JP3210610B2 - Drift tube type linac - Google Patents

Drift tube type linac

Info

Publication number
JP3210610B2
JP3210610B2 JP27737697A JP27737697A JP3210610B2 JP 3210610 B2 JP3210610 B2 JP 3210610B2 JP 27737697 A JP27737697 A JP 27737697A JP 27737697 A JP27737697 A JP 27737697A JP 3210610 B2 JP3210610 B2 JP 3210610B2
Authority
JP
Japan
Prior art keywords
drift tube
drift
linac
tube type
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27737697A
Other languages
Japanese (ja)
Other versions
JPH11121199A (en
Inventor
憲司 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP27737697A priority Critical patent/JP3210610B2/en
Publication of JPH11121199A publication Critical patent/JPH11121199A/en
Application granted granted Critical
Publication of JP3210610B2 publication Critical patent/JP3210610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁石が組込まれた
複数のドリフトチューブが線状に配置され、隣接するド
リフトチューブ間に高周波電圧を発生させることによ
り、該ドリフトチューブ内を通過する荷電粒子を加速す
るようにされたドリフトチューブ型ライナックに係り、
特に、少ない高周波電力で効率良く荷電粒子を加速する
ことが可能なドリフトチューブ型ライナックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle passing through a drift tube by generating a high-frequency voltage between a plurality of drift tubes in which magnets are incorporated and generating a high-frequency voltage between the adjacent drift tubes. In connection with the drift tube type linac which was made to accelerate
In particular, it relates to a drift tube type linac that can efficiently accelerate charged particles with a small amount of high-frequency power.

【0002】[0002]

【従来の技術】物理実験装置や、サイクロトロン、シン
クロトロン等の円形加速器の入射器として、図4にアル
バレ型の例を示す如く、中心部にビーム通過口を有し、
ビーム加速電極として作用する磁石が組込まれた多数の
ドリフトチューブ20をビーム加速軸に沿って一直線状
に配置し、隣接するドリフトチューブ20間に高周波電
圧を発生させることにより、該ドリフトチューブ20内
を通過する荷電粒子を加速するようにされたドリフトチ
ューブ型ライナック(線型加速器)が知られている。
2. Description of the Related Art As an injector for a physical experiment device or a circular accelerator such as a cyclotron or a synchrotron, a beam passing port is provided at the center as shown in FIG.
A large number of drift tubes 20 incorporating magnets acting as beam acceleration electrodes are arranged in a straight line along the beam acceleration axis, and a high-frequency voltage is generated between the adjacent drift tubes 20 so that the inside of the drift tubes 20 is reduced. Drift tube type linacs (linear accelerators) adapted to accelerate passing charged particles are known.

【0003】図4において、10は、ライナック本体の
高周波空洞を構成する真空タンク、12は、入側ドリフ
トチューブ22が固定された入側壁、14は、出側ドリ
フトチューブ24が固定された出側壁、16は、各ドリ
フトチューブ20をそれぞれ支持するサポートである。
In FIG. 4, reference numeral 10 denotes a vacuum tank constituting a high-frequency cavity of the linac main body, 12 denotes an inlet side wall to which an inlet side drift tube 22 is fixed, and 14 denotes an outlet side wall to which an outlet side drift tube 24 is fixed. , 16 are supports for supporting the respective drift tubes 20.

【0004】このようなライナックにおいて、図5に示
す如く、ビーム加速軸上に周期的に並べられたドリフト
チューブ20に交流電圧を印加すると、荷電粒子はドリ
フトチューブ間のギャップgで加速又は減速される。こ
の際、粒子がギャップgに到達したときに、電場の高周
波位相が常に加速位相になるように、ドリフトチューブ
の長さを粒子速度に比例して長くしていけば、粒子は常
に加速されることになる。
In such a linac, as shown in FIG. 5, when an AC voltage is applied to the drift tubes 20 periodically arranged on the beam acceleration axis, charged particles are accelerated or decelerated at a gap g between the drift tubes. You. At this time, when the particle reaches the gap g, if the length of the drift tube is increased in proportion to the particle velocity, the particle is always accelerated so that the high-frequency phase of the electric field always becomes the acceleration phase. Will be.

【0005】図6及び図7に、アルバレ型ライナックに
おける加速状態を示す。即ち、図6に示す如く、ビーム
8がドリフトチューブ20間のギャップgに存在する場
合には、該ビーム8は、加速力と水平・垂直方向の発散
力を受ける。次いで、高周波の半周期後には、ビーム8
が各ドリフトチューブ20内に存在するため、ビーム8
は減速力を受けることがなく、水平(垂直)方向の収束
力と、垂直(水平)方向の発散力を受けるのみである。
FIGS. 6 and 7 show acceleration states in an Alvaret-type linac. That is, as shown in FIG. 6, when the beam 8 exists in the gap g between the drift tubes 20, the beam 8 receives an acceleration force and a diverging force in the horizontal and vertical directions. Then, after a half cycle of the high frequency, beam 8
Are present in each drift tube 20 so that beam 8
Does not receive a deceleration force, but only receives a horizontal (vertical) convergence force and a vertical (horizontal) divergence force.

【0006】前記ドリフトチューブ型ライナックは、ビ
ーム加速軸に沿ってドリフトチューブを配置した空洞共
振器(キャビティ)であるため、ドリフトチューブ20
間に高周波電圧を発生させるためには、例えば図8に示
す如く、キャビティの共振モードの固有振動数(共振周
波数)に等しい周波数の高周波電力を、外部の高周波電
源30から供給する。図8において、32は、高周波電
源30で発生した高周波電力をライナック10に伝送す
るための同軸管、34は、該同軸管32の内筒を外筒側
に短絡するカプラである。
Since the drift tube type linac is a cavity in which a drift tube is arranged along a beam acceleration axis, the drift tube 20
In order to generate a high-frequency voltage in between, for example, as shown in FIG. 8, high-frequency power having a frequency equal to the natural frequency (resonance frequency) of the cavity resonance mode is supplied from an external high-frequency power supply 30. 8, reference numeral 32 denotes a coaxial tube for transmitting high-frequency power generated by the high-frequency power source 30 to the linac 10, and reference numeral 34 denotes a coupler that short-circuits the inner tube of the coaxial tube 32 to the outer tube.

【0007】なお、ドリフトチューブ型ライナックに
は、高周波電圧を発生させるために利用する共振モード
(共振時に発生する高周波電磁場のパターン)の違いに
より、TM010モードを利用した前記アルバレ型の
他、TEMモード同軸共振器を変形したヴィデレー型
や、TE110モードを利用したインターデジタル−H
型等がある。
The drift tube type linac has a TEM mode in addition to the Alvare type using the TM010 mode due to the difference in the resonance mode (pattern of the high frequency electromagnetic field generated at the time of resonance) used for generating the high frequency voltage. Videley type with modified coaxial resonator and interdigital-H using TE110 mode
There are types.

【0008】[0008]

【発明が解決しようとする課題】いずれにしても、従来
のドリフトチューブ型ライナックに使用されるドリフト
チューブの形状は、図9及び図10に示すような単純な
厚肉の円筒状であり、内部に例えば四極磁石26が組込
まれているが、加速粒子のエネルギが高く、ドリフトチ
ューブ20の長さが長くなるに連れて、高周波電力の効
率が低下するという問題点を有していた。
In any case, the drift tube used in the conventional drift tube type linac has a simple thick cylindrical shape as shown in FIGS. For example, a quadrupole magnet 26 is incorporated, but there is a problem in that the energy of the accelerating particles is high and the efficiency of the high-frequency power decreases as the length of the drift tube 20 increases.

【0009】具体的には、従来はドリフトチューブ20
全体が厚肉であったため、図11に示す如く、ドリフト
チューブ20間に発生する全電場(実線Eと破線Fで表
示)に占めるビーム加速に寄与する電場(実線E)の比
率が少なく、ギャップ間の容量の大部分Aが、加速電場
の形成に寄与せず、ここに存在する高周波エネルギ(高
周波電場)が無駄になっていた。図において、Rはビー
ム通過口である。
More specifically, the conventional drift tube 20
Since the whole was thick, as shown in FIG. 11, the ratio of the electric field (solid line E) contributing to beam acceleration in the total electric field (indicated by solid line E and broken line F) generated between the drift tubes 20 was small, and the gap was small. Most of the capacitance A between them did not contribute to the formation of the accelerating electric field, and the high-frequency energy (high-frequency electric field) existing there was wasted. In the figure, R is a beam passage port.

【0010】なお、少しでも電極効率を上げるために、
ドリフトチューブ20の断面形状を、図12に示す如
く、等脚台形に近い形状にする工夫がなされる場合もあ
るが、効率の増加は十分ではなかった。
In order to increase the electrode efficiency even a little,
As shown in FIG. 12, the cross-sectional shape of the drift tube 20 may be devised so as to be close to a trapezoidal shape, but the efficiency has not been sufficiently increased.

【0011】本発明は、前記従来の問題点を解消するべ
くなされたもので、ドリフトチューブ型ライナックの電
力効率を向上させて、運転に必要な高周波電力を低減さ
せることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to improve the power efficiency of a drift tube type linac and reduce high frequency power required for operation.

【0012】[0012]

【課題を解決するための手段】本発明は、磁石が組込ま
れた複数のドリフトチューブが線状に配置され、隣接す
るドリフトチューブ間に高周波電圧を発生させることに
より、該ドリフトチューブ内を通過する荷電粒子を加速
するようにされたドリフトチューブ型ライナックにおい
て、前記ドリフトチューブの磁石を組込む部分のみを厚
肉とし、磁石の無い領域は薄肉とすることにより、前記
課題を解決したものである。
According to the present invention, a plurality of drift tubes each including a magnet are arranged in a line, and a high-frequency voltage is generated between adjacent drift tubes to pass through the drift tubes. In a drift tube type linac adapted to accelerate charged particles, the above problem is solved by making only the portion of the drift tube into which a magnet is incorporated thick, and thinning the region without a magnet.

【0013】又、前記ドリフトチューブ両端の形状を、
内側に突出したリング状としたものである。
[0013] The shape of both ends of the drift tube is
It has a ring shape protruding inward .

【0014】従来のドリフトチューブ型ライナックで、
ドリフトチューブが長くなるに連れて電力効率が低下す
る原因は、隣り合うドリフトチューブ間の、加速電場の
形成に寄与していない容量(図11のA)が、ドリフト
チューブ長が増加するに従って増大することにある。
In a conventional drift tube type linac,
The reason that the power efficiency decreases as the drift tube becomes longer is that the capacity between adjacent drift tubes that does not contribute to the formation of the accelerating electric field (A in FIG. 11) increases as the drift tube length increases. It is in.

【0015】そこで、本発明では、磁石を組込む必要の
ない部分は、薄肉として、図1に示す如く、加速電場E
の形成に寄与していない容量Aを減らしたものである。
図1と図11を比較すれば明らかなように、本発明によ
る図1の方が、ドリフトチューブ間に発生する全電場
(実線Eと破線Fで表示)に占める、ビーム加速に寄与
する電場(実線Eで表示)の比率が高い。従って、ドリ
フトチューブの磁石の無い領域の厚みをできるだけ薄く
すれば、無駄に使われる高周波エネルギが少なくなり、
電力効率を高めて、消費電力を少なくすることができ
る。
Therefore, in the present invention, the portion which does not need to incorporate a magnet is made thin, as shown in FIG.
Of the capacitor A, which does not contribute to the formation of.
As is apparent from a comparison between FIG. 1 and FIG. 11, FIG. 1 according to the present invention has an electric field (shown by a solid line E and a broken line F) contributing to beam acceleration, which accounts for the total electric field generated between the drift tubes. (Indicated by solid line E) is high. Therefore, if the thickness of the region of the drift tube without magnets is made as thin as possible, wasteful high-frequency energy is reduced,
Power efficiency can be increased and power consumption can be reduced.

【0016】[0016]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】本発明の第1実施形態は、前記ドリフトチ
ューブ20の断面形状を、図2に示す如く、従来例と同
様の四極磁石26を組込む部分のみ厚肉とし、磁石の無
い領域は、均一な厚みの薄肉としたものである。
In the first embodiment of the present invention, as shown in FIG. 2, the cross-sectional shape of the drift tube 20 is made thick only at the portion where the quadrupole magnet 26 similar to the conventional example is incorporated, and the region without the magnet is uniform. It has a thin thickness.

【0018】本実施形態によれば、加速電場の形成に寄
与していない容量が最小となり、ドリフトチューブ型ラ
イナックの電力効率を最大限に向上することができる。
According to this embodiment, the capacity not contributing to the formation of the accelerating electric field is minimized, and the power efficiency of the drift tube type linac can be maximized.

【0019】次に、図3を参照して、本発明の第2実施
形態を詳細に説明する。
Next, a second embodiment of the present invention will be described in detail with reference to FIG.

【0020】この第2実施形態では、ドリフトチューブ
20の磁石の無い領域を薄肉とするだけでなく、両端の
形状を、望ましい電場を形成するために、内側に突出し
たリング状としたものである。
In the second embodiment, not only the magnet-free region of the drift tube 20 is made thinner, but also the shape of both ends is formed into a ring shape protruding inward to form a desirable electric field. .

【0021】本実施形態によれば、ドリフトチューブ間
に、荷電粒子の加速により好ましい電場を生成すること
ができる。
According to this embodiment, a favorable electric field can be generated between the drift tubes by accelerating the charged particles.

【0022】なお、前記実施形態においては、ドリフト
チューブに四極磁石が組込まれていたが、ドリフトチュ
ーブに組込む磁石の種類はこれに限定されない。
In the above embodiment, a quadrupole magnet is incorporated in the drift tube, but the type of magnet incorporated in the drift tube is not limited to this.

【0023】本発明によるドリフトチューブ20を組込
んだドリフトチューブ型ライナックに高周波電力を投入
し、所定の共振モードを励振することによって、ドリフ
トチューブ20間に加速電場を効率良く発生させ、ビー
ム軸上を通過する荷電粒子を所定の速度に加速すること
ができる。
High-frequency power is applied to a drift tube type linac incorporating the drift tube 20 according to the present invention, and a predetermined resonance mode is excited to efficiently generate an accelerating electric field between the drift tubes 20 so that an on-beam axis is generated. The charged particles passing through are accelerated to a predetermined speed.

【0024】なお、前記説明では、構成が一番単純なア
ルバレ型ライナックを例にとって説明がされていたが、
本発明の適用対象はこれに限定されず、ヴィデレー型や
インターデジタル−H型にも、同様に適用できることは
明らかである。
In the above description, the Alvaret type linac having the simplest structure has been described as an example.
It is apparent that the application target of the present invention is not limited to this, and the present invention can be similarly applied to a Videley type and an interdigital-H type.

【0025】[0025]

【発明の効果】本発明によれば、加速電場の形成に寄与
しない容量を減らして、電力効率を向上することがで
き、従って、ライナックの運転に必要な高周波電力を低
減させることができる。
According to the present invention, the capacity that does not contribute to the formation of the accelerating electric field can be reduced, and the power efficiency can be improved. Therefore, the high-frequency power required for operating the linac can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明するための断面図FIG. 1 is a cross-sectional view for explaining the principle of the present invention.

【図2】本発明の第1実施形態を示す断面図FIG. 2 is a sectional view showing the first embodiment of the present invention.

【図3】本発明の第2実施形態を示す断面図FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】従来のアルバレ型のドリフトチューブ型ライナ
ックの構成を示す斜視図
FIG. 4 is a perspective view showing a configuration of a conventional Alvare type drift tube type linac.

【図5】ドリフトチューブ型ライナックの動作原理を説
明するための斜視図
FIG. 5 is a perspective view for explaining the operation principle of the drift tube type linac;

【図6】同じくビーム加速方向に電場がかかっている状
態を示す断面図
FIG. 6 is a sectional view showing a state where an electric field is applied in the beam acceleration direction.

【図7】同じくビーム減速方向に電場がかかっている状
態を示す断面図
FIG. 7 is a sectional view showing a state where an electric field is applied in the beam deceleration direction.

【図8】同じくドリフトチューブへの電圧印加方法を説
明するための断面図
FIG. 8 is a sectional view for explaining a method of applying a voltage to the drift tube.

【図9】従来のドリフトチューブの断面形状の一例を示
す縦断面図
FIG. 9 is a longitudinal sectional view showing an example of a sectional shape of a conventional drift tube.

【図10】同じく横断面図FIG. 10 is a transverse sectional view of the same.

【図11】従来例の問題点を説明するための断面図FIG. 11 is a sectional view for explaining a problem of the conventional example.

【図12】従来のドリフトチューブの他の例の構成を示
す断面図
FIG. 12 is a sectional view showing the configuration of another example of a conventional drift tube.

【符号の説明】[Explanation of symbols]

8…ビーム 10…真空タンク 20、22、24…ドリフトチューブ 26…四極磁石 30…高周波電源 8 Beam 10 Vacuum tank 20, 22, 24 Drift tube 26 Quadrupole magnet 30 High frequency power supply

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05H 7/22 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H05H 7/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁石が組込まれた複数のドリフトチューブ
が線状に配置され、隣接するドリフトチューブ間に高周
波電圧を発生させることにより、該ドリフトチューブ内
を通過する荷電粒子を加速するようにされたドリフトチ
ューブ型ライナックにおいて、 前記ドリフトチューブ
の磁石を組込む部分のみが厚肉とされ、磁石の無い領域
は薄肉とされていることを特徴とするドリフトチューブ
型ライナック。
A plurality of drift tubes each having a magnet incorporated therein are linearly arranged, and a high-frequency voltage is generated between adjacent drift tubes to accelerate charged particles passing through the drift tubes. In a drift tube type linac, a drift tube type linac is characterized in that only a portion of the drift tube where a magnet is incorporated is made thick, and a region without a magnet is made thin.
【請求項2】請求項1において、前記ドリフトチューブ
両端の形状が、内側に突出したリング状とされているこ
とを特徴とするドリフトチューブ型ライナック。
2. A drift tube type linac according to claim 1, wherein both ends of said drift tube are formed in a ring shape protruding inward .
JP27737697A 1997-10-09 1997-10-09 Drift tube type linac Expired - Fee Related JP3210610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27737697A JP3210610B2 (en) 1997-10-09 1997-10-09 Drift tube type linac

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27737697A JP3210610B2 (en) 1997-10-09 1997-10-09 Drift tube type linac

Publications (2)

Publication Number Publication Date
JPH11121199A JPH11121199A (en) 1999-04-30
JP3210610B2 true JP3210610B2 (en) 2001-09-17

Family

ID=17582672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27737697A Expired - Fee Related JP3210610B2 (en) 1997-10-09 1997-10-09 Drift tube type linac

Country Status (1)

Country Link
JP (1) JP3210610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305496A (en) * 2006-05-12 2007-11-22 Institute Of Physical & Chemical Research Supporting structure of drift tube in resonant cavity of radio frequency linear accelerator
JP4656055B2 (en) * 2006-12-28 2011-03-23 三菱電機株式会社 Linear ion accelerator and ion acceleration system
WO2012008255A1 (en) * 2010-07-12 2012-01-19 三菱電機株式会社 Drift tube linear accelerator

Also Published As

Publication number Publication date
JPH11121199A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US7294969B2 (en) Two-stage hall effect plasma accelerator including plasma source driven by high-frequency discharge
JPH08279400A (en) Microwave distribution device and plasma generator
JP3736343B2 (en) DC electron beam accelerator and DC electron beam acceleration method thereof
RU192845U1 (en) MULTI-APERTURE HIGH FREQUENCY SYSTEM FOR ACCELERATING CLUSTER IONS
US3887832A (en) Auto-resonant acceleration of ions
JP3210610B2 (en) Drift tube type linac
US3450931A (en) Cyclotron motion linear accelerator
US7015661B2 (en) Method and apparatus for accelerating charged particles
JPH07169425A (en) Ion source
JPH0443371B2 (en)
JP2001338800A (en) Neutron generator
JP3414977B2 (en) Gyrotron device
JP3098856B2 (en) Variable energy 4-vane high-frequency quadrupole cavity and variable energy split-coaxial high-frequency quadrupole cavity
CN114360842B (en) Light periodic magnetic field coil applied to high-power microwave source
RU1584731C (en) Cyclic booster of electrons
JPH05258898A (en) Multi-stage high-frequency quadruple accelerator
US3387171A (en) Device for modulating beams of charged particles utilizing a long interaction gap
JPH0379000A (en) Multiple connected high frequency accelerating cavity
JPH11354299A (en) Cyclotron accelerator
SU1102480A1 (en) Microtron
JP2705455B2 (en) Charged particle accelerator
JP3027822B2 (en) Method and apparatus for micro-bunching of charged particle beam
JPH05290997A (en) Beam accelerator
SU893117A1 (en) Electron accelerator
JPS59151737A (en) Ion source and ion generation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees