直流分巻電動機4の回転数Nは最大となり、回転
数Nに反比例した電機子電流Ia16(数3で表される
a)が流れるので、粘度η=0%に相当する出力値V
OUT20(4mA又は1V)をゼロ点調整部17のバイア
ス値21を可変し、かつ、極性切替の必要があれば切替
スイッチ24で行うことで調整する。
[0037] In the above configuration, now, the switch 22 "ON" Then the constant current I f 10 from the constant current source circuit 11 flows, the rotational speed N of the DC shunt-wound motor 4 becomes maximum, is inversely proportional to the rotational speed N since flows (I a expressed by the number 3) armature current I a 16, the output value V corresponding to a viscosity eta = 0%
OUT 20 (4 mA or 1 V) is adjusted by changing the bias value 21 of the zero-point adjusting unit 17 and, if necessary, changing the polarity by using the changeover switch 24.

【0038】又、スイッチ22を「OFF」にすると、
電機子巻線2には数4で表される電機子電流Ia(N=
0)16が流れるので、粘度100%に相当する出力V
OUT20(20mA,又は5V)となるようにスパン調
整部18でゲインA値を可変し調整する。さらには、数
6の温度補償演算第3項の係数K1 の値は、ゼロ点,ス
パン調整終了後直流分巻電動機4の回転数Nを最大と
し、η=0%の状態のまま直流分巻電動機4本体を加温
一定温度とし、出力VOUT20 がドリフトし、その値が
シフト後安定した時点でη=0%(4mA,又は1V)
になるようにK1 を合わせることで決定できる。
When the switch 22 is turned "OFF",
The armature winding 2 has an armature current I a (N =
0) 16 flows, the output V corresponding to 100% viscosity
The gain A value is varied and adjusted by the span adjustment unit 18 so that OUT 20 (20 mA or 5 V) is obtained. Furthermore, the number 6 a value of the coefficient K 1 of the temperature compensation operation third term of the zero point, the rotational speed N of the span adjustment after completion DC shunt-wound motor 4 to the maximum DC component remains eta = 0% state When the main body of the winding motor 4 is heated to a constant temperature and the output V OUT 20 drifts and the value is stabilized after the shift, η = 0% (4 mA or 1 V)
Can be determined by adjusting K 1 so that

【0039】上記した本発明の実施例によれば、直流分
巻電動機4自体の発熱,周囲温度の変化により磁束Φ2
5が変動し、電機子電流Ia16 がドリフトしても増幅
器19内部温度補償ができるので出力VOUT20 はその
影響を受けず安定した出力値を保持できる。それゆえ、
苛酷な温度環境内でも使用することが可能となり、広範
囲の領域で高精度,高信頼性の粘度を提供できる効果が
ある。
According to the above-described embodiment of the present invention, the heat generated by the DC shunt motor 4 itself and the change in the ambient temperature cause the magnetic flux Φ2
Even if 5 fluctuates and the armature current I a 16 drifts, the internal temperature of the amplifier 19 can be compensated, so that the output V OUT 20 is not affected by this and can maintain a stable output value. therefore,
It can be used even in severe temperature environments, and has the effect of providing highly accurate and highly reliable viscosity over a wide range.

【0040】[0040]

【発明の効果】本発明によれば、外乱として温度の影響
がない粘度計を提供できるので、加熱冷却制御を行う重
合反応缶,晶析缶等を有するプラントにおいて、高精度
でかつ安定度,信頼性の高いプロセス制御を行うことが
できる。
According to the present invention, it is possible to provide a viscometer having no influence of temperature as a disturbance. Therefore, in a plant having a polymerization reactor, a crystallization can, etc. for controlling heating and cooling, high accuracy and stability can be obtained. Highly reliable process control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の回転円筒形粘度計の構成図である。FIG. 1 is a configuration diagram of a rotary cylindrical viscometer of the present invention.

【図2】従来の一実施例を示す構成図である。FIG. 2 is a configuration diagram showing a conventional example.

【図3】従来例、及び本発明の電機子電流Ia16の実
測値を示すグラフである。
FIG. 3 is a graph showing measured values of a conventional example and an armature current Ia16 of the present invention.

【符号の説明】[Explanation of symbols]

2…電機子巻線、9…粘度検出器、11…定電流源回
路、14…定電圧源回路、15…電動機駆動回路、19
…増幅器、22…スイッチ、28…温度センサ、33…
温度補償係数K1 、32…加減演算ブロック。
2 ... armature winding, 9 ... viscosity detector, 11 ... constant current source circuit, 14 ... constant voltage source circuit, 15 ... motor drive circuit, 19
... Amplifier, 22 ... Switch, 28 ... Temperature sensor, 33 ...
Temperature compensation coefficients K 1 , 32...

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 11/00 - 11/16 H02P 7/04 - 7/34 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 11/00-11/16 H02P 7/ 04-7/34 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定対象に挿入されるプロペラ、当該プロ
ペラを回転させる回転子、鉄心に巻き付けられた励磁巻
線とを有する粘度検出器と、当該粘度検出器によって出
力される電機子電流を所定の電気信号に変換する増幅器
とを有し、前記プロペラの回転負荷により生じる電機子
電流の変化を検出することによって測定物の粘度を検出
する回転円筒形粘度計において、 前記鉄心の温度を検出する温度センサを備え、当該温度
センサによる検出結果を基に前記粘度検出器からの出力
を補正することを特徴とする回転円筒形粘度計。
1. A viscosity detector having a propeller inserted into a measurement object, a rotor for rotating the propeller, an excitation winding wound on an iron core, and an armature current output by the viscosity detector being a predetermined value. A rotary cylindrical viscometer that detects a viscosity of a measured object by detecting a change in an armature current caused by a rotational load of the propeller, wherein the temperature of the iron core is detected. A rotary cylindrical viscometer, comprising a temperature sensor, wherein the output from the viscosity detector is corrected based on a detection result by the temperature sensor.
JP24951092A 1992-09-18 1992-09-18 Rotating cylindrical viscometer Expired - Fee Related JP3211402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24951092A JP3211402B2 (en) 1992-09-18 1992-09-18 Rotating cylindrical viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24951092A JP3211402B2 (en) 1992-09-18 1992-09-18 Rotating cylindrical viscometer

Publications (2)

Publication Number Publication Date
JPH06102164A JPH06102164A (en) 1994-04-15
JP3211402B2 true JP3211402B2 (en) 2001-09-25

Family

ID=17194050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24951092A Expired - Fee Related JP3211402B2 (en) 1992-09-18 1992-09-18 Rotating cylindrical viscometer

Country Status (1)

Country Link
JP (1) JP3211402B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9442057B2 (en) 2010-02-17 2016-09-13 Kyoto Electronics Manufacturing Co., Ltd. Method of measuring viscosity and viscosity measuring apparatus

Also Published As

Publication number Publication date
JPH06102164A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
JP3183759B2 (en) Load measuring device
EP0287607B1 (en) A motor energizing circuit
US6396236B1 (en) Method of minimizing errors in rotor angle estimate in synchronous machine
US4851763A (en) Current-measuring device, especially for determining the motor current of a direct-current motor
JPS60104263A (en) Detector measuring parameter
US6774618B2 (en) Magnetic flux sensor and method
US4281288A (en) Apparatus for the measurement of the mechanical output of induction motors
JP3211402B2 (en) Rotating cylindrical viscometer
JP3081751B2 (en) Electric quantity measuring device
US7256574B2 (en) Device for measuring electric current intensity
JP2943377B2 (en) Vector controller for induction motor
US4435987A (en) Device for correcting torque detected by an electric dynamometer
Matsuo et al. Field oriented control of induction machines employing rotor end ring current detection
US5172041A (en) Method and device for asynchronous electric motor control by magnetic flux regulation
US2335784A (en) Regulating system
JP4436999B2 (en) Current sensor
JPH07209343A (en) Method for obtaining measured value expressing current flowing through load in vehicle
JPH0344534A (en) Rotary cylindrical viscometer
JPH04299226A (en) Device for compensating temperature of torque sensor
US20220299568A1 (en) Method for controlling the speed of brushless motors
JPH11508998A (en) Method and circuit device for determining rotational speed of DC motor
SU1377997A1 (en) Apparatus for measuring angular speed of d.c.el motor
US4416160A (en) Apparatus for detecting torque in electric dynamometer
Robinson Analog tachometers
SU333210A1 (en) DEVICE FOR CONTROLLING DRUM ELECTROLYTIC

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees