JP3210788U - Fluid collecting speed increasing cylinder and power generator using the same - Google Patents

Fluid collecting speed increasing cylinder and power generator using the same Download PDF

Info

Publication number
JP3210788U
JP3210788U JP2017001454U JP2017001454U JP3210788U JP 3210788 U JP3210788 U JP 3210788U JP 2017001454 U JP2017001454 U JP 2017001454U JP 2017001454 U JP2017001454 U JP 2017001454U JP 3210788 U JP3210788 U JP 3210788U
Authority
JP
Japan
Prior art keywords
fluid
cylinder
peripheral surface
flow
cylindrical core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017001454U
Other languages
Japanese (ja)
Inventor
辰男 北見
辰男 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017001454U priority Critical patent/JP3210788U/en
Application granted granted Critical
Publication of JP3210788U publication Critical patent/JP3210788U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】定位置に係留したままで、潮流等の正逆の流れに関係なく、流体の取入れを安定的に行い、かつ、取り入れた流体の流速を早め、これにより発電能力を高めるための流体の集流増速筒を提供する。【解決手段】流体の流れに沿って流体中に設置されるもので、円筒状に成型された外筒1の両端部周縁から中央部に向けて内方傾斜させながら、傾斜内周面を窄めて錐状内斜面2を形成し、この錐状内斜面2の内端同士を内円筒3で繋げる。そして、この内円筒3の中央部に筒芯5を固定し、この筒芯5の外周面と内円筒3の内周面との間を縮小円環流路6として構成し、筒芯5の両端面に、外方を頂点とし、流体を前記縮小円環流路に集流させる集流錐7を設けた。【選択図】図1[PROBLEMS] A fluid for stably taking in fluid regardless of forward and reverse flow such as tidal current while moored at a fixed position, and increasing the flow velocity of the taken fluid, thereby enhancing power generation capacity. Provides a current collecting cylinder. SOLUTION: This is installed in a fluid along the flow of fluid, and the inclined inner peripheral surface is constricted while inclining inward from the peripheral edge of both ends of the cylindrical outer cylinder 1 toward the central part. Then, the conical inner slope 2 is formed, and the inner ends of the conical inner slope 2 are connected by the inner cylinder 3. A cylindrical core 5 is fixed to the central portion of the inner cylinder 3, and a space between the outer peripheral surface of the cylindrical core 5 and the inner peripheral surface of the inner cylinder 3 is configured as a reduced annular flow path 6. On the surface, there was provided a current collecting cone 7 having the outside as a vertex and collecting the fluid in the reduced annular flow path. [Selection] Figure 1

Description

本考案は、潮流、水流又は気流等、流体の流れの中に、流体の流れに沿って設置され、集流効果により筒内で流体の流れを増速させるものであり、また、増速された流体のエネルギーを発電等に利用する技術に関すものである。  The present invention is installed along a fluid flow in a fluid flow such as a tidal current, a water flow or an air flow, and accelerates the fluid flow in a cylinder by a current collecting effect. This is related to technology that uses the energy of the fluid for power generation.

流体を利用した発電装置については種々のものが公開されているが、例えば特開2013−256931に開示された「浮体型潮流発電装置」では、密封型の円筒体の外周に潮流圧力が当たり円筒体自体を回転させる複数のブレードを取り付け、円筒体内には円筒体の回転により発電する発電機を設け、発電機自体は無回転軸で回転しないように保持されたものが提案されている。  Various types of power generation devices using fluids have been disclosed. For example, in the “floating type tidal power generation device” disclosed in Japanese Patent Application Laid-Open No. 2013-256931, a tidal pressure is applied to the outer periphery of a sealed cylindrical body. It has been proposed that a plurality of blades for rotating the body itself are attached, a generator for generating electric power by rotation of the cylindrical body is provided in the cylinder, and the generator itself is held so as not to rotate on a non-rotating shaft.

そして使用時には、円筒体の後部を沈めて無回転軸側を海面に出した状態で係留ロープにより保持し、出した側の円筒体の方を潮流の流れに対抗させ、発電するものである。  In use, the rear portion of the cylindrical body is sunk and held by a mooring rope with the non-rotating shaft side exposed to the sea surface, and the cylindrical body on the extended side opposes the flow of the tidal current to generate electricity.

しかし、上記従来の潮流発電装置では、設置状態が固定的であるため、潮流の流れが変わったり、逆方向の潮流が起きた場合、あるいは台風等で大波が発生した場合には発電能力が極端に落ちたり無くなったりすることもあり、潮流発電装置としては非常に不安定なものとなっていた。  However, in the conventional tidal current power generation device, since the installation state is fixed, the power generation capacity is extreme when the tidal current changes, the reverse tidal current occurs, or when a large wave occurs due to a typhoon or the like. As a tidal power generator, it was very unstable.

また、有効な発電能力を得ようとすると、当該発電装置の方向を潮流と対向させるため係留用ロープの移動設置をも余儀なくされるという問題もあった。  Further, in order to obtain an effective power generation capacity, there has been a problem that the mooring rope must be moved and installed in order to make the direction of the power generation device face the tidal current.

特開2013−256931JP2013-256931A

本考案は、定位置に係留したままで、潮流等の正逆の流れに関係なく、流体の取入れを安定的に行い、かつ、取り入れた流体の流速を早め、これにより発電能力を高めることを課題とする。  The present invention keeps the moored at a fixed position, stably takes in the fluid regardless of forward and backward flow such as tidal current, and increases the flow speed of the taken fluid, thereby increasing the power generation capacity. Let it be an issue.

上記課題を達成するための本考案は、以下に記した特徴を有する。The present invention for achieving the above object has the features described below.

本第一の考案は、流体の流れに沿って流体中に設置されるもので、円筒状に成型された外筒の両端部周縁から中央部に向けて内方傾斜させながら、傾斜内周面を窄めて錐状内斜面を形成し、この錐状内斜面の内端同士を内円筒で繋げ、この内円筒の中央部に筒芯を固定し、この筒芯の外周面と前期内円筒の内周面との間を縮小円環流路として構成し、前記筒芯の両端面には、外方を頂点とし、流体を前記縮小円環流路に集流させる集流錐を設けてなる流体の集流増速筒である。  The first device is installed in the fluid along the flow of the fluid, and the inclined inner peripheral surface is inclined inwardly from the peripheral edge of both ends of the cylindrical outer cylinder toward the central portion. The conical inner slope is formed by constricting, the inner ends of the conical inner slope are connected by an inner cylinder, a cylindrical core is fixed to the central portion of the inner cylinder, and the outer peripheral surface of the cylindrical core and the previous inner cylinder A fluid which is formed as a reduced annular flow path between the inner peripheral surface of each of the cylinder cores, and is provided with current collecting cones at both ends of the cylindrical core, with the outer side being the apex and collecting the fluid in the reduced annular flow path This is a current collecting cylinder.

また、本第二の考案は、流体の流れに沿って流体中に設置されるもので、円筒状に成型された外筒の両端部周縁から中央部に向けて内方傾斜させながら、傾斜内周面を窄めて錐状内斜面を形成し、この錐状内斜面の内端同士を内円筒で繋げ、この内円筒の中央部に筒芯を固定し、この筒芯の外周面と前期内円筒の内周面との間を縮小円環流路として構成し、前記筒芯の両端面には、外方を頂点とし、流体を前記縮小円環流路に集流させる集流錐を設けてなり、前記筒芯外周には、流れの向きが逆転しても自体は逆回転することのない双方向流対応タービンを取り付け、前記筒芯内には、このタービンの回転を受けて作動する発電機を設けた流体の発電装置である。  In addition, the second device is installed in the fluid along the flow of the fluid, and while inclining inwardly from the peripheral edge of both ends of the cylindrical outer cylinder toward the center, A conical inner slope is formed by constricting the peripheral surface, the inner ends of the conical inner slope are connected by an inner cylinder, and a cylindrical core is fixed to the center of the inner cylinder. A space between the inner peripheral surface of the inner cylinder is formed as a reduced annular flow path, and both ends of the cylindrical core are provided with current collecting cones that collect the fluid in the reduced annular flow path with the outside as a vertex. A bidirectional flow-compatible turbine that does not rotate in the reverse direction even if the flow direction is reversed is attached to the outer periphery of the cylinder core, and the turbine core is operated by receiving the rotation of the turbine. This is a fluid power generation device provided with a machine.

本考案の集流増速筒によれば、流体の流速如何にかかわらず、流体が錐状内斜面と集流錐で構成される集流部で絞られることにより、流路断面積は絞りに応じて縮小し、速度は断面積の縮小に応じて増速され、流速は縮小円環流路との接続点で最大速度に達する。縮小円環流路の中では断面積が一定のため増速はなく、流速は最大速度を維持することになる。また、本考案筒は対称構造となっているので、流体が正逆反対に流れても十分に対応することができる。
さらに、これを発電装置に利用すれば、縮小円環流路で維持される最大増速流がタービンを高速回転させることで、集流増速しない場合に比べ発電能力が増大する。
According to the current collecting speed increasing cylinder of the present invention, regardless of the flow velocity of the fluid, the fluid is throttled at the current collecting portion constituted by the conical inner slope and the current collecting cone, so that the channel cross-sectional area is reduced. The speed is reduced according to the reduction of the cross-sectional area, and the flow velocity reaches the maximum speed at the connection point with the reduced annular flow path. In the reduced annular channel, the cross-sectional area is constant, so there is no speed increase, and the flow velocity is maintained at the maximum speed. Moreover, since the cylinder of the present invention has a symmetric structure, it can sufficiently cope with fluid flowing in the opposite direction.
Furthermore, if this is used for the power generation device, the maximum speed increasing flow maintained in the reduced annular flow path rotates the turbine at a high speed, so that the power generation capacity is increased as compared with the case where the current collecting speed is not increased.

本考案による集流増速筒の概略断面図である。It is a schematic sectional drawing of the current collecting speed increasing cylinder by this invention. 本考案による集流増速筒の第二の例を示す概略断面図である。It is a schematic sectional drawing which shows the 2nd example of the current collecting speed-up cylinder by this invention. 本考案による集流増速筒の第三の例概略断面図である。It is a 3rd example schematic sectional drawing of the current collection speed-increasing cylinder by this invention. 本考案による集流増速筒を用いた発電装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the electric power generating apparatus using the current collecting speed increasing cylinder by this invention. 図4のX−X線の概略断面図である。It is a schematic sectional drawing of the XX line of FIG. 本考案発電装置における集流増速の有無による発電能力の比較グラフである。It is a comparison graph of the power generation capability by the presence or absence of current collection speed increase in this invention power generation device.

図1は本考案による集流増速筒の代表例を示す概略断面図で、図4はこの集流増速筒を利用した発電装置の代表例を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing a representative example of a current collecting speed increasing cylinder according to the present invention, and FIG. 4 is a schematic cross sectional view showing a typical example of a power generator using the current collecting speed increasing cylinder.

以下に、本集流増速筒の構造を示す。外筒1は円筒状に成型されたもので、外筒1の内径は両端部を最大とする。この外筒1の両端部周縁からは、中央部に向けて内方傾斜させたうえで、傾斜内周面が直線的なすり鉢状、または曲線的な漏斗状となるように窄めて錐状内斜面2が形成され、この錐状内斜面2の内端同士は内円筒3で繋げられた構造となっている。そして、その内円筒3の中央部には、筒芯支持構造4を介して中空円柱状の筒芯5が固定されており、筒芯5の外周面と内円筒3の内周面との間が縮小円環流路6として構成されている。なお、便宜上、外筒1の最大内径部から筒芯5の両端面までの流路域を流体の集流部(拡流部)とする。  The structure of the current collecting speed increasing cylinder is shown below. The outer cylinder 1 is formed in a cylindrical shape, and the inner diameter of the outer cylinder 1 is maximized at both ends. From the peripheral edges of both ends of the outer cylinder 1, after inclining inward toward the center, the inclined inner peripheral surface is constricted so as to have a linear mortar shape or a curved funnel shape. An inner slope 2 is formed, and the inner ends of the conical inner slope 2 are connected by an inner cylinder 3. A hollow columnar cylindrical core 5 is fixed to a central portion of the inner cylinder 3 via a cylindrical core support structure 4. Between the outer peripheral surface of the cylindrical core 5 and the inner peripheral surface of the inner cylinder 3. Is configured as a reduced annular channel 6. For the sake of convenience, the flow path area from the maximum inner diameter portion of the outer cylinder 1 to both end faces of the cylinder core 5 is defined as a fluid collecting portion (flow expanding portion).

外筒1の外表面と内表面との間は中空になっており、気密・水密構造で潮流発電の場合は、この空間に浮力調整用に水等を貯えることができる。そのため外筒1には、この空間に水又は空気の注入、排出可能な配管設備(図示省略。)が取り付けられる。外筒1の外形は、本実施例では、外径が両端部間一定な「直管型」で示したが、これに限られるものではなく、例えば、外筒外径が円筒中間部で直線的に膨出する「そろばん玉型」(図2参照。)や、外筒外径が中間部に向かい連続的かつ緩やかな曲線をもって膨出し、その外径が円筒中間部で最大となる「和太鼓型」(図3参照)であってもよい。  The space between the outer surface and the inner surface of the outer cylinder 1 is hollow, and in the case of tidal power generation with an airtight / watertight structure, water or the like can be stored in this space for buoyancy adjustment. Therefore, piping equipment (not shown) capable of injecting and discharging water or air is attached to the outer cylinder 1 in this space. In the present embodiment, the outer cylinder 1 is shown as a “straight tube type” in which the outer diameter is constant between both ends. However, the outer cylinder 1 is not limited to this. The abacus ball shape (see Fig. 2) that bulges out automatically, and the outer diameter of the outer cylinder bulges toward the middle with a continuous and gentle curve, and the outer diameter is the largest at the middle of the cylinder. It may be a “drum type” (see FIG. 3).

筒芯5の両端面には、外方を頂点とし、流体を縮小円環流路6に集流させる集流錐7が設けられている。この集流錐7は、本実施例では円錐型で示されているが、砲弾型形状であってもよい。また、この集流錐7は、本実施例では中空で示されているが、本考案を潮流発電に利用する場合は、外径を保ちかつ浮力を得るために発砲プラスチック等を充填することも可能である。  At both end faces of the cylindrical core 5, current collecting cones 7 are provided, with the outer side as apexes, for collecting the fluid in the reduced annular flow path 6. The current collecting cone 7 is shown as a conical shape in the present embodiment, but may be a bullet-shaped shape. Further, the current collecting cone 7 is shown as being hollow in the present embodiment, but when the present invention is used for tidal current power generation, it may be filled with foaming plastic or the like in order to maintain the outer diameter and obtain buoyancy. Is possible.

上記構造の本集流増速筒は、流体の流れに沿って流体中に係留ロープ(図示せず)等の固定手段によって固定される。ここでいう、流体は、潮流、水流(水力)又は風流(風力)が好ましい。そして、本集流増速筒は、時間差での流体の流入方向の変化(図では、左右方向)、例えば潮流では上げ潮と下げ潮による潮流の変化に対応することができる。そのため、図の左右は対称構造となっており、一方が流体入口(流体出口)であれば他方は流体出口(流体入口)の関係にある。  The current collecting speed increasing cylinder having the above structure is fixed in the fluid by a fixing means such as a mooring rope (not shown) along the fluid flow. Here, the fluid is preferably a tidal current, a water current (hydropower) or a wind current (wind force). The current collecting speed increasing cylinder can cope with a change in the inflow direction of the fluid with a time difference (in the horizontal direction in the figure), for example, a change in the tidal current due to the rising tide and the lower tide in the tidal current. Therefore, the left and right sides of the figure have a symmetrical structure, and if one is a fluid inlet (fluid outlet), the other is in a fluid outlet (fluid inlet) relationship.

本集流増速筒は、外筒1における流体入口の断面積は広く、縮小円環流路6の断面積は狭くなっている。このような構造の連続した流管においては、大なる断面積の部分に比べ、流路断面積が小となる縮小円環流路5における流速は、断面積に反比例して大となる。また、流体の運動エネルギーは流速の3乗に比例するため、縮小円環流路6では流速が早くなり、この縮小円環流路6で最も大きなエネルギーを得ることができる。  In the current collecting speed increasing cylinder, the cross-sectional area of the fluid inlet in the outer cylinder 1 is wide, and the cross-sectional area of the reduced annular flow path 6 is narrow. In a continuous flow tube having such a structure, the flow velocity in the reduced annular flow path 5 where the flow path cross-sectional area is small is larger in inverse proportion to the cross-sectional area than in the large cross-sectional area portion. Further, since the kinetic energy of the fluid is proportional to the cube of the flow velocity, the flow velocity becomes faster in the reduced annular flow path 6, and the largest energy can be obtained in the reduced annular flow path 6.

本集流増速筒の作用及び効果を見る上で、先ず集流筒各部の断面積を求める。流出入内径をD(m)、縮小円環流路をD(m)、筒芯外径をD3、流管内流量をQとした場合、In examining the operation and effect of the current collecting speed increasing cylinder, first, the cross-sectional area of each part of the current collecting cylinder is obtained. When the inside / outside diameter is D 1 (m), the reduced annular flow path is D 2 (m), the outer diameter of the cylinder core is D 3 and the flow rate in the flow tube is Q,

Figure 0003210788
Figure 0003210788
Figure 0003210788
Figure 0003210788

次に、上記のエネルギー集流筒各部の断面積に基づき、本集流増速筒のエネルギー増大効果を求める。
数式に必要な数値条件は以下の通り。
流出入口内径円断面積(m):A
縮小円環流路断面積(m):A
流入口運動エネルギー(watt):E
縮小円環流路流体運動エネルギー(watt):E
流管内流量(m/s):Q
流量倍率:R
流入速度(m/s):V
縮小円環流路の流速(m/s):V
流体密度(Kg/m):ρ
なお、流量倍率Rは、流出入口内径円断面積:Aを縮小円環流路断面積Aで除した値となる。これらを基に運動エネルギーを求める。
Next, the energy increasing effect of the current collecting speed increasing cylinder is obtained based on the cross-sectional area of each part of the energy collecting cylinder.
The numerical conditions necessary for the formula are as follows.
Outlet inlet inner diameter circular sectional area (m 2 ): A 1
Reduced annular flow path cross-sectional area (m 2): A t
Inlet kinetic energy (watt): E 1
Reduced annular flow circuit fluid kinetic energy (watt): E t
Flow rate in flow tube (m 3 / s): Q
Flow rate magnification: R
Inflow velocity (m / s): V 1
Reduced annular flow velocity (m / s): V t
Fluid density (Kg / m 3 ): ρ
The flow rate ratio R is outflow inlet inner diameter Endan area: a value obtained by dividing the A 1 the reduced annular flow path cross-sectional area A t. Based on these, kinetic energy is obtained.

Figure 0003210788
Figure 0003210788

(5)式は、流体が流れる管の断面積を縮小した場合、縮小部(縮小円環流路5)における流体の運動エネルギー(E)は、流入口の流体運動エネルギー(E)に対して集流倍率Rの二乗倍であることを示す。
例えば、下記の計算のごとく集流倍率Rが2.0の場合、流体の運動エネルギー(E)は、流入口の流体運動エネルギー(E)の2×2=4倍に増大する。
すなわち、E=2×2×E=4Eとなる。
このように、潮流が集流部に入ると錐状内斜面2と集流錐7によって水流が徐々に絞られ、集流・増速し、縮小円環流路6の入口で最大速度に達する。縮小円環流路6内は、内径が入口から出口まで一定のため、流速はこの最大流速で一定である。この最大流速における流体の運動エネルギーが式(5)で表される。縮小円環流路6の出口より下流は拡流部となり、徐々に断面積が増え、流速は減少し、拡流部出口より自然流中に放流される。
When the cross-sectional area of the pipe through which the fluid flows is reduced, the kinetic energy (E t ) of the fluid in the reduced portion (reduced annular channel 5) is equal to the fluid kinetic energy (E 1 ) of the inlet. It is shown that the current is the square of the current collecting ratio R.
For example, as shown in the following calculation, when the current collection ratio R is 2.0, the kinetic energy (E t ) of the fluid increases 2 × 2 = 4 times the fluid kinetic energy (E 1 ) of the inlet.
That is, E t = 2 × 2 × E 1 = 4E 1 .
As described above, when the tidal current enters the current collecting portion, the water flow is gradually narrowed by the conical inner slope 2 and the current collecting cone 7, and the current is concentrated and increased, and reaches the maximum speed at the entrance of the reduced annular flow path 6. Since the inner diameter of the reduced annular channel 6 is constant from the inlet to the outlet, the flow rate is constant at this maximum flow rate. The kinetic energy of the fluid at this maximum flow velocity is expressed by equation (5). The downstream of the outlet of the reduced annular channel 6 becomes a flow expanding portion, the cross-sectional area gradually increases, the flow velocity decreases, and the natural flow is discharged from the outlet of the expanding portion.

次に、本集流増速筒を用いた発電装置につき、図4及び図5に基づいて説明する。集流増速筒自体の構造は実施例1の説明に準じる。筒芯5内には発電機8が設置されており、この発電機を作動させるため、縮小円環流路6中で筒芯5の外周中央にはタービン9が配設されている。このタービン8は、流体の流れの向きが逆転してもタービン自体は逆回転しない性質の、すなわち双方向流に対応するものが使われる。  Next, a power generator using the current collecting speed increasing cylinder will be described with reference to FIGS. The structure of the current collecting speed increasing cylinder itself conforms to the description of the first embodiment. A generator 8 is installed in the cylindrical core 5, and a turbine 9 is disposed in the center of the outer periphery of the cylindrical core 5 in the reduced annular flow path 6 in order to operate the generator. The turbine 8 has a property that the turbine itself does not reversely rotate even if the direction of the flow of the fluid is reversed, that is, the turbine 8 corresponds to the bidirectional flow.

本発電装置を係留ロープ(図示せず。)を用い、海中で、潮流の流れに沿って固定する。
上記発電装置の発電能力を算出するにあたり、計算式中に下記の項目を設定する。
流体密度(Kg/m):ρ(海水の密度=1,025Kg/m
縮小円環流路流体運動エネルギー(watt):E
集流発電機発電能力(Watt):P
総合エネルギー効率(係数):Cp(発電能力を縮小円環流路流体運動エネルギー で除した値)
集流倍率:R(=A/A
縮小円環流路断面積(m):A
The power generator is fixed along the tidal current in the sea using a mooring rope (not shown).
In calculating the power generation capacity of the power generation device, the following items are set in the calculation formula.
Fluid density (Kg / m 3 ): ρ (Seawater density = 1,025 Kg / m 3 )
Reduced annular flow circuit fluid kinetic energy (watt): E t
Current generator power generation capacity (Watt): P
Total energy efficiency (coefficient): Cp (power generation capacity divided by reduced annular channel fluid kinetic energy)
Concentration magnification: R (= A 1 / A t )
Reduced annular flow path cross-sectional area (m 2): A t

発電能力は、縮小円環流路5を流れる流体の運動エネルギーEに総合エネルギー効率Cpを乗じて得られる。
また、総合エネルギー効率Cpは、流路の抵抗損失、断面縮小による抵抗損失、発電機の機械的エネルギー損失等のエネルギー損失を全て考慮した発電効率とする。
Generating capacity is obtained by multiplying the overall energy efficiency Cp into kinetic energy E t of the fluid flowing through the reduced annular flow path 5.
The total energy efficiency Cp is a power generation efficiency that takes into account all energy losses such as resistance loss of the flow path, resistance loss due to cross-sectional reduction, and mechanical energy loss of the generator.

集流発電能力を計算するにつき、想定計算条件を表1に示す。

Figure 0003210788
Table 1 shows the assumed calculation conditions for calculating the current collection capacity.
Figure 0003210788

Figure 0003210788
Figure 0003210788

(9)式は、総合エネルギー効率(C)、流体の密度(ρ)、流入口での流速(V)、流出入口内径(D1)及び集流倍率(R)より集流発電能力(P)を求める計算式である。(9)式を用い、前記表1の想定計算条件における潮流発電の計算結果の比較を表2及び図6のグラフに示す。この比較では、流入口における流速、流入速度4ケース(a,b,c,d)につき、それぞれ、集流倍率R=1及びR=2の場合について発電能力を計算している。図表で表示されるR=1は、流入口断面積と縮小円環流路断面積が等しくて集流していないことを、また、R=2は、流入口断面積が縮小円環流路断面積の2倍であることをそれぞれ示す。
すなわち、これらの図表は、集流しない場合の発電能力と、縮小円環流路断面積の2倍の断面積から集流した場合の発電能力の違いを示している。
The formula (9) is the collective power generation capacity from the total energy efficiency (C p ), the density of the fluid (ρ), the flow velocity at the inlet (V 1 ), the inner diameter of the outlet (D 1), and the current collection factor (R). This is a calculation formula for obtaining (P). A comparison of tidal power generation calculation results under the assumed calculation conditions in Table 1 is shown in Table 2 and the graph in FIG. In this comparison, the power generation capacity is calculated for the case of the current collection magnifications R = 1 and R = 2 for the flow velocity at the inflow port and the four inflow velocity cases (a, b, c, d), respectively. R = 1 displayed in the chart indicates that the inlet cross-sectional area is equal to the reduced annular channel cross-sectional area and does not collect current, and R = 2 indicates that the inlet sectional area is the reduced annular channel cross-sectional area. Each is doubled.
That is, these charts show the difference between the power generation capacity when not collecting current and the power generation capacity when collecting current from a cross-sectional area that is twice the cross-sectional area of the reduced annular channel.

Figure 0003210788
Figure 0003210788

本考案では、流体のうち潮流の集流増速及び潮流発電につき説明したが、これを風向に沿って、例えばビル風の発生するビルとビルの谷間、あるいは風向の安定的な場所に設置すれば風力発電にも応用でき、さらには小規模な水力発電にも適用することができる。
また、本考案による集流増速筒を海中にいかだのように多数設置することで、これを固定する多数の係留ロープが海藻の藻場になり、そこに小魚が棲みつくことで大型魚も集まるといった新たな漁場の開拓にも寄与することができる。
In the present invention, the explanation has been made on the tidal current collection speed increase and tidal current power generation among the fluids, but these are installed along the wind direction, for example, in a building where a building wind is generated and between the valleys of the building or in a stable wind direction. It can be applied to wind power generation, and can also be applied to small-scale hydropower generation.
In addition, by installing a large number of current-collecting speed-increasing tubes according to the present invention like a raft, a large number of mooring ropes that fix them become seaweed algae beds, and small fish cling to them, and large fish It can also contribute to the development of new fishing grounds.

1 外筒
2 錐状内斜面
3 内円筒
4 筒芯支持構造
5 筒芯
6 縮小円環流路
7 集流錐
8 発電機
9 タービン
DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Conical inner slope 3 Inner cylinder 4 Cylinder core support structure 5 Cylinder core 6 Reduction | restoration annular flow path 7 Current collecting cone 8 Generator 9 Turbine

Claims (2)

流体の流れに沿って流体中に設置されるもので、円筒状に成型された外筒の両端部周縁から中央部に向けて内方傾斜させながら、傾斜内周面を窄めて錐状内斜面を形成し、この錐状内斜面の内端同士を内円筒で繋げ、この内円筒の中央部に筒芯を固定し、この筒芯の外周面と前期内円筒の内周面との間を縮小円環流路として構成し、前記筒芯の両端面には、外方を頂点とし、流体を前記縮小円環流路に集流させる集流錐を設けてなる流体の集流増速筒。  It is installed in the fluid along the flow of the fluid, and the inclined inner peripheral surface is narrowed while concentrating the inner peripheral surface from the peripheral edge of both ends of the cylindrical outer cylinder toward the central part. A slope is formed, the inner ends of this conical inner slope are connected by an inner cylinder, a cylindrical core is fixed to the center of the inner cylinder, and the space between the outer peripheral surface of this cylindrical core and the inner peripheral surface of the previous inner cylinder Is formed as a reduced annular flow channel, and a fluid collecting speed-increasing cylinder is provided on both end faces of the cylindrical core, with a concentrating cone for collecting fluid in the reduced annular flow channel with the outside as a vertex. 流体の流れに沿って流体中に設置されるもので、円筒状に成型された外筒の両端部周縁から中央部に向けて内方傾斜させながら、傾斜内周面を窄めて錐状内斜面を形成し、この錐状内斜面の内端同士を内円筒で繋げ、この内円筒の中央部に筒芯を固定し、この筒芯の外周面と前期内円筒の内周面との間を縮小円環流路として構成し、前記筒芯の両端面には、外方を頂点とし、流体を前記縮小円環流路に集流させる集流錐を設けてなり、前記筒芯外周には、流れの向きが逆転しても同一方向に回転する性質の双方向流対応タービンを取り付け、前記筒芯内にはこのタービンの回転を受けて作動する発電機を設けた流体の発電装置。  It is installed in the fluid along the flow of the fluid, and the inclined inner peripheral surface is narrowed while concentrating the inner peripheral surface from the peripheral edge of both ends of the cylindrical outer cylinder toward the central part. A slope is formed, the inner ends of this conical inner slope are connected by an inner cylinder, a cylindrical core is fixed to the center of the inner cylinder, and the space between the outer peripheral surface of this cylindrical core and the inner peripheral surface of the previous inner cylinder Is formed as a reduced annular channel, and both ends of the cylindrical core are provided with current collecting cones that collect the fluid in the reduced annular channel, with the outer side being the apex. A fluid power generation apparatus in which a bidirectional flow-compatible turbine that rotates in the same direction even when the flow direction is reversed is mounted, and a generator that operates in response to the rotation of the turbine is provided in the cylindrical core.
JP2017001454U 2017-03-14 2017-03-14 Fluid collecting speed increasing cylinder and power generator using the same Expired - Fee Related JP3210788U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001454U JP3210788U (en) 2017-03-14 2017-03-14 Fluid collecting speed increasing cylinder and power generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001454U JP3210788U (en) 2017-03-14 2017-03-14 Fluid collecting speed increasing cylinder and power generator using the same

Publications (1)

Publication Number Publication Date
JP3210788U true JP3210788U (en) 2017-06-08

Family

ID=59012268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001454U Expired - Fee Related JP3210788U (en) 2017-03-14 2017-03-14 Fluid collecting speed increasing cylinder and power generator using the same

Country Status (1)

Country Link
JP (1) JP3210788U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134680A (en) * 2020-02-25 2021-09-13 雅人 斉藤 Water induction type tidal power generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134680A (en) * 2020-02-25 2021-09-13 雅人 斉藤 Water induction type tidal power generation device

Similar Documents

Publication Publication Date Title
JP6038809B2 (en) Rotor device
CN104487702B (en) Apparatus for converting energy of fluid flow
JP6618920B2 (en) Hydrodynamic energy conversion system and use thereof
KR20160140860A (en) Turbine Assembly
GB2487403A (en) Conical helical rotor
JP3210788U (en) Fluid collecting speed increasing cylinder and power generator using the same
KR101692166B1 (en) Hydroelectric power generation system
JP2013130110A (en) Fluid machine and fluid plant
RU2347935C2 (en) In-channel river plant
JP2013245766A (en) Rectification mechanism and power generating device with the rectification mechanism
CN204299771U (en) Gravitative type spout hydraulic generator
JP6028244B2 (en) Water turbine device and hydroelectric power generation device
KR101723061B1 (en) Runner and tidal current generation apparatus
KR101784493B1 (en) Small hydroelectric power apparatus
JP4569502B2 (en) Power generation device using fluid energy
JP2012241702A (en) Underwater power generating device
KR20160123267A (en) The power generation turbine that blades are integrated with cylinder, and the power generation methods using the same
KR20100100564A (en) Hydroelectric power generation using floating body
RU2360141C1 (en) Motor for fluid energy utilisation
KR101738243B1 (en) Multiplex power generation system, multiplex power generation method, and multiplex power generation system installation method using underwater discharge of power plant
JP5152315B2 (en) Power generator
JP2011007172A (en) Waterwheel utilizing vortex
RU2380479C2 (en) River hydro-electric power plant
KR20170106630A (en) The power generation turbine that blades are integrated with cylinder, and the power generation methods using the same
CN104329203A (en) Attraction type spout hydraulic generator

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3210788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees