JP3211140B2 - Voltage supply circuit - Google Patents
Voltage supply circuitInfo
- Publication number
- JP3211140B2 JP3211140B2 JP24527095A JP24527095A JP3211140B2 JP 3211140 B2 JP3211140 B2 JP 3211140B2 JP 24527095 A JP24527095 A JP 24527095A JP 24527095 A JP24527095 A JP 24527095A JP 3211140 B2 JP3211140 B2 JP 3211140B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- resistor
- terminal
- diode
- supply circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Direct Current Feeding And Distribution (AREA)
- Electronic Switches (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は2値の制御電圧に基
いて4つ異なる所定の電圧を出力する電圧供給回路にお
いて、抵抗器による電圧分圧を容易ならしめる電圧供給
回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage supply circuit for outputting four different predetermined voltages based on a binary control voltage, and to a voltage supply circuit for facilitating voltage division by a resistor.
【0002】[0002]
【従来の技術】図5は、従来の電圧供給回路の構成例を
示す図である。図示するように、従来の電圧供給回路は
制御部10の端子t1、t2へ入力電圧Vi(5v)を接
続し、制御信号Sで制御される端子t5、t6の電圧を抵
抗器1と抵抗器2で分圧し、出力端子Tへ出力電圧Eと
して供給する回路である。2ビットの制御信号S(0
0、01、10、11)は制御端子t3、t4に入力さ
れ、端子t5、t6の電圧を制御し4種類の所定の出力電
圧Eを切り替えて出力する。2. Description of the Related Art FIG. 5 is a diagram showing a configuration example of a conventional voltage supply circuit. As shown in the figure, the conventional voltage supply circuit connects an input voltage Vi (5V) to terminals t 1 and t 2 of a control unit 10 and applies a voltage at terminals t 5 and t 6 controlled by a control signal S to a resistor. 1 is a circuit which divides the voltage with the resistor 2 and supplies it to the output terminal T as the output voltage E. The 2-bit control signal S (0
0, 01, 10, and 11) are input to the control terminals t 3 and t 4 , and control the voltages of the terminals t 5 and t 6 to switch and output four types of predetermined output voltages E.
【0003】図6は、入力電圧Viが5v、抵抗器1の
抵抗値をR1、抵抗器2の抵抗値をR2とした場合の従
来の電圧供給回路における制御信号と出力電圧の関係を
示す図である。制御端子t3、t4に入力される制御信号
Sが共に0の場合、端子t5、t6の電圧は共に0vで、
出力端子Tの出力電圧Eは0vとなる(ケ−ス1)。制
御端子t3の制御信号Sが1、制御端子t4の制御信号S
が0の場合、端子t5の電圧は5v、端子t6の電圧は0
vとなり、出力端子Tの出力電圧Eは5×R1/(R1
+R2)vとなる(ケ−ス2)。FIG. 6 is a diagram showing a relationship between a control signal and an output voltage in a conventional voltage supply circuit when an input voltage Vi is 5 V, a resistance value of a resistor 1 is R1, and a resistance value of a resistor 2 is R2. It is. When the control signals S input to the control terminals t 3 and t 4 are both 0, the voltages of the terminals t 5 and t 6 are both 0 V,
The output voltage E of the output terminal T becomes 0 V (case 1). The control signal S at the control terminal t 3 is 1 and the control signal S at the control terminal t 4
Is 0, the voltage at the terminal t 5 is 5 V, and the voltage at the terminal t 6 is 0.
v, and the output voltage E of the output terminal T is 5 × R1 / (R1
+ R2) v (Case 2).
【0004】制御端子t3の制御信号Sが0、制御端子
t4の制御信号Sが1の場合、端子t5の電圧は0v、端
子t6の電圧は5vとなり、出力端子Tの出力電圧Eは
5×R2/(R1+R2)vとなる(ケ−ス3)。制御
端子t3、t4に入力される制御信号Sが共に1の場合、
端子t5、t6の電圧は共に5vで、出力端子Tの出力電
圧Eは5vとなる(ケ−ス4)。以上、ケース1,2,
3,4毎にそれぞれ異なる4種類の電圧が得られる。When the control signal S at the control terminal t 3 is 0 and the control signal S at the control terminal t 4 is 1, the voltage at the terminal t 5 is 0 V, the voltage at the terminal t 6 is 5 V, and the output voltage at the output terminal T is E becomes 5 × R2 / (R1 + R2) v (Case 3). When the control signals S input to the control terminals t 3 and t 4 are both 1,
The voltages at the terminals t 5 and t 6 are both 5 V, and the output voltage E at the output terminal T is 5 V (Case 4). Cases 1, 2,
Four different voltages are obtained for each of the three and four.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上述し
たようにケ−ス2及びケ−ス3の出力電圧Eは共に抵抗
値R1及びR2に関係し、調整時、ケ−ス2で所定の出
力電圧Eを得るようにR1を調整してもケ−ス3でR2
が調整されるため、ケ−ス2で調整済みの出力電圧Eが
変化し再調整を繰り返す必要があり、調整作業が煩雑に
なると云う問題があった。However, as described above, the output voltages E of the case 2 and the case 3 are both related to the resistance values R1 and R2. Even if R1 is adjusted to obtain voltage E, R2 is
Is adjusted, the output voltage E which has been adjusted in the case 2 changes, and it is necessary to repeat readjustment, which causes a problem that the adjustment work becomes complicated.
【0006】本発明は上述の点に鑑みてなされたもの
で、上記問題点を除去し、電圧分圧回路にダイオ−ドを
使用することにより電圧調整を容易にした電圧供給回路
を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a voltage supply circuit which eliminates the above problems and facilitates voltage adjustment by using a diode for a voltage dividing circuit. With the goal.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
本発明は、2値の制御電圧からなる4通りの組み合わせ
を切り替えて、組み合わせの各制御電圧を2個の調整抵
抗器からなる電圧分圧回路で調整し、所定の4種類の出
力電圧を切り替えて出力する電圧供給回路において、図
1に示すように、前記2個の抵抗器1、抵抗器2のうち
の抵抗器1にダイオ−ド4と抵抗器3(固定)の直列回
路を並列に接続することにより、前記4種類の出力電圧
Eのうちの一つの出力電圧Eの調整を他の一個の抵抗器
2の調整のみで調整可能にした調整手段を設けたことを
特徴とする。In order to solve the above-mentioned problems, the present invention switches between four combinations of binary control voltages and converts each control voltage of the combination into a voltage component composed of two adjusting resistors. As shown in FIG. 1, in a voltage supply circuit that adjusts with a voltage circuit and switches and outputs predetermined four types of output voltages, a diode is connected to a resistor 1 of the two resistors 1 and 2 as shown in FIG. By connecting the series circuit of the resistor 4 (fixed) and the resistor 4 (fixed) in parallel, the adjustment of one output voltage E among the four types of output voltages E can be adjusted only by adjusting the other resistor 2. The present invention is characterized in that an enabling means is provided.
【0008】また、前記抵抗器2にダイオ−ド6と抵抗
器5(固定)の並列回路を直列に接続し、温度変化に対
する補償手段を設けたことを特徴とする。Further, a parallel circuit of a diode 6 and a resistor 5 (fixed) is connected in series to the resistor 2, and a means for compensating for a temperature change is provided.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。 〔実施形態1〕図1は本発明の電圧供給回路の実施例1
の構成を示す図である。図示するように、本発明の電圧
供給回路は従来の電圧供給回路(図5参照)の抵抗器1
にダイオ−ド4と抵抗器3の直列回路を並列に接続した
ものである。ダイオ−ド4はその順方向が出力端子Tか
ら端子t6へ向かうように接続され、抵抗器3はダイオ
−ド4に直列に接続された固定抵抗器で、その抵抗値R
3は抵抗器1の抵抗値R1に比較して十分に小さい(R
3≪R1)値とする。Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIG. 1 shows a first embodiment of a voltage supply circuit according to the present invention.
FIG. 3 is a diagram showing the configuration of FIG. As shown, the voltage supply circuit of the present invention is a resistor 1 of a conventional voltage supply circuit (see FIG. 5).
In this figure, a series circuit of a diode 4 and a resistor 3 is connected in parallel. Diode - de 4 is connected to the forward direction toward the output terminal T to the terminal t 6, the resistor 3 is diode - a fixed resistor connected in series to the de 4, the resistance value R
3 is sufficiently smaller than the resistance value R1 of the resistor 1 (R
3≪R1) value.
【0010】図2は実施例1に示す回路における制御信
号と出力電圧の関係を示す図である。制御端子t3、t4
に入力される制御信号Sが共に0の場合、端子t5、t6
の電圧は共に0vで、出力端子Tの出力電圧Eは0vと
なる(ケ−ス1)。制御端子t3の制御信号Sが1、制
御端子t4の制御信号Sが0の場合、端子t5の電圧は5
v、端子t6の電圧は0vとなり、出力端子Tの出力電
圧Eは{(5−VD1)×R3/(R2+R3)}+VD1
となる。ここで、VD1はダイオ−ド4の順方向降下電圧
を表す(ケ−ス2)。FIG. 2 is a diagram showing the relationship between the control signal and the output voltage in the circuit shown in the first embodiment. Control terminals t 3 , t 4
When the control signal S input to both terminals is 0, the terminals t 5 and t 6
Are both 0 V, and the output voltage E of the output terminal T becomes 0 V (Case 1). When the control signal S at the control terminal t 3 is 1 and the control signal S at the control terminal t 4 is 0, the voltage at the terminal t 5 is 5
v, voltage 0v next terminal t 6, the output voltage E of the output terminal T {(5-V D1) × R3 / (R2 + R3)} + V D1
Becomes Here, V D1 represents the forward voltage drop of diode 4 (case 2).
【0011】制御端子t3の制御信号Sが0、制御端子
t4の制御信号Sが1の場合、端子t5の電圧は0v、端
子t6の電圧は5vとなり、出力端子Tの出力電圧Eは
5×R2/(R1+R2)vとなる(ケ−ス3)。制御
端子t3、t4に入力される制御信号Sが共に1の場合、
端子t5、t6の電圧は共に5vで、出力端子Tの出力電
圧Eは5vとなる(ケ−ス4)。以上4種類の電圧が得
られる。When the control signal S at the control terminal t 3 is 0 and the control signal S at the control terminal t 4 is 1, the voltage at the terminal t 5 is 0 V, the voltage at the terminal t 6 is 5 V, and the output voltage at the output terminal T is E becomes 5 × R2 / (R1 + R2) v (Case 3). When the control signals S input to the control terminals t 3 and t 4 are both 1,
The voltages at the terminals t 5 and t 6 are both 5 V, and the output voltage E at the output terminal T is 5 V (Case 4). The above four types of voltages are obtained.
【0012】上述したようにケ−ス2の場合、R3はR
1より十分小さい値で固定すると、出力電圧Eは抵抗器
2の抵抗値R2を調整することで設定され、R1には関
係なくなる。従って、ケ−ス2で所定の出力電圧Eを得
るようにR2を調整し、ケ−ス3でR1を調整すること
によって所定の出力電圧Eを得ることができるので従来
のように調整作業を繰り返し行なう必要はなくなる。As described above, in case 2, R3 is R
If the value is fixed to a value sufficiently smaller than 1, the output voltage E is set by adjusting the resistance value R2 of the resistor 2, and has no relation to R1. Therefore, by adjusting R2 so as to obtain a predetermined output voltage E in case 2, and by adjusting R1 in case 3, a predetermined output voltage E can be obtained. There is no need to repeat.
【0013】〔実施形態2〕図3は本発明の電圧供給回
路の構成を示す図である。図示するように、実施例2は
ダイオ−ド6と抵抗器5の並列回路を実施例1の電圧供
給回路(図1参照)の抵抗器2に直列に接続したもので
ある。ダイオ−ド4の順方向降下電圧VD1は温度により
変化するので実施例1では出力電圧Eは温度により変化
する。実施例2はダイオ−ド6を入れることによりダイ
オ−ド4の温度補償を行う電圧供給回路である。抵抗器
5はダイオ−ド6の順方向降下電圧VD2の温度特性をダ
イオ−ド4の温度特性に合わせて出力電圧Eの温度補償
する為のものである。[Embodiment 2] FIG. 3 is a diagram showing a configuration of a voltage supply circuit according to the present invention. As shown in the figure, in the second embodiment, a parallel circuit of a diode 6 and a resistor 5 is connected in series to the resistor 2 of the voltage supply circuit of the first embodiment (see FIG. 1). In the first embodiment, the output voltage E changes with temperature because the forward drop voltage V D1 of the diode 4 changes with temperature. The second embodiment is a voltage supply circuit for compensating the temperature of the diode 4 by inserting the diode 6. Resistor 5 is diode - is for the temperature compensation to suit the temperature characteristic of the de 4 the output voltage E - diode temperature characteristics of the forward voltage drop V D2 de 6.
【0014】図4は実施例2に示す回路における制御信
号と出力電圧の関係を示す図である。ケ−ス1及びケ−
ス4の場合は実施例1と同じなので説明は省略する。制
御端子t3の制御信号Sが1、制御端子t4の制御信号S
が0の場合、端子t5の電圧は5v、端子t6の電圧は0
vとなり、出力端子Tの出力電圧Eは{(5−VD1−V
D2)×R3/(R2+R3)}+VD1となる。ここで、
VD1はダイオ−ド4の順方向降下電圧を表し、VD2はダ
イオ−ド6の順方向降下電圧を表す(ケ−ス2)。端子
t3の制御信号Sが0、制御端子t4の制御信号Sが1の
場合、端子t5の電圧は0v、端子t6の電圧は5vとな
り、出力端子Tの出力電圧Eは5×(R2+R5)/
(R1+R2+R5)となる(ケ−ス3)。FIG. 4 is a diagram showing a relationship between a control signal and an output voltage in the circuit according to the second embodiment. Case 1 and case
4 is the same as in the first embodiment, and a description thereof will be omitted. The control signal S at the control terminal t 3 is 1 and the control signal S at the control terminal t 4
Is 0, the voltage at the terminal t 5 is 5 V, and the voltage at the terminal t 6 is 0.
v, and the output voltage E of the output terminal T becomes {(5-V D1 −V
D2 ) × R3 / (R2 + R3)} + V D1 here,
V D1 represents the forward voltage drop of diode 4 and V D2 represents the forward voltage drop of diode 6 (Case 2). When the control signal S at the terminal t 3 is 0 and the control signal S at the control terminal t 4 is 1, the voltage at the terminal t 5 is 0 V, the voltage at the terminal t 6 is 5 V, and the output voltage E at the output terminal T is 5 × (R2 + R5) /
(R1 + R2 + R5) (Case 3).
【0015】上述したように実施例1と同様にケ−ス2
で所定の出力電圧Eを得るようにR2を調整し、ケ−ス
3ではR1を調整することによって所定の電圧Eを得る
ことができるので従来のように調整作業を繰返し行なう
必要はなくなる。更に、温度変化に対してもダイオ−ド
4の順方向降下特性をダイオ−ド6の特性で温度補償す
るので安定した出力電圧Eが供給される。As described above, as in the case of the first embodiment, case 2
Then, R2 is adjusted so as to obtain a predetermined output voltage E, and in Case 3, a predetermined voltage E can be obtained by adjusting R1. Therefore, there is no need to repeat the adjustment work as in the conventional case. Further, the output voltage E is supplied stably because the forward drop characteristic of the diode 4 is temperature-compensated by the characteristic of the diode 6 with respect to a temperature change.
【0016】[0016]
【発明の効果】以上説明したように本発明によれば、下
記のような優れた効果が得られる。 (1)請求項1に記載の発明によれば電圧分圧回路の調
整抵抗器にダイオ−ドと抵抗器(固定)の直列回路を並
列に接続することにより、4種類のうち一つの出力電圧
は(5−VD1)×R3/(R2+R3)+VD1となり
(ここでVD1はダイオ−ドの順方向降下電圧、R1は調
整抵抗器の抵抗値、R3は抵抗器の抵抗値でR3≪R1
の固定抵抗器)、抵抗値R3は固定なので出力電圧は抵
抗値R1には無関係で抵抗器2の抵抗値R2の調整のみ
で決まるので、従来のように調整を繰り返すことなく所
定の出力電圧を設定することができる。As described above, according to the present invention, the following excellent effects can be obtained. (1) According to the first aspect of the present invention, by connecting a series circuit of a diode and a resistor (fixed) in parallel to the adjusting resistor of the voltage dividing circuit, one of the four types of output voltage can be obtained. Is (5−V D1 ) × R 3 / (R 2 + R 3) + V D1 (where V D1 is the forward voltage drop of the diode, R 1 is the resistance value of the adjustment resistor, R 3 is the resistance value of the resistor, R 3 ≪). R1
Since the resistance value R3 is fixed, the output voltage is independent of the resistance value R1 and is determined only by the adjustment of the resistance value R2 of the resistor 2, so that the predetermined output voltage can be adjusted without repeating the adjustment as in the related art. Can be set.
【0017】(2)また、請求項2によればダイオ−ド
の順方向降下電圧の温度特性を他のダイオ−ドを接続す
ることによって補償し、安定した出力電圧を供給するこ
とができる。(2) According to the second aspect, the temperature characteristic of the forward voltage drop of the diode can be compensated by connecting another diode, and a stable output voltage can be supplied.
【図1】本発明の電圧供給回路の構成を示す図である。FIG. 1 is a diagram showing a configuration of a voltage supply circuit of the present invention.
【図2】図1に示す電圧供給回路における制御信号と出
力電圧の関係を示す図である。FIG. 2 is a diagram showing a relationship between a control signal and an output voltage in the voltage supply circuit shown in FIG.
【図3】本発明の電圧供給回路の構成を示す図である。FIG. 3 is a diagram showing a configuration of a voltage supply circuit of the present invention.
【図4】図3に示す電圧供給回路における制御信号と出
力電圧の関係を示す図である。4 is a diagram showing a relationship between a control signal and an output voltage in the voltage supply circuit shown in FIG.
【図5】従来の電圧供給回路の構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a conventional voltage supply circuit.
【図6】図5に示す電圧供給回路における制御信号と出
力電圧の関係を示す図である。6 is a diagram showing a relationship between a control signal and an output voltage in the voltage supply circuit shown in FIG.
1 抵抗器 2 抵抗器 3 抵抗器 4 ダイオ−ド 5 抵抗器 6 ダイオ−ド 10 制御部 REFERENCE SIGNS LIST 1 resistor 2 resistor 3 resistor 4 diode 5 resistor 6 diode 10 control unit
Claims (2)
わせを切り替えて、組み合わせの各制御電圧を2個の調
整抵抗器からなる電圧分圧回路で調整し、所定の4種類
の出力電圧を切り替えて出力する電圧供給回路におい
て、 前記2個の調整抵抗器のうちの一方の調整抵抗器にダイ
オ−ドと抵抗器の直列回路を並列に接続することによ
り、前記4種類の出力電圧のうちの一つの出力電圧の調
整を他の一個の調整抵抗器の調整のみで調整可能にした
調整手段を設けたことを特徴とする電圧供給回路。A combination of four kinds of binary control voltages is switched, each control voltage of the combination is adjusted by a voltage dividing circuit including two adjusting resistors, and predetermined four kinds of output voltages are adjusted. In the voltage supply circuit for switching and outputting, by connecting a series circuit of a diode and a resistor in parallel to one of the two adjustment resistors, A voltage supply circuit provided with an adjusting means that can adjust one output voltage by adjusting only another adjustment resistor.
と抵抗器の並列回路を直列に接続し、温度変化に対する
補償手段を設けたことを特徴とする請求項1に記載の電
圧供給回路。2. The voltage supply according to claim 1, wherein a parallel circuit of a diode and a resistor is connected in series to said another adjustment resistor, and a compensation means for temperature change is provided. circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24527095A JP3211140B2 (en) | 1995-08-29 | 1995-08-29 | Voltage supply circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24527095A JP3211140B2 (en) | 1995-08-29 | 1995-08-29 | Voltage supply circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0970139A JPH0970139A (en) | 1997-03-11 |
JP3211140B2 true JP3211140B2 (en) | 2001-09-25 |
Family
ID=17131189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24527095A Expired - Lifetime JP3211140B2 (en) | 1995-08-29 | 1995-08-29 | Voltage supply circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3211140B2 (en) |
-
1995
- 1995-08-29 JP JP24527095A patent/JP3211140B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0970139A (en) | 1997-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7696967B2 (en) | Gamma control circuit and method thereof | |
US6771097B1 (en) | Series terminated CMOS output driver with impedance calibration | |
JPH08330936A (en) | Power supply resistance programming method | |
US6424281B1 (en) | DAC with adjusting digital codes corresponded to reference voltages | |
EP1014333A1 (en) | Integrated circuit for driving liquid crystal | |
US6154160A (en) | Circuit arrangement including digital-to-analog current converters | |
US10848151B1 (en) | Driving systems | |
US7545213B2 (en) | Operational amplifier | |
US4918450A (en) | Analog/digital converter circuit | |
JP3211140B2 (en) | Voltage supply circuit | |
US4874966A (en) | Multivibrator circuit having compensated delay time | |
JP3850470B2 (en) | Slew rate control drive circuit | |
EP1833043B1 (en) | Integrated circuit for driving liquid crystal | |
US4947102A (en) | Feedback loop gain compensation for a switched resistor regulator | |
US20020053929A1 (en) | Current/voltage converter and D/A converter | |
EP0496449B1 (en) | Switching bridge amplifier | |
US6724234B1 (en) | Signal-level compensation for communications circuits | |
US7501878B2 (en) | Amplitude setting circuit | |
JP3225729B2 (en) | D / A converter gain adjustment circuit | |
AU658029B2 (en) | Pulse driver | |
JP2001194643A (en) | Driving power sources for liquid crystal | |
KR100563014B1 (en) | Line Driver with Adaptive Output Impedance | |
JP2536311B2 (en) | Interface circuit | |
GB2139030A (en) | Current mirror circuit | |
JP2003051717A (en) | Function generating circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |