JP3210817B2 - 3D coordinate automatic measurement analysis method - Google Patents

3D coordinate automatic measurement analysis method

Info

Publication number
JP3210817B2
JP3210817B2 JP27254194A JP27254194A JP3210817B2 JP 3210817 B2 JP3210817 B2 JP 3210817B2 JP 27254194 A JP27254194 A JP 27254194A JP 27254194 A JP27254194 A JP 27254194A JP 3210817 B2 JP3210817 B2 JP 3210817B2
Authority
JP
Japan
Prior art keywords
measurement
target
point
measuring
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27254194A
Other languages
Japanese (ja)
Other versions
JPH08136218A (en
Inventor
友 雄 二 大
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP27254194A priority Critical patent/JP3210817B2/en
Publication of JPH08136218A publication Critical patent/JPH08136218A/en
Application granted granted Critical
Publication of JP3210817B2 publication Critical patent/JP3210817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、土木,建築構造物なら
びに船舶等の大型構造物およびそれを構成する製作部材
の計測とその計測値の解析を行う三次元座標自動計測解
析システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional coordinate automatic measurement / analysis system for measuring large structures such as civil engineering, architectural structures, ships, and the like, as well as the members manufactured, and analyzing the measured values.

【0002】[0002]

【従来の技術】橋梁,建築鉄骨,船舶,その他大型鋼構
造物は、工場にて鋼板等の部品を組立、溶接して複数の
部材ブロックに分割製作したものを、建設現場ないし船
台に移送し、そこでボルトまたは溶接により接合して建
造される。従来は、ブロックの製作完了後建設現場への
移送に先だって工場またはヤードで現物合わせで仮組立
を行って組立状態の確認を行い、現地における接合に支
障が生じないようにしてきた。しかし近年、鋼構造物製
作の省力化,省スペース化,コストダウンの要求と部材
製作精度の向上、計測技術の高度化が進んできたことか
ら、また、鋼構造物が超大化することもあって、仮組立
を省略する方向に変わりつつある。
2. Description of the Related Art Bridges, building steel frames, ships, and other large steel structures are manufactured by assembling and welding parts, such as steel plates, at a factory and dividing them into a plurality of member blocks, and then transferring them to a construction site or a shipyard. Then, it is built by joining with bolts or welding. Conventionally, prior to transfer to a construction site after completion of block production, temporary assembly is performed at the factory or yard to match the actual product, and the assembly state is checked, so that there is no problem in joining at the site. However, in recent years, there has been a demand for labor saving, space saving, cost reduction, improvement in member manufacturing accuracy, and sophistication of measurement technology in the production of steel structures. Therefore, the direction of temporary assembly is being changed.

【0003】この場合仮組立を省略しても現地における
接合に支障が生じないようにするために、コンピュ−タ
などを利用して、ブロック同士を仮想的に組立てて組立
精度を確認する仮組立シミュレーションを行う必要があ
る。この仮組立シミュレーションを行う際、使用するブ
ロックの三次元形状の正確な計測データを得ることは、
仮組立シミュレーションの精度を決定するという点で重
要なことである。しかしながら、従来の三次元形状の計
測は、トランシットや巻尺,下げ振り,レベルなどを利
用した二次元的なものであり、三次元形状の正確な把握
には不適当なものであった。近年、三次元形状のブロッ
クの計測に、測量の分野で発展してきた前方交会法によ
る三角測量や、光波距離計を用いた測距,測角法による
ものが採用されるようになってきている。
[0003] In this case, in order to prevent a problem in joining on site even if the temporary assembly is omitted, the blocks are virtually assembled using a computer or the like to confirm the assembly accuracy. You need to simulate. When performing this temporary assembly simulation, obtaining accurate measurement data of the three-dimensional shape of the block used is
This is important in determining the accuracy of the temporary assembly simulation. However, the conventional measurement of a three-dimensional shape is two-dimensional using a transit, a tape measure, a down swing, a level, and the like, and is not suitable for accurately grasping the three-dimensional shape. In recent years, triangulation by forward resection, which has been developed in the field of surveying, and ranging and angle measurement using a lightwave distance meter, have been adopted for measurement of three-dimensional blocks. .

【0004】一例として、一台の計測機で計測対象物上
の任意の点の三次元座標値を計測できる三次元座標計測
システムが、商品名「MONMOS」として、株式会社
ソキアから市販されている。この装置は、あらかじめ任
意の2点を計測して三次元座標系を設定した後、各測点
に設けた反射ターゲットの中心を視準して水平角,鉛直
角,測距、の3要素を同時に計測し、座標変換の解析,
演算を行って三次元座標値を求めるもので、100m離
れた距離で±1mm以下の高い精度が得られるものであ
る。
As an example, a three-dimensional coordinate measuring system capable of measuring the three-dimensional coordinate value of an arbitrary point on an object to be measured by one measuring instrument is commercially available from Sokkia under the trade name "MONMOS". . This device measures two arbitrary points in advance, sets a three-dimensional coordinate system, and collimates the center of a reflection target provided at each measurement point to determine three elements of a horizontal angle, a vertical angle, and a distance measurement. Simultaneous measurement, analysis of coordinate transformation,
A three-dimensional coordinate value is obtained by performing an operation, and a high accuracy of ± 1 mm or less can be obtained at a distance of 100 m.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記
「MONMOS」を含めて従来の三次元座標計測機は、
視準作業において望遠鏡のピント合わせやターゲット中
心と望遠鏡の十字線の中心合わせ等を人間の視覚によっ
て行っていたため、作業が煩雑で視準作業に時間を要
し、また計測者の人的誤差が入りやすく、能率が悪く計
測精度を低下させる要因となっていた。このような欠点
を解消するには、視準作業を自動化することが考えら
れ、一部で自動視準方式の計測機が開発されている。
However, conventional three-dimensional coordinate measuring machines including the above-mentioned "MONMOS"
In the collimation work, focusing of the telescope and centering of the center of the target and the crosshair of the telescope were performed by human vision, so the work was complicated and time was required for the collimation work. It was easy to enter, the efficiency was poor, and it was a factor to reduce the measurement accuracy. In order to eliminate such disadvantages, it is conceivable to automate the collimation work, and an automatic collimation type measuring instrument has been developed in part.

【0006】例えば、「第4回建設ロボットシンポジウ
ム1994年7月19〜20日」で発表された「三次元
空間自動測量システムの開発」では、自動視準して測
距,測角を行う測量機本体と、これらの機器を制御しデ
ータの表示,記録,管理する制御管理用コントロールユ
ニットで構成された機器を用いて、大型タンク等の大空
間構造物の挙動を無人計測した事例が開示されている。
このシステムは、標的(ターゲット)位置,測定順序等
の条件を初期設定した後、モーター駆動するCCDカメ
ラで捉えた標的を画像処理装置で抽出し、標的図心とC
CDカメラの光軸を一致させるようにCCDカメラの水
平角,鉛直角をサーボモーターで駆動させ自動視準する
ものである。なお、初期設定時の標的位置は座標値が既
知の場合には作業者が直接座標値を入力し、未知の場合
にはコントローラーによりCCDカメラを標的に向けモ
ニター画面に入れる作業を繰り返してティーチングする
ものである。
[0006] For example, in "Development of an automatic three-dimensional space surveying system" announced at the "4th Construction Robot Symposium July 19-20, 1994", a surveying method in which distance measurement and angle measurement are performed with automatic collimation is performed. An example of unmanned measurement of the behavior of a large space structure such as a large tank using a device consisting of a main unit and a control management control unit that controls these devices and displays, records, and manages data is disclosed. ing.
In this system, after initially setting conditions such as the target (target) position and measurement order, the target captured by the motor-driven CCD camera is extracted by an image processing device, and the target centroid and C
The horizontal angle and the vertical angle of the CCD camera are driven by a servomotor so that the optical axes of the CD camera coincide with each other, and automatic collimation is performed. When the target position at the initial setting is known, if the coordinate value is known, the operator directly inputs the coordinate value, and if unknown, the teaching operation is repeated by pointing the CCD camera at the target and putting it on the monitor screen by the controller. Things.

【0007】本システムでは自動視準する初期設定にお
いてあらかじめ各標的の座標値を入力するとしている
が、計測機を原点としたときの自動視準用の各測点の座
標値の算出方法を明示していない。あるいは各測点にC
CDカメラを向けてモニター画面に入れる作業を繰り返
し行ってティーチングするとしており、煩雑な人手作業
を伴い自動化のメリットがあまり期待できない。また自
動視準において標的図心を画像処理によって求め、視野
内でCCDカメラをサーボモーターを駆動させてCCD
カメラの光軸と標的図心を合致させる動作を繰り返し行
って視準する方式としているため計測に時間を要し、ま
た標的図心とCCDカメラの光軸を合致させる際機械誤
差が伴うため計測精度が悪くなるという問題がある。
In the present system, the coordinate values of each target are input in advance in the initial setting for automatic collimation. However, the method of calculating the coordinate values of each measurement point for automatic collimation when the measuring machine is the origin is specified. Not. Or C for each station
Teaching is performed by repeatedly pointing the CD camera on the monitor screen, which involves cumbersome manual work, and the merit of automation cannot be expected much. In automatic collimation, the target centroid is obtained by image processing.
Measurement is time-consuming because the collimation is performed by repeatedly performing the operation of matching the optical axis of the camera with the target centroid, and measurement is required because there is a mechanical error when matching the optical axis of the CCD camera with the target centroid. There is a problem that accuracy is deteriorated.

【0008】この他の自動測量システムとして、ライカ
株式会社の自動監視測量システム「WILD APS」がある。
このシステムは、ターゲットの自動巡回,自動探索,自
動視準機能を有する三次元座標自動計測システムである
が、前記の自動計測システムと同様に、初期設定時の標
的位置の入力方法が同じであり同様の問題がある。
[0008] As another automatic surveying system, there is an automatic monitoring and surveying system "WILD APS" of Leica Corporation.
This system is a three-dimensional coordinate automatic measurement system having an automatic tour, automatic search, and automatic collimation functions of a target, but the input method of a target position at the time of initial setting is the same as the automatic measurement system described above. There is a similar problem.

【0009】このシステムのターゲットの自動探索機構
は、測距光のターゲットからの反射の有無をもとに、水
平,鉛直方向の走査を行ってターゲットを探索している
ので、点による探索であり、複数のターゲットの中から
特定のターゲットを検出できず、詳細な計測には不向き
である。さらに探索の範囲の視準方向の水平および鉛直
角が10°×10°と狭く、計測対象物と近接した計測には
向かないという問題があった。
The automatic target search mechanism of this system searches the target by scanning horizontally and vertically based on the presence or absence of reflection of the distance measuring light from the target. However, a specific target cannot be detected from among a plurality of targets, which is not suitable for detailed measurement. Furthermore, the horizontal and vertical angles in the collimation direction of the search range are as narrow as 10 ° × 10 °, which is not suitable for measurement close to the measurement target.

【0010】また、測点上のターゲットを直接視準でき
ない場合には、複数台の計測機を使用するか計測機を移
動して計測しなければならない。計測機の台数,移動回
数を最小限にするためには、ターゲットの中心を測点か
ら偏位させて計測機から視準できる位置にターゲットを
設置する必要があり、ターゲットを視準し中心点の三次
元座標値を求めただけでは測点の位置を特定できず、測
点の三次元座標値すなわち計測対象物の実形状を正確に
求めることができないという問題があった。
If the target on the measuring point cannot be collimated directly, it is necessary to use a plurality of measuring instruments or move the measuring instruments to perform the measurement. In order to minimize the number of measuring instruments and the number of times of movement, it is necessary to displace the center of the target from the measuring point and place the target at a position where it can be collimated from the measuring instrument. However, there is a problem that the position of the measurement point cannot be specified only by obtaining the three-dimensional coordinate value of the measurement point, and the three-dimensional coordinate value of the measurement point, that is, the actual shape of the measurement target cannot be accurately obtained.

【0011】また、これらの三次元座標値計測システム
は、実測の座標系に対応した計測対象物の設計座標値を
有しておらず、計測の途中において、設計値との比較が
できないことや、当該計測の信頼性を計測現場で確認で
きないという問題があった。
Further, these three-dimensional coordinate value measuring systems do not have design coordinate values of the object to be measured corresponding to the actually measured coordinate system, and cannot compare with the design values during the measurement. However, there has been a problem that the reliability of the measurement cannot be confirmed at the measurement site.

【0012】本発明はこれらの課題を解消し、人的な作
業を極力排除し、かつ能率が良く精度の高い三次元座標
自動計測解析方法を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to solve these problems, to eliminate a human operation as much as possible, and to provide an efficient and accurate three-dimensional coordinate automatic measurement / analysis method.

【0013】[0013]

【課題を解決するための手段】(1)計測対象物上の
数の測点に設けたターゲットを視準して、各測点の三次
元座標値を計測するシステムにおいて、測点上に設置さ
れたターゲット、ターゲット上の視準点を測距、測角す
る機能を備えたモーター駆動可能なCCDカメラ搭載の
計測機本体と計測機本体のCCDカメラで捉えたターゲ
ットの画像を解析する画像処理装置と計測条件の設定、
解析を行うプログラムが作動するモニター付きコンピュ
ーターで構成された三次元計測システムを用いて、計測
対象物の設計寸法値または三次元設計座標値をコンピュ
ーターに入力し、モニター画面で計測機の設置可能範囲
を求めた後、その範囲内に計測機を設置し、基準となる
測点を実測して得られた座標値を基に基準座標系を設定
して各測点の三次元設計座標値の座標変換を行い、その
設計座標値を自動計測用の極座標値に変換し、変換され
た極座標値で計測機のCCDカメラを駆動し、各測点に
取り付けられたターゲットを自動的に順次に視準しCC
Dカメラの光軸が測定対象ターゲット領域内に入った状
態で測距、測角を行うとともに画像処理装置にてターゲ
ット像を解析し、視準点とターゲット像の図心とのずれ
量、ターゲット面の傾きとその方向を求め、視準点の三
次元座標値を補正を行うことによって、距離計の視準軸
をターゲットの中心点に合致させることなく、ターゲッ
ト像の画像解析により、ターゲット像の主軸とターゲッ
ト像面上の基線の傾きを求めることによって、計測対象
物上の測点の三次元座標値を求めることを特徴する三次
元座標自動計測解析法。
[Means for Solving the Problems] (1) Multiple objects on a measurement object
In a system that measures the three-dimensional coordinate value of each measurement point by collimating the targets provided at the number of measurement points, distance measurement and angle measurement are performed on the target installed on the measurement point and the collimation point on the target. A measuring instrument equipped with a motor-driven CCD camera equipped with functions, an image processing device that analyzes the image of the target captured by the CCD camera of the measuring instrument, and setting of measurement conditions;
A computer with a monitor that runs the analysis program
Using a three-dimensional measurement system constructed in Ta, measured
Computes the design dimensions or 3D design coordinates of the object.
Input to the monitor, and the monitor
After measuring, install a measuring instrument within that range and use it as a reference.
Set the reference coordinate system based on the coordinate values obtained by actually measuring the measurement points
To perform coordinate transformation of the three-dimensional design coordinate values of
Converts the design coordinate values to polar coordinate values for automatic measurement, and
The CCD camera of the measuring machine is driven with the polar coordinates
Automatically collimates the attached targets sequentially and CC
Distance measurement and angle measurement are performed while the optical axis of the D camera is within the target area to be measured, and the target image is analyzed by the image processing apparatus. By obtaining the inclination and direction of the surface and correcting the three-dimensional coordinate value of the collimation point, the target image can be analyzed by image analysis of the target image without matching the collimation axis of the rangefinder to the center point of the target. A three-dimensional coordinate automatic measurement and analysis method characterized in that three-dimensional coordinate values of measurement points on a measurement object are obtained by obtaining a tilt of a main axis of the target and a base line on a target image plane.

【0014】[0014]

【作用】上記(1)によれば、CCDカメラで捉えた各
測点のターゲットはそのターゲット像を画像解析するこ
とにより視準点からの三次元的なずれ量が求められ、視
準点の座標値を補正することにより、距離計の視準軸を
ターゲットの中心点に合致させることなく、ターゲット
中心点の三次元座標値を得る、すなわち自動視準され
る。
According to the above (1), the target of each measuring point captured by the CCD camera is subjected to image analysis of the target image to determine a three-dimensional shift amount from the collimating point. By correcting the coordinate values, the three-dimensional coordinate value of the target center point is obtained without matching the collimation axis of the rangefinder with the center point of the target, that is, automatic collimation is performed.

【0015】さらに、視準面に基線を記したターゲット
を用いることにより、ターゲット中心点の三次元座標値
の偏位補正を行って測点の三次元座標値が求められる。
Further, by using a target having a base line on the collimation plane, the three-dimensional coordinate value of the target center point is corrected to obtain the three-dimensional coordinate value of the measurement point.

【0016】計測対象物上の各測点の三次元座標値ある
いは計測対象物の寸法値は設計値において既知であるの
で、この既知の設計座標値と計測機本体の位置をモニタ
ー付きコンピューターに入力し、次の各測点のターゲッ
トの配置,視準する順番といった計測のシミュレーショ
ンを行い、計測対象物上の所定のターゲットを視準でき
る計測機本体の設置範囲をモニター上で実測の前に求め
られる。この設置範囲内に計測機本体の設置をすること
によって、以降の自動計測が確実なものとされる。
Since the three-dimensional coordinate value of each measurement point on the measurement object or the dimension value of the measurement object is known in the design value, the known design coordinate value and the position of the measuring instrument body are input to a computer with a monitor. Then, simulate the measurement such as the placement of the target at each of the following measurement points and the collimation order, and find the installation range of the measuring instrument body that can collimate the specified target on the measurement object before actual measurement on the monitor. Can be By installing the measuring instrument body within this installation range, the subsequent automatic measurement is ensured.

【0017】計測現場では、上記位置に設置された計測
機により計測対象物上の基準点となる3測点上のターゲ
ットの位置が測距,測角され、計測機を原点とした極座
標値で検出される。そして、この極座標値は三次元座標
系の座標値に座標変換され、基準の3測点の三次元座標
値が求められ、その3基準点を基に基準直交座標系が定
められる。この基準座標系を共通の座標系とし、入力済
みの設計座標値または設計寸法値は基準座標系の三次元
設計座標値に変換される。そして、各測点の計測ではこ
の三次元設計座標値を計測機本体を原点とした極座標値
に変換し、この座標値を用いてあらかじめ設定した順番
で計測機本体上のCCDカメラの視準方向を自動的に駆
動することによって、各測点のターゲットが順次巡回さ
れる。
At the measurement site, the position of the target on three measuring points serving as reference points on the object to be measured is measured and measured by a measuring machine installed at the above-mentioned position, and the coordinates are measured in polar coordinates with the measuring machine as the origin. Is detected. Then, the polar coordinate values are coordinate-converted into coordinate values of a three-dimensional coordinate system, three-dimensional coordinate values of three reference measurement points are obtained, and a reference orthogonal coordinate system is determined based on the three reference points. This reference coordinate system is used as a common coordinate system, and the inputted design coordinate values or design dimension values are converted into three-dimensional design coordinate values of the reference coordinate system. Then, in the measurement of each measuring point, the three-dimensional design coordinate value is converted into a polar coordinate value with the measuring device main body as an origin, and the collimating direction of the CCD camera on the measuring device main body in a preset order using the coordinate values. Is automatically driven to sequentially circulate the targets at each measurement point.

【0018】[0018]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は、本発明の一実施例による大型構造物の三次
元座標計測解析システムの全体構成を示す図である。本
発明に用いるシステムは、計測対象物上の各測点に設け
られたターゲット6と、サーボモータ駆動のカラーCC
Dカメラにより、ターゲット6を自動的に巡回,探索,
視準し、測距,水平および鉛直角の測角を行う機構を有
する計測機1と、計測機1のCCDカメラから得られた
画像を解析する画像処理装置2と、計測のシミュレーシ
ョン,座標変換等の解析および計測結果の記憶を行うモ
ニター付きコンピュ−タ3と、自動計測用極座標を演算
し、計測機本体の数値制御用データーの生成を行うプロ
グラムが稼働する携帯型コンピュ−タ4と、CCDカメ
ラの視準方向,拡大倍率,合焦を遠隔操作するコントロ
ーラ5と、プリンタPRR,プロッタPLR,モデムM
OD等の出力装置等で構成される。モデムMODは通信
線を介しての他のコンピュ−タとのデ−タ通信を行なう
ためのものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of a system for measuring and analyzing three-dimensional coordinates of a large structure according to one embodiment of the present invention. The system used in the present invention includes a target 6 provided at each measurement point on a measurement object and a color CC driven by a servo motor.
D camera automatically patrols, searches,
A measuring device 1 having a mechanism for collimating, measuring a distance, and measuring a horizontal angle and a vertical angle; an image processing device 2 for analyzing an image obtained from a CCD camera of the measuring device 1; A computer with a monitor 3 for analyzing analysis and the like and storing measurement results; a portable computer 4 for running a program for calculating polar coordinates for automatic measurement and generating data for numerical control of the measuring instrument body; A controller 5 for remotely controlling the collimating direction, magnification, and focusing of the CCD camera, a printer PRR, a plotter PLR, and a modem M
It is composed of an output device such as an OD. The modem MOD is for performing data communication with another computer via a communication line.

【0019】ターゲット6は、プリズム反射シートであ
り、計測機1から発射された光波を反射する。反射光は
CCDカメラで撮像され、CCDカメラの撮影画像信号
すなわち画像信号より、タ−ゲット6の像が認識され
る。ターゲット6は、視準距離に応じて必要サイズのも
のを用いる。たとえば視準距離10mでは直径5mm以
上、視準距離100mでは100mm以上とする。各測
点にターゲット6を設ける際、ターゲット面7の光軸と
なす角度は±45°以内が計測可能であるが、なるべく
CCDカメラに正対させる。ターゲット6の形状は、円
形,四角形,三角形等いずれでもよいが、後述するター
ゲットの傾きによるずれ量の補正をする場合には、真円
にしたものを使用するのがよい。また、図10に示すよ
うな垂直な側面19を有する円筒形ターゲットを用いる
と、ターゲットの画像の側面像21から傾きの方向を知
ることができる。さらにターゲット表面に着色したり特
定のマークを付けると、ターゲットの識別に便利であ
る。
The target 6 is a prism reflection sheet, and reflects a light wave emitted from the measuring device 1. The reflected light is picked up by the CCD camera, and the image of the target 6 is recognized from the image signal of the CCD camera, that is, the image signal. The target 6 has a required size according to the collimation distance. For example, when the collimating distance is 10 m, the diameter is 5 mm or more, and when the collimating distance is 100 m, the diameter is 100 mm or more. When the target 6 is provided at each measurement point, the angle between the target surface 7 and the optical axis can be measured within ± 45 °, but it is preferably opposed to the CCD camera as much as possible. The shape of the target 6 may be any of a circle, a quadrangle, a triangle, and the like. However, when correcting a shift amount due to the inclination of the target described later, it is preferable to use a true circle. When a cylindrical target having a vertical side surface 19 as shown in FIG. 10 is used, the direction of the inclination can be known from the side image 21 of the image of the target. Further, if the target surface is colored or has a specific mark, it is convenient to identify the target.

【0020】図2の(a)は、真円の視準面をもつシー
トタイプのターゲットである。ターゲット表面には必ず
しもターゲットの中心を示すクロスラインを必要としな
いが、ターゲット中心を測点に合わせやすいように、図
2の(b)に示すようなクロスラインを記してもよい。
図2の(c)は、ターゲットの中心を測点に一致させて
取付けにくい場合に使用するターゲットの一例であり、
ターゲットの視準面7を2軸方向に傾斜または回転させ
て使用することができる。この場合、測点の方向を示す
ターゲットの中心を通る基線8をターゲット視準面7上
に記したものを使用する。
FIG. 2A shows a sheet-type target having a perfectly circular collimating plane. A cross line indicating the center of the target is not necessarily required on the target surface, but a cross line as shown in FIG. 2B may be described so that the target center can be easily aligned with the measurement point.
FIG. 2C shows an example of a target used when the center of the target is difficult to be attached by matching the center of the target to the measurement point.
The collimating surface 7 of the target can be used by being tilted or rotated in two axial directions. In this case, a base line 8 passing through the center of the target indicating the direction of the measurement point is described on the target collimation plane 7.

【0021】計測機1は、近赤外線による測距を行う光
波距離計と、水平角および鉛直角の測角を行う測角計
と、ターゲット6を自動的に巡回,探索,視準するため
のズーム機構付きのカラーCCDカメラと、視準方向を
数値的に制御できる水平角および鉛直角可変用のサ−ボ
モ−タ等を備えており、設計極座標値の入力を受けター
ゲット6を視準して、測距,測角を行い、ターゲット中
心の座標の極座標として出力する。なお、光波距離計の
視準軸とCCDカメラの光軸は同軸である。また、色彩
によるターゲットの識別の必要性がなければ、白黒のC
CDカメラでもよい。
The measuring device 1 includes a light wave distance meter for measuring a distance by near infrared rays, a goniometer for measuring a horizontal angle and a vertical angle, and a device for automatically traveling, searching, and collimating the target 6. A color CCD camera with a zoom mechanism, a servomotor for changing the horizontal and vertical angles that can numerically control the collimating direction, and the like are provided. Then, distance measurement and angle measurement are performed, and the coordinates are output as polar coordinates of the coordinates of the center of the target. The collimating axis of the lightwave distance meter and the optical axis of the CCD camera are coaxial. If there is no need to identify the target by color, a black and white C
A CD camera may be used.

【0022】モニター付きコンピュ−タ3は、計測シミ
ュレーション,座標変換等の解析,設計値および計測結
果のグラフィック表示および記憶等を行うもので、計測
のシミュレーション,座標変換,補正演算等の解析ソフ
トウェアが作動するものである。
The monitor-equipped computer 3 performs measurement simulation, analysis such as coordinate conversion, graphic display and storage of design values and measurement results, and the like, and analysis software such as measurement simulation, coordinate conversion, and correction calculation. It works.

【0023】携帯型コンピュ−タ4は、上記のモニター
付きコンピュ−タ3とほぼ同等の機能を有し、実測時の
計測対象物10と計測機1の位置関係に基づいて各測定
点の三次元設計座標値の変換を行い、自動計測用極座標
値を演算し数値制御用データの作成を行うもので、ノー
トパソコンあるいはハンディーターミナル等を用いる。
The portable computer 4 has almost the same function as the above-mentioned computer 3 with a monitor, and based on the positional relationship between the measuring object 10 and the measuring machine 1 at the time of actual measurement, the tertiary of each measuring point is determined. It converts original design coordinate values, calculates polar coordinate values for automatic measurement, and creates numerical control data. A notebook computer or a handy terminal is used.

【0024】なお、携帯型コンピュ−タ4を省略し画像
処理装置2とモニター付き用コンピュ−タ3とオンライ
ン等で直接接続してもよい。
The portable computer 4 may be omitted, and the image processing apparatus 2 and the computer with monitor 3 may be directly connected online or the like.

【0025】コントロ−ラ5は、計測機1のCCDカメ
ラの視準方向,拡大倍率,合焦を遠隔操作する機能を有
し、計測対象物10上の測点のうち、原点と基準軸およ
び基準面を設定するための3基準点を視準するために使
用される。また、計測対象物10上の三次元設計座標値
が既知でない測点の三次元座標値を、マニュアル操作で
計測する場合にも使用する。
The controller 5 has a function of remotely controlling the collimating direction, magnification, and focusing of the CCD camera of the measuring device 1. Of the measuring points on the measuring object 10, the origin, the reference axis and It is used to collimate three reference points for setting a reference plane. It is also used when manually measuring three-dimensional coordinate values of measurement points on the measurement object 10 whose three-dimensional design coordinate values are not known.

【0026】−第1実施例− 以下、前記のように構成したシステムを用いて計測対象
物上の測点の三次元座標値を自動的に計測する第1の実
施例について説明する。図3は計測手順の骨子を示すフ
ローチャートであり、図4は計測対象物を自動的に計測
する態様を示したものである。この第1実施例では次の
ように三次元座標値自動計測を行なう。
First Embodiment A description will now be given of a first embodiment in which the three-dimensional coordinate value of a measuring point on a measuring object is automatically measured using the system configured as described above. FIG. 3 is a flowchart showing the outline of the measurement procedure, and FIG. 4 shows a mode of automatically measuring the measurement target. In the first embodiment, three-dimensional coordinate value automatic measurement is performed as follows.

【0027】計測対象となる構造物の設計あるいは製
作のために作成された既知の三次元設計座標値を、モニ
ター付きコンピュ−タ3を使用して入力を行い、モニタ
ー画面上に計測対象構造物の三次元設計モデルを作成し
測点を決定する。この場合、構造物の設計寸法値を入力
し、コンピュ−タ内で三次元設計座標値に変換させても
よい; 同じ画面上に計測機1の設置位置を入力し; この点を原点として計測対象構造物10上の測点の設
計極座標値を求め、視準する測点上のターゲット6の決
定,測定順番の設定等の、計測条件のシミュレーション
を行い、計測機1の設置可能範囲を求める; 前記設置可能範囲内に計測機1を設置し; 計測対象構造物10上の3測点を基準点(9a,9
b,9c)とし、その測点上に設置されたターゲット上
の視準点の極座標値を計測機1により実測し、測点の三
次元座標値に変換する; この3点のうち任意の1点を原点、原点9aと第2点
9bを結んだ線をx軸と、この軸と第3点9cを含む平
面をx−y(x−z)面と、この面に垂直な軸をz軸と
定義し、計測対象構造物の局所座標系とする。
A known three-dimensional design coordinate value created for designing or manufacturing a structure to be measured is input using the computer 3 with a monitor, and the structure to be measured is displayed on a monitor screen. Create a 3D design model and determine the measurement points. In this case, the design dimension value of the structure may be input and converted into a three-dimensional design coordinate value in the computer; the installation position of the measuring instrument 1 is input on the same screen; The design polar coordinate values of the measurement points on the target structure 10 are determined, the measurement conditions are simulated, such as the determination of the target 6 on the measurement point to be collimated, the setting of the measurement order, and the installation possible range of the measurement device 1 is determined. The measuring device 1 is set within the settable range; three measuring points on the structure 10 to be measured are set as reference points (9a, 9);
b, 9c), the polar coordinate value of the collimation point on the target set on the measurement point is actually measured by the measuring device 1 and converted into the three-dimensional coordinate value of the measurement point; The point is the origin, the line connecting the origin 9a and the second point 9b is the x-axis, the plane including this axis and the third point 9c is the xy (xz) plane, and the axis perpendicular to this plane is the z-axis. An axis is defined as the local coordinate system of the structure to be measured.

【0028】計測対象物10の三次元設計座標値のう
ちで、前記の3基準点(9a,9b,9c)に対応する
3点の設計座標値からなる原点9a,座標軸,基準面、
を計測対象構造物上の原点9a,基準軸,基準面、に合
致させれば、計測対象構造物の実物の局所座標系と三次
元設計モデルの局所座標系は一致する。図式的に表現す
れば、図4のように計測対象構造物10の実物のうえに
共通の座標軸を持つ三次元設計モデルが投影された状態
と見ることができる。このことにより、実測時の計測機
1位置を原点9aとしたときの三次元設計モデル上の測
点の設計極座標値が座標変換により求められる。また、
図5のように1箇所の計測機1の設置点から視準できな
い測点15,16は、前記の 計測のシミュレーション
から解っているので、それらに設置されたターゲットを
視準できる複数の計測機1Aの設置点12,13を設
け、計測対象物内外の両方から視準可能な共通測定点1
4にターゲット6を設置し、これを計測の接合点として
座標を一致させる。この計測機設置数,位置および共通
測定点の数,位置もあらかじめシミュレーションしてお
く。
Of the three-dimensional design coordinate values of the object 10 to be measured, an origin 9a, coordinate axes, reference plane, and three design coordinate values corresponding to the three reference points (9a, 9b, 9c).
Is matched with the origin 9a, reference axis, and reference plane on the structure to be measured, the local coordinate system of the real thing of the structure to be measured matches the local coordinate system of the three-dimensional design model. In a schematic representation, it can be seen that a three-dimensional design model having a common coordinate axis is projected on the actual measurement target structure 10 as shown in FIG. Thus, the design polar coordinate value of the measurement point on the three-dimensional design model when the position of the measuring device 1 at the time of the actual measurement is set to the origin 9a is obtained by the coordinate conversion. Also,
As shown in FIG. 5, the measurement points 15 and 16 that cannot be collimated from the installation point of one measuring instrument 1 are known from the above-described measurement simulation, and therefore, a plurality of measurement instruments that can collimate the targets installed on them. 1A installation points 12 and 13 are provided, and a common measurement point 1 that can be collimated from both inside and outside of the measurement object
A target 6 is set on 4 and coordinates are made to coincide with each other as a joint point for measurement. The number and positions of the measuring devices and the number and positions of the common measurement points are also simulated in advance.

【0029】この測定対象ターゲットの設計極座標値
に、その測点のターゲットの形式,色,サイズといった
属性データを加え、各々のターゲットの自動巡回,探
索,視準用の数値制御データを作成し; 計測機1を駆動しCCDカメラの視準方向,拡大倍
率,合焦の遠隔操作を行い、測定対象ターゲットを自動
的に巡回,探索,視準する。
Attribute data such as the format, color, and size of the target at the measurement point is added to the design polar coordinate values of the target to be measured, and numerical control data for automatic patrol, search, and collimation of each target is created; The apparatus 1 is driven to remotely control the collimating direction, magnification, and focusing of the CCD camera, and automatically traverse, search, and collimate the target to be measured.

【0030】本発明における、ターゲット中心点を自動
視準する原理は以下のようである。図6は計測機1のC
CDカメラで捉えたターゲット6の影像である。CCD
カメラによりターゲット6を視準し得られた真円のター
ゲット面を持つターゲット像7は、CCDカメラの光軸
と角度を持っていれば楕円の画像17として捉えられ
る。
The principle of automatically collimating the target center point in the present invention is as follows. FIG. 6 shows C of the measuring machine 1.
It is an image of the target 6 captured by a CD camera. CCD
A target image 7 having a perfect circular target surface obtained by collimating the target 6 by the camera is captured as an elliptical image 17 if it has an angle with the optical axis of the CCD camera.

【0031】ここでターゲット6の中心点の、CCDカ
メラの視準点からのずれ量(Δx,Δy,Δz)の算出
法を図7を用いて説明する。視準軸(光軸)方向をZp
とし、それと直交する面をXp−Yp平面とし、水平方
向にXp軸を定め、それと直交する軸をYp軸とし画像
座標系を設定し、ターゲット上の視準点すなわち光軸が
ターゲットと交差する点をPとし画像座標の原点とす
る。このXp−Yp平面上のターゲット像の画像解析を
行い、ターゲット像の図心Cの座標値(Δx,Δy)を
ターゲット像の図心計算から、ターゲット面の光軸に対
する傾きθを、ターゲット像の長径と短径の比あるいは
ターゲット(真円)とターゲット像(楕円)の面積比か
ら求める。
Here, a method of calculating the amount of deviation (Δx, Δy, Δz) of the center point of the target 6 from the collimation point of the CCD camera will be described with reference to FIG. The collimating axis (optical axis) direction is Zp
The plane orthogonal to the plane is defined as an Xp-Yp plane, the Xp axis is defined in the horizontal direction, the axis orthogonal to the plane is defined as the Yp axis, and an image coordinate system is set. The collimation point on the target, that is, the optical axis intersects the target. Let P be the point and the origin of the image coordinates. The image analysis of the target image on the Xp-Yp plane is performed, and the coordinate value (Δx, Δy) of the centroid C of the target image is calculated from the centroid calculation of the target image. Is obtained from the ratio of the major axis to the minor axis or the area ratio between the target (true circle) and the target image (ellipse).

【0032】[0032]

【数1】 (Equation 1)

【0033】ターゲット面の光軸となす角度θは、ター
ゲット面7の傾きの方向によって正負が決定されるが、
このターゲット面7の傾きの方向はCCDカメラで捉え
たターゲット面の楕円状の画像17からだけでは判断で
きない。このターゲット面7の方向を判定する手順を図
8と図9のフローチャートを用いて説明する。図8のO
点は計測機1の位置で全体座標系の原点であり、対象タ
ーゲット上の視準点がP、光軸をターゲット像の短軸方
向に任意に移動して視準されたターゲット上の点がP’
である。2点視準法では、測定対象ターゲット上のP
点を視準し、その点の極座標値、すなわち斜距離R,
水平角Hp,鉛直角Vpを得る、またターゲット像の
画像解析から(Δx,Δy,θ,α)を求めておく、次
にターゲット上の光軸をターゲット像20の短軸に平
行に移動して別の点P’を視準し、その点の斜距離
R’を測定し、RとR’の値を比較することによっ
て、ターゲット面7の向き、すなわちθの正負がわか
る。
The positive or negative angle θ between the target surface and the optical axis is determined by the direction of inclination of the target surface 7.
The direction of the inclination of the target surface 7 cannot be determined only from the elliptical image 17 of the target surface captured by the CCD camera. The procedure for determining the direction of the target surface 7 will be described with reference to the flowcharts of FIGS. O in FIG.
The point is the position of the measuring instrument 1 and the origin of the whole coordinate system. The collimation point on the target target is P, and the point on the target collimated by arbitrarily moving the optical axis in the short axis direction of the target image is P '
It is. In the two-point collimation method, P
A point is collimated, and the polar coordinate value of the point, that is, the oblique distance R,
The horizontal angle Hp and the vertical angle Vp are obtained, and (Δx, Δy, θ, α) is obtained from the image analysis of the target image. Next, the optical axis on the target is moved parallel to the short axis of the target image 20. By collimating another point P ′, measuring the oblique distance R ′ at that point, and comparing the values of R and R ′, the direction of the target surface 7, that is, the sign of θ, can be determined.

【0034】なお、1点視準で行うこともできる。この
場合は一例として、図10に示すようなターゲット面7
に垂直な側面19を持つ円筒形台付きのようなターゲッ
ト自体で傾き方向を判別できるようなもの(b)を用い
れば、ターゲットに傾きのある場合、(c)のようにタ
ーゲットの側面19が見える側が手前と判断でき、1回
の視準でθの正負を判定できる。
It should be noted that the measurement can be performed with one point collimation. In this case, as an example, the target surface 7 as shown in FIG.
If a target (b), such as a cylindrical base having a side surface 19 perpendicular to the target, whose tilt direction can be determined by itself, is used, if the target has a tilt, the side surface 19 of the target will be displaced as shown in (c). The visible side can be determined to be the near side, and the positive or negative of θ can be determined by one collimation.

【0035】さらに図7に示すターゲットの長軸(L
軸)の水平軸(Xp軸)となす角度αを求め、以下のよ
うな計算式によりターゲット中心点の光軸方向のずれ量
Δzを算出する。
Further, the long axis (L) of the target shown in FIG.
An angle α between the horizontal axis (Xp axis) and the horizontal axis (Xp axis) is obtained, and a shift amount Δz of the target center point in the optical axis direction is calculated by the following formula.

【0036】[0036]

【数2】 (Equation 2)

【0037】次に、対象ターゲットの中心点の座標値の
算出方法を図11を用いて説明する。計測機1を原点O
とした時のターゲット中心点Tの全体座標系における三
次元座標値(Xc,Yc,Zc)が、傾斜したターゲッ
ト像の視準点Pの極座標値(R,Hp,Vp)と画像座
標系における視準点Pからのずれ量(Δx,Δy,Δ
z)から、下式により求められる。
Next, a method of calculating the coordinate value of the center point of the target will be described with reference to FIG. Measuring machine 1 at origin O
The three-dimensional coordinate value (Xc, Yc, Zc) of the target center point T in the entire coordinate system when the target coordinate point is set to the polar coordinate value (R, Hp, Vp) of the collimation point P of the tilted target image in the image coordinate system The amount of deviation (Δx, Δy, Δ
z) is obtained from the following equation.

【0038】[0038]

【数3】 (Equation 3)

【0039】また、測点の三次元座標値の算出方法を図
12を用いて説明する。ターゲット中心Tから測点Qま
でのターゲット面の基線方向の距離をh、直角方向の距
離をdとし、ターゲット像の長軸(L軸)と基線の画像
のなす角度をβとすると、画像座標系においてターゲッ
ト中心点Tを原点としたときの測点Qの座標値(Δx
s,Δys,Δzs)は下式により求められる。
A method for calculating the three-dimensional coordinate values of the measurement points will be described with reference to FIG. Assuming that the distance in the base line direction of the target surface from the target center T to the measurement point Q is h, the distance in the perpendicular direction is d, and the angle between the long axis (L axis) of the target image and the base line image is β, the image coordinates The coordinate value (Δx) of the measuring point Q when the target center point T is set as the origin in the system.
s, Δys, Δzs) are obtained by the following equation.

【0040】[0040]

【数4】 (Equation 4)

【0041】上記の測点Qの画像座標系における座標値
を全体座標系に変換して、計測機1を原点Oとした時の
測点Qの三次元座標値(Xs,Ys,Zs)は次式によ
り求められる。
The coordinate values of the measuring point Q in the image coordinate system are converted into the global coordinate system, and the three-dimensional coordinate values (Xs, Ys, Zs) of the measuring point Q when the measuring machine 1 is set as the origin O are It is obtained by the following equation.

【0042】[0042]

【数5】 (Equation 5)

【0043】次にターゲットの自動探索について説明す
る。一般的には、土木,建築,構造物および船舶の部
材,ブロックといった計測対象物の設計値からのずれ
は、数mm〜数cm程度であり、ターゲット6の大き
さ,取り付け方向を適切に選ぶことにより、設計値で視
準すれば、通常1回の視準でCCDカメラの光軸はター
ゲット内に入るが、大規模な計測対象物あるいは製作精
度の悪い計測対象物の場合、設計値で視準してもCCD
カメラがターゲット像を捉えることができないことがあ
る。このような場合にはターゲットの自動探索が必要と
なる。図13にはターゲットの自動探索の手順を示すフ
ローチャートを示す。画像解析により画面上(視野内)
にターゲット像が存在するか否かを判定し、無ければ自
動的にCCDカメラのズーム機構を作動させ、視野を拡
大しターゲットを探索する。また、ターゲット像がCC
Dカメラの視野内に入っていても、ターゲット内にCC
Dカメラの光軸が入っていない場合、またCCDカメラ
の視野内に測定対象ターゲット像の全体が入っていない
場合には、そのターゲットの全体像または部分像の画像
解析により光軸からのずれ量(δx,δy)を求め、光
軸の移動を行いターゲットを視準する。そして自動視準
を行う際のCCDカメラの倍率はターゲットの画像処理
に最適な状態に切り替える。
Next, automatic search for a target will be described. Generally, the deviation from the design value of the object to be measured such as civil engineering, building, structure and ship member or block is about several mm to several cm, and the size and mounting direction of the target 6 are appropriately selected. Thus, when collimating with the design value, the optical axis of the CCD camera usually enters the target with one collimation, but in the case of a large-scale measurement object or a measurement object with poor manufacturing accuracy, the collimation is performed with the design value. CCD even if collimated
The camera may not be able to capture the target image. In such a case, automatic search for the target is required. FIG. 13 is a flowchart showing the procedure of automatic target search. On screen by image analysis (within field of view)
It is determined whether or not a target image exists, and if not, the zoom mechanism of the CCD camera is automatically operated to expand the field of view and search for the target. Also, if the target image is CC
Even if you are within the field of view of the D camera,
If the optical axis of the D camera is not included, or if the entire target image of the target to be measured is not included in the field of view of the CCD camera, the amount of deviation from the optical axis is determined by analyzing the entire image or a partial image of the target. (Δx, δy) is obtained, the optical axis is moved, and the target is collimated. Then, the magnification of the CCD camera at the time of performing automatic collimation is switched to a state optimal for image processing of the target.

【0044】次に、CCDカメラ視野内に複数のターゲ
ットを捉えた場合の測定対象ターゲットの識別法につい
て説明する。計測対象物上の近接した測点や遠方の測点
を計測する場合、図14に示すようにCCDカメラの視
野内22に複数のターゲット像が存在することがある。
この場合、ターゲットの視準面が特定の色に着色された
ターゲット23を用いてカラーCCDカメラにより識別
するか、またはターゲットの視準面の形状や視準面上に
記された特定のマークを利用したパターン認識により、
対象ターゲットの自動選択を行う。
Next, a method of identifying a target to be measured when a plurality of targets are captured in the field of view of the CCD camera will be described. When measuring a near measuring point or a far measuring point on a measurement target, a plurality of target images may be present in the field of view 22 of the CCD camera as shown in FIG.
In this case, the collimation plane of the target is identified by the color CCD camera using the target 23 colored in a specific color, or the shape of the collimation plane of the target or a specific mark written on the collimation plane is used. With the pattern recognition used,
Perform automatic selection of target targets.

【0045】上記の方法により、自動巡回,探索,視準
された計測対象物上のターゲットの中心点の三次元座標
値は、ターゲットの設置偏位(測点とターゲット中心と
のずれ量)が補正されて測点の三次元座標値が求められ
る。さらに、携帯型コンピュ−タ4に記憶された設計値
と比較され、計測機1の配置およびターゲット6の設置
等の計測の状態の確認ならびに計測対象物の誤差量の出
力をリアルタイムで行う。
According to the above method, the three-dimensional coordinate value of the center point of the target on the measurement object that has been automatically traversed, searched, and collimated is determined by the displacement of the target (the amount of deviation between the measurement point and the center of the target). The three-dimensional coordinate values of the measurement points are obtained after the correction. Further, the measured values are compared with the design values stored in the portable computer 4 to check the state of measurement such as the arrangement of the measuring instrument 1 and the installation of the target 6 and to output the error amount of the object to be measured in real time.

【0046】−第2実施例− 本発明の第2の実施例として自動巡回と自動視準に三次
元CAD使用した例を説明する。三次元座標計測解析シ
ステムを構成する機器のうちのターゲット6,計測機
1,画像処理装置2等は、第1実施例と同一のものでよ
いが、モニター付きコンピュ−タ3と携帯型コンピュ−
タ4は、三次元CADが作動するのに十分な能力および
容量のCPUとハードディスク等の外部記憶装置を装備
しているものとする。以下、前記のように構成したシス
テムを用いて計測対象物10上の測点の三次元座標値を
自動的に計測する手順を前記図3の計測手順の骨子を示
すフローチャートを用いて説明する。
-Second Embodiment- As a second embodiment of the present invention, an example in which three-dimensional CAD is used for automatic tour and automatic collimation will be described. The target 6, the measuring device 1, the image processing device 2 and the like among the devices constituting the three-dimensional coordinate measurement / analysis system may be the same as those in the first embodiment, but the computer with monitor 3 and the portable computer
It is assumed that the data unit 4 is equipped with a CPU and an external storage device such as a hard disk having sufficient capacity and capacity to operate the three-dimensional CAD. Hereinafter, a procedure for automatically measuring the three-dimensional coordinate values of the measurement points on the measurement object 10 using the system configured as described above will be described with reference to the flowchart showing the outline of the measurement procedure in FIG.

【0047】第2実施例の三次元座標値自動計測法は次
のように行なう、まず、計測対象となる構造物の設計
あるいは製作のために作成された既知の三次元設計座標
値をモニター付きコンピュ−タを使用して三次元CAD
の図形デ−タとして入力を行い、モニター画面上に計測
対象構造物の三次元設計モデルを作成し測点を決定す
る。この場合、構造物の設計寸法値を入力して三次元モ
デルを作図してもよい。つぎに、同じ三次元CADの
画面上に計測機1の設置位置を入力し; この点を原点として計測対象構造物上の測点の設計極
座標値をCADの座標表示機能により求める。また、計
測機1が設置された位置から視準できる測点上のターゲ
ットを三次元CADの隠線処理機能を用いて選定し、タ
ーゲットの測点からの偏位およびターゲット面の向きを
設定したうえで、ターゲットの中心点の設計極座標値を
と同様にして求め、測定順番の設定等の計測条件のシ
ミュレーションを行い、計測機1の設置可能範囲を求め
る; 前記設置可能範囲内に計測機1を設置し; 計測対象構造物上に基準面を構成する3測点上に設置
されたターゲット上の視準点の極座標値を計測機1によ
り実測する; この座標値は三次元CADに入力され、CADの座標
表示機能により測点の三次元座標値を求め、任意の1点
を原点、原点と第2点を結んだ線をx軸と、この軸と第
3点を含む平面をx−y(x−z)面と定義して、計測
対象構造物の局所座標系とし、三次元CAD上に設定す
る; その局所座標上にで作成された計測対象物の三次元
設計モデルの複写を行う。
The automatic three-dimensional coordinate value measuring method of the second embodiment is performed as follows. First, a known three-dimensional design coordinate value created for designing or manufacturing a structure to be measured is provided with a monitor. 3D CAD using computer
Is input as the graphic data of the above, a three-dimensional design model of the structure to be measured is created on the monitor screen, and measurement points are determined. In this case, a three-dimensional model may be drawn by inputting design dimension values of the structure. Next, the installation position of the measuring device 1 is input on the same three-dimensional CAD screen; using this point as the origin, the design polar coordinate value of the measurement point on the structure to be measured is obtained by the CAD coordinate display function. In addition, a target on a measurement point that can be collimated from the position where the measuring device 1 is installed is selected using the hidden line processing function of the three-dimensional CAD, and the deviation of the target from the measurement point and the direction of the target surface are set. Then, the design polar coordinate value of the center point of the target is obtained in the same manner as above, the measurement conditions such as the setting of the measurement order are simulated, and the installable range of the measuring device 1 is obtained; Is installed; polar coordinate values of collimation points on a target placed on three measurement points constituting a reference plane on the structure to be measured are actually measured by the measuring device 1; these coordinate values are input to a three-dimensional CAD. , A three-dimensional coordinate value of a measurement point is obtained by a coordinate display function of CAD, an arbitrary point is defined as an origin, a line connecting the origin and the second point is defined as an x-axis, and a plane including the axis and the third point is defined as an x-axis. Defined as the y (xz) plane, the measurement target structure Of the local coordinate system is set in the three-dimensional CAD; it performs copying of the three-dimensional design model of the measurement object that is created on its local coordinates.

【0048】そして、実測時の計測機1位置を原点とし
たときの三次元設計モデル上の測点に設置されたターゲ
ットの中心点の設計極座標値がCADの座標表示機能に
より求められる。また図5のような座標の接続も三次元
CAD上で行う。このとき、計測機設置数,位置および
共通測定点の数,位置もあらかじめCAD上でシミュレ
ーションしておく。手順,は第1実施例と同様であ
る。
Then, the design polar coordinate value of the center point of the target placed at the measurement point on the three-dimensional design model when the position of the measuring machine 1 at the time of actual measurement is set as the origin is obtained by the coordinate display function of CAD. The connection of the coordinates as shown in FIG. 5 is also performed on the three-dimensional CAD. At this time, the number and positions of measuring instruments installed and the number and positions of common measurement points are also simulated in advance on the CAD. The procedure is the same as in the first embodiment.

【0049】次に図15に示すように自動視準において
CCDカメラで捉えたターゲット像17を画像解析する
ことによって得られたデータ(Δx,Δy,θ,α,
β)と光波距離計と測角計により測距,測角された視準
点Pの極座標値(R,Hp,Vp)を用いて、ターゲッ
ト6の中心点と測点の三次元座標値を三次元CADを用
いて求める方法について説明する。
Next, as shown in FIG. 15, data (Δx, Δy, θ, α, α) obtained by image analysis of the target image 17 captured by the CCD camera in automatic collimation.
β) and the polar coordinate values (R, Hp, Vp) of the collimation point P measured and measured by the lightwave distance meter and the goniometer, the three-dimensional coordinate values of the center point of the target 6 and the measuring point are calculated. A method of obtaining a result using three-dimensional CAD will be described.

【0050】まず、計測機1を原点として、この原点O
と対象ターゲットの視準点Pを結んだ線分OP(光軸)
に直角な平面A(25)を設定する。図15の(a)は
ターゲット像17を含む平面25であり、ターゲット上
の視準点Pとターゲット像17の図心Cはこの平面内2
5に存在する。図15の(b)に示すように、平面25
(A)上の視準点Pを通りターゲット像17の楕円の長
軸に平行な直線を交線R−Rとする、平面25と(π/
2−θ)の角度をなす平面26(B)を設定する。この
平面26が図15の(c)に示すターゲット面7を含む
平面であり、ターゲット像の図心Cを平面Bに投影した
点がターゲットの中心点Tである。計測機11を原点O
とした時のターゲット中心点Tの全体座標系における三
次元座標値をCADの座標表示機能により直接求める。
また図15の(a)において、ターゲット像の中心点T
を通りターゲット像17の長軸とβの角度を持つ径線C
D27を引き、平面26に投影する。図15の(c)に
示すようにこの径線の投影線はターゲット上に記された
基線と一致する。図15の(d)は投影線TE28に沿
ったターゲット面7に垂直な断面図であるが、ターゲッ
ト中心点Tと測点Qの位置関係は既知であるので、ター
ゲット中心点Tから投影線TE28方向にh、垂直にd
の距離の点が測点Qであり、三次元座標値はCADの座
標表示機能により直接求める。
First, with the measuring machine 1 as the origin, the origin O
Line OP (optical axis) connecting the target and the collimation point P of the target
Is set to a plane A (25) perpendicular to. FIG. 15A shows a plane 25 including the target image 17, and the collimation point P on the target and the centroid C of the target image 17 are within the plane 2.
Present in 5 As shown in FIG.
(A) A plane 25 that passes through the upper collimation point P and is parallel to the major axis of the ellipse of the target image 17 is defined as an intersection line RR.
A plane 26 (B) forming an angle of (2-θ) is set. This plane 26 is a plane including the target surface 7 shown in FIG. 15C, and the point where the centroid C of the target image is projected on the plane B is the center point T of the target. Set the measuring machine 11 to the origin O
Then, the three-dimensional coordinate value of the target center point T in the whole coordinate system at the time of is calculated directly by the coordinate display function of CAD.
In FIG. 15A, the center point T of the target image is shown.
A radial line C having an angle of β with the long axis of the target image 17 passing through
D27 is drawn and projected onto the plane 26. As shown in FIG. 15C, the projected line of this diameter line coincides with the base line marked on the target. FIG. 15D is a cross-sectional view perpendicular to the target surface 7 along the projection line TE28. Since the positional relationship between the target center point T and the measurement point Q is known, the projection line TE28 is projected from the target center point T. H in direction, d in vertical
Is the measurement point Q, and the three-dimensional coordinate value is directly obtained by the CAD coordinate display function.

【0051】なお、全体座標系や任意の局所座標系にお
ける測点の座標値,寸法値および図心も、三次元CAD
の座標表示,距値計算,面積計算,図形情報機能等を用
いて求める。
The coordinate values, dimension values, and centroids of the measurement points in the global coordinate system or any local coordinate system are also represented by three-dimensional CAD.
It is obtained by using coordinate display, distance value calculation, area calculation, graphic information function, and the like.

【0052】[0052]

【発明の効果】本発明によれば、計測対象物の三次元座
標の計測において、既知の三次元設計座標値を用いてC
CDカメラと距離計,測角計からなる計測機1を自動的
に制御して、計測対象物上の測点に設置されたターゲッ
トの自動巡回,自動探索,自動視準を行うため、実際の
計測作業において入手作業が大幅に省略され、人為的ミ
スが少なくなり、計測現地における計測作業が迅速かつ
確実にできる。また、自動視準の際、ターゲット中心点
に光波距離計の視準軸を完全に合致させることなく、C
CDカメラによって得られたターゲット像を画像解析す
ることよりずれ量を求めて補正するので、視準操作に要
していた時間の大幅な短縮がはかられ、計測スピードが
速く、しかもターゲットの中心と距離計の視準軸を合致
させる際生じる機械誤差を排除でき高精度の計測ができ
る。さらに、計測対象物上の測点から偏位させた位置に
回転可能なターゲットを設置することが可能となり、計
測機の設置台数あるいは移動回数を削減することがで
き、計測設備コスト,計測時間を大幅に抑えることがで
きるとともに、計測機の切り替えや移動による座標の接
合の際に生じる測定誤差を最小限にすることができ高精
度の計測ができる。また、計測途中で計測対象物の測定
値を設計値と比較でき、計測の状態および計測対象物の
誤差量がリアルタイムで確認できるようになり、計測の
信頼性が向上する。
According to the present invention, in the measurement of the three-dimensional coordinates of the object to be measured, the C
In order to automatically control the measuring device 1 composed of a CD camera, a distance meter, and a goniometer to automatically traverse, automatically search, and automatically collimate a target installed at a measurement point on a measurement target, an actual measurement is performed. Obtaining work is largely omitted in the measurement work, human errors are reduced, and the measurement work at the measurement site can be performed quickly and reliably. In addition, at the time of automatic collimation, the collimation axis of the optical distance meter does not completely match the center point of the target, and C
Since the amount of shift is determined by image analysis of the target image obtained by the CD camera and corrected, the time required for collimating operation can be greatly reduced, the measurement speed is high, and the center of the target is also high. This eliminates mechanical errors that occur when matching the collimation axis of the distance meter with that of the distance meter, and enables highly accurate measurement. Furthermore, it is possible to set a rotatable target at a position deviated from the measurement point on the measurement target, and it is possible to reduce the number of measuring machines to be installed or the number of times of movement, thereby reducing measurement equipment cost and measurement time. It is possible to greatly reduce the measurement error generated at the time of joining the coordinates due to the switching or movement of the measuring device, and to perform highly accurate measurement. In addition, the measured value of the measurement object can be compared with the design value during the measurement, and the measurement state and the error amount of the measurement object can be confirmed in real time, thereby improving the reliability of the measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を実施する、大型構造物の計測測定装
置の全体構成を示すブロック図である。
FIG. 1 is a block diagram showing the overall configuration of a large-sized structure measuring and measuring apparatus for implementing the present invention.

【図2】 図1に示す視準用ターゲット6の数例を示す
正面図である。
FIG. 2 is a front view showing several examples of the collimating target 6 shown in FIG.

【図3】 本発明の第1実施例の計測手順の骨子を示す
フローチャートである。
FIG. 3 is a flowchart showing an outline of a measurement procedure according to the first embodiment of the present invention.

【図4】 図1に示す計測対象構造物(実線)と、該構
造物の共通の座標軸を持った三次元設計モデルにより表
わされる像(点線)を、計測機1を基準点にして示す斜
視図である。
FIG. 4 is a perspective view showing a measurement target structure (solid line) shown in FIG. 1 and an image (dotted line) represented by a three-dimensional design model having a common coordinate axis of the structure, with the measuring machine 1 as a reference point. FIG.

【図5】 図1に示す一箇所の計測機1で視準できない
測点の計測態様を示す示す斜視図である。
FIG. 5 is a perspective view showing a measurement mode of a measurement point that cannot be collimated by one measuring device 1 shown in FIG. 1;

【図6】 図1に示す計測機1のCCDカメラの光軸に
対してθの角度を持つ真円のターゲットを視準して得ら
れたターゲット像(楕円)と、光軸に対して直交するタ
−ゲットの像(円)を示す平面図である。
6 is a target image (ellipse) obtained by collimating a perfect circular target having an angle θ with respect to the optical axis of the CCD camera of the measuring device 1 shown in FIG. FIG. 3 is a plan view showing an image (circle) of a target to be processed.

【図7】 図1に示す計測機1のCCDカメラで撮影し
たターゲットの中心の光軸方向のずれ量Δzを示す平面
図である。
7 is a plan view showing a shift amount Δz in the optical axis direction of the center of the target photographed by the CCD camera of the measuring device 1 shown in FIG.

【図8】 図1に示す計測機1のCCDカメラで撮影し
たタ−ゲットの、2点視準法により求めるターゲット面
の傾斜方向を示す斜視図および側面図である。
8A and 8B are a perspective view and a side view showing an inclination direction of a target surface obtained by a two-point collimation method of a target photographed by a CCD camera of the measuring instrument 1 shown in FIG.

【図9】 本発明の第1実施例における2点視準法の計
測手順の骨子を示すフローチャートである。
FIG. 9 is a flowchart showing the outline of the measurement procedure of the two-point collimation method in the first embodiment of the present invention.

【図10】 本発明で用いるターゲットの変形例を、図
1に示す計測機1のCCDカメラで撮影した画像を示す
平面図であり、(a)はタ−ゲットがCCDカメラに正
対向しているときの画像を、(b)は横向きのときの画
像を、(c)は傾めのときの画像を示す。
10 is a plan view showing an image of a modified example of the target used in the present invention taken by the CCD camera of the measuring device 1 shown in FIG. 1; FIG. 10 (a) is a view in which the target is directly opposed to the CCD camera; (B) shows an image in a horizontal orientation, and (c) shows an image in a tilted state.

【図11】 図1に示す計測機1を原点とするターゲッ
ト中心点の三次元座標値Δx,Δy,Δzを示す斜視図
である。
11 is a perspective view showing three-dimensional coordinate values Δx, Δy, and Δz of a target center point with the measuring instrument 1 shown in FIG. 1 as an origin.

【図12】 測点の三次元座標値を算出するときの、図
1に示す計測機1のCCDカメラで撮影したタ−ゲット
の中心Cと測定Qの立体関係を示す平面図である。
12 is a plan view showing the three-dimensional relationship between the center C of the target and the measurement Q taken by the CCD camera of the measuring device 1 shown in FIG. 1 when calculating the three-dimensional coordinate values of the measurement points.

【図13】 本発明の第1実施例におけるターゲットの
自動探索の手順を示すフローチャートである。
FIG. 13 is a flowchart illustrating a procedure for automatically searching for a target according to the first embodiment of the present invention.

【図14】 図1に示す計測機1のCCDカメラの視野
内に複数個のタ−ゲ−ットがあるときの、CCDカメラ
の撮影画面の一例を示す平面図である。
14 is a plan view showing an example of a photographing screen of the CCD camera when there are a plurality of targets in the field of view of the CCD camera of the measuring device 1 shown in FIG.

【図15】 本発明の第2実施例における、図1に示す
計測機1のCCDカメラで撮影したタ−ゲット像の中心
Cと測定Qの立体関係を示す平面図であり、(a)はC
CDカメラの光軸に直角な面25上のタ−ゲット像を示
し、(b)は基準平面X−Zと、面25と、面25と所
定の角度をなす面26との関係を示す平面図、(c)は
面26上のタ−ゲット像を示す平面図、(d)は(c)
に示す投影線TE28に沿った、タ−ゲット面7の断面
を示す平面図である。
FIG. 15 is a plan view showing a three-dimensional relationship between the center C of the target image photographed by the CCD camera of the measuring device 1 shown in FIG. 1 and the measurement Q in the second embodiment of the present invention; C
3B shows a target image on a plane 25 perpendicular to the optical axis of the CD camera, and FIG. 4B shows a plane showing the relationship between a reference plane XZ, the plane 25, and a plane 26 forming a predetermined angle with the plane 25; FIG. 3C is a plan view showing a target image on the surface 26, and FIG.
FIG. 7 is a plan view showing a cross section of the target surface 7 along a projection line TE28 shown in FIG.

【符号の説明】[Explanation of symbols]

1:計測機 2:画像処理装置 3:モニター付きコンピュ−タ 4:携帯型コンピ
ュ−タ 5:コントローラー 6:ターゲット 7:ターゲット面(視準面) 8:基線 9a,9b,9c:基準点 9a:原点 10:計測対象物 11:計測対象
物の設計値の投影図 12:計測機A 13:計測機B 14:共通計測点 15:計測機Bによって計測できない測点 16:計測機Aによって計測できない測点 17:光軸に対してθの角度を持つターゲット像 18:ターゲット面の法線ベクトル 19:ターゲッ
トの側面 20:ターゲット像 21:ターゲッ
ト側面像 22:CCDカメラの視野(モニター画面) 23:視準面に着色されたターゲット像 24:測定対象ターゲット 25:平面A 26:平面B 27:径線CD 28:投影線TE
1: Measuring machine 2: Image processing device 3: Computer with monitor 4: Portable computer 5: Controller 6: Target 7: Target plane (collimation plane) 8: Base line 9a, 9b, 9c: Reference point 9a : Origin 10 : Measurement object 11 : Projection diagram of design value of measurement object 12 : Measurement machine A 13 : Measurement machine B 14 : Common measurement point Unavailable measuring point 17: Target image having an angle of θ with respect to the optical axis 18: Normal vector of the target surface 19: Side surface of the target 20: Target image 21: Side image of the target 22: Field of view of the CCD camera (monitor screen) 23 : Target image colored on collimation plane 24: Target to be measured 25: Plane A 26: Plane B 27: Radial line CD 28: Projection line TE

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 G01C 15/00 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01B 11/00 G01C 15/00

Claims (1)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 計測対象物上の多数の測点に設けたター
    ゲットを視準して、各測点の三次元座標値を計測するシ
    ステムにおいて、 測点上に設置されたターゲット、ターゲット上の視準点
    を測距、測角する機能を備えたモーター駆動可能なCC
    Dカメラ搭載の計測機本体と計測機本体のCCDカメラ
    で捉えたターゲットの画像を解析する画像処理装置と計
    測条件の設定、解析を行うプログラムが作動するモニタ
    ー付きコンピュータで構成された三次元計測システムを
    用いて、計測対象物の設計寸法値または三次元設計座標
    値をコンピュータに入力し、モニター画面で計測機の設
    置可能範囲を求めた後、その範囲内に計測機を設置し、
    基準となる測点を実測して得られた座標値を基に基準座
    標系を設定して各測点の三次元設計座標値の座標変換を
    行い、その設計座標値を自動計測用の極座標値に変換
    し、変換された極座標値で計測機のCCDカメラを駆動
    し、各測点に取り付けられたターゲットを自動的に順次
    に視準しCCDカメラの光軸が測定対象ターゲット領域
    内に入った状態で測距、測角を行うとともに画像処理装
    置にてターゲット像を解析し、視準点とターゲット像の
    図心とのずれ量、ターゲット面の傾きとその方向を求
    め、視準点の三次元座標値を補正を行うことによって、
    距離計の視準軸をターゲットの中心点に合致させること
    なく、ターゲット像の画像解析により、ターゲット像の
    主軸とターゲット像面上の基線の傾きを求めることによ
    って、計測対象物上の測点の三次元座標値を求めること
    を特徴とする三次元座標自動計測解析法。
    1. A system for measuring three-dimensional coordinate values of each measurement point by collimating targets provided at a large number of measurement points on a measurement object, comprising: a target installed on the measurement point; Motor-driven CC with functions to measure and measure the aiming point
    Measuring instrument equipped with D camera and image processing device and instrument for analyzing target image captured by CCD camera of measuring instrument
    Monitor that runs a program for setting and analyzing measurement conditions
    Using a three-dimensional measurement system configured by chromatography with a computer, the design size value or three-dimensional design coordinate of the measurement object
    Enter the values into the computer and set the measuring instrument on the monitor screen.
    After finding the possible installation range, install a measuring instrument within that range,
    Based on the coordinate values obtained by actually measuring the reference point,
    Set the coordinate system and convert the coordinate of the 3D design coordinate value of each station.
    And convert the design coordinate values to polar coordinate values for automatic measurement
    And drives the CCD camera of the measuring instrument with the converted polar coordinate values.
    And automatically attaches the targets attached to each station
    In the state where the optical axis of the CCD camera is within the target area to be measured, distance measurement and angle measurement are performed, and the target image is analyzed by the image processing device. By calculating the shift amount, the inclination of the target surface and its direction, and correcting the three-dimensional coordinate value of the collimation point,
    Without matching the collimating axis of the rangefinder to the center point of the target, the image analysis of the target image determines the inclination of the main axis of the target image and the baseline on the target image plane, thereby obtaining a measurement point on the measurement object. An automatic three-dimensional coordinate measurement and analysis method characterized by determining three-dimensional coordinate values.
JP27254194A 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method Expired - Lifetime JP3210817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27254194A JP3210817B2 (en) 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27254194A JP3210817B2 (en) 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method

Publications (2)

Publication Number Publication Date
JPH08136218A JPH08136218A (en) 1996-05-31
JP3210817B2 true JP3210817B2 (en) 2001-09-25

Family

ID=17515343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27254194A Expired - Lifetime JP3210817B2 (en) 1994-11-07 1994-11-07 3D coordinate automatic measurement analysis method

Country Status (1)

Country Link
JP (1) JP3210817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307976A (en) * 2013-04-16 2013-09-18 杭州先临三维科技股份有限公司 Monitoring method for grain stock in barn
CN104359415A (en) * 2014-10-31 2015-02-18 广东工业大学 Measuring method and system of angular deformation for line heating and cooling

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079186B2 (en) * 1995-09-28 2000-08-21 株式会社小松製作所 Structure measurement system
KR20020097172A (en) 2001-02-08 2002-12-31 닛폰 고칸 가부시키가이샤 Method for Measuring Three- dimensional Coordinate, Apparatus Thereof and Method for Building Large Construction Therewith
JP2002364175A (en) * 2001-06-05 2002-12-18 Kumagai Gumi Co Ltd Method of preparing member for interior or for facility and method of positioning it
JP4737668B2 (en) * 2005-05-30 2011-08-03 コニカミノルタセンシング株式会社 3D measurement method and 3D measurement system
JP5051493B2 (en) * 2005-12-26 2012-10-17 株式会社Ihi 3D measurement marker and 3D measurement method using the same
KR100684624B1 (en) * 2005-12-28 2007-02-22 삼성중공업 주식회사 System and method for measuring a big size panel
JP5500709B2 (en) * 2009-03-17 2014-05-21 株式会社ソーキ Tunnel excavation construction support system using 3D laser scanner
JP5500708B2 (en) * 2009-03-17 2014-05-21 株式会社ソーキ Tunnel excavation method using a 3D laser scanner
JP5583371B2 (en) * 2009-07-31 2014-09-03 大成建設株式会社 Finished type accuracy confirmation system, 3D measuring machine arrangement planning device, 3D measuring machine arrangement planning program, and 3D measuring machine arrangement planning method
JP5623226B2 (en) 2010-09-30 2014-11-12 株式会社トプコン Measuring method and measuring device
JP5623227B2 (en) 2010-09-30 2014-11-12 株式会社トプコン Measuring method and measuring device
JP5523532B2 (en) * 2012-10-11 2014-06-18 飛島建設株式会社 Three-dimensional displacement measuring method and three-dimensional displacement measuring device
KR101408349B1 (en) * 2012-10-19 2014-06-17 대우조선해양 주식회사 Ship resetting method and coordinate measuring system for resetting ship
JP2014092387A (en) * 2012-11-01 2014-05-19 Yorigami Maritime Construction Co Ltd Automatic level surveying device having remote monitoring function, dredging method, pile driving method and block installation method
JP5631512B2 (en) * 2014-01-14 2014-11-26 株式会社ソーキ Tunnel cross section measurement method using 3D laser scanner
JP6441154B2 (en) * 2015-04-08 2018-12-19 大成建設株式会社 Measuring method using total station and control device for total station
CN106247940B (en) * 2016-09-08 2018-06-08 大连理工大学 It is a kind of to measure the measuring method for carving molded line three-dimensional position

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307976A (en) * 2013-04-16 2013-09-18 杭州先临三维科技股份有限公司 Monitoring method for grain stock in barn
CN103307976B (en) * 2013-04-16 2015-09-16 杭州先临三维科技股份有限公司 The monitoring method of grain stock in barn
CN104359415A (en) * 2014-10-31 2015-02-18 广东工业大学 Measuring method and system of angular deformation for line heating and cooling
CN104359415B (en) * 2014-10-31 2017-05-24 广东工业大学 Measuring method and system of angular deformation for line heating and cooling

Also Published As

Publication number Publication date
JPH08136218A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
US9400170B2 (en) Automatic measurement of dimensional data within an acceptance region by a laser tracker
CN105190236B (en) Method and apparatus for the projection of BIM information
US20180361595A1 (en) Method for Controlling Location of End Effector of Robot Using Location Alignment Feedback
US9146094B2 (en) Automatic measurement of dimensional data with a laser tracker
JP2018515774A (en) A three-dimensional measuring device removably connected to a robot arm on an electric mobile platform
JP2016001181A (en) System and method for runtime determination of camera mis-calibration
EP2707745B1 (en) Calibration method for a device with scan functionality
JP5362189B2 (en) Image processing apparatus and processing method thereof
FI74556C (en) Foerfarande foer tredimensionell oevervakning av ett maolutrymme.
US9207078B2 (en) Device for measuring and marking space points along horizontally running contour lines
EP1215017B1 (en) Robot teaching apparatus
CA2685085C (en) Position determination method for a geodetic surveying device
Georgiev et al. Localization methods for a mobile robot in urban environments
US5237384A (en) Laser positioner and marking method using the same
US7272254B2 (en) System and method for analyzing and identifying flaws in a manufactured part
US9251624B2 (en) Point cloud position data processing device, point cloud position data processing system, point cloud position data processing method, and point cloud position data processing program
DE102011077080B4 (en) System for two-dimensional floor plan and point transfer
US7774083B2 (en) Methods and systems for position sensing
US9222771B2 (en) Acquisition of information for a construction site
CA2804553C (en) A method for calibration of a robot positioned on a movable platform
JP4191080B2 (en) Measuring device
US8812257B2 (en) Method for determining a virtual tool center point
US4907169A (en) Adaptive tracking vision and guidance system
US20140267703A1 (en) Method and Apparatus of Mapping Landmark Position and Orientation
US7372558B2 (en) Method and system for visualizing surface errors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010626

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term