JP3209151B2 - Fiberized resin and structure molded with the fiberized resin - Google Patents

Fiberized resin and structure molded with the fiberized resin

Info

Publication number
JP3209151B2
JP3209151B2 JP22175597A JP22175597A JP3209151B2 JP 3209151 B2 JP3209151 B2 JP 3209151B2 JP 22175597 A JP22175597 A JP 22175597A JP 22175597 A JP22175597 A JP 22175597A JP 3209151 B2 JP3209151 B2 JP 3209151B2
Authority
JP
Japan
Prior art keywords
resin
fiber
liquid
aggregate
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22175597A
Other languages
Japanese (ja)
Other versions
JPH1160322A (en
Inventor
篤 毅 佐々木
Original Assignee
環境開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16771707&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3209151(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 環境開発株式会社 filed Critical 環境開発株式会社
Priority to JP22175597A priority Critical patent/JP3209151B2/en
Priority to EP98108311A priority patent/EP0898017A1/en
Priority to KR1019980016721A priority patent/KR19990023127A/en
Publication of JPH1160322A publication Critical patent/JPH1160322A/en
Application granted granted Critical
Publication of JP3209151B2 publication Critical patent/JP3209151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/182Aggregate or filler materials, except those according to E01C7/26
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/30Coherent pavings made in situ made of road-metal and binders of road-metal and other binders, e.g. synthetic material, i.e. resin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は接着剤、コーティン
グ材、成形材、バインダー(結合材)として使用され
る繊維化樹脂及びそれを使用した構造体に関する。
TECHNICAL FIELD The present invention relates to an adhesive, a coating,
The present invention relates to a fibrous resin used as a material, a molding material, a binder ( a binder), and the like , and a structure using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】一般
に、接着剤として接着面に塗ったり、コーティング材と
して平面に塗布したり、或はセメントやアスファルトの
ようなバインダー(結合剤)として骨材等の別の固形物
と混ぜ合わせて混合物を作って適宜形状の構造体を構築
する等のために、液体樹脂が使用されている。
BACKGROUND OF THE INVENTION Generally, an adhesive is applied to an adhesive surface, an adhesive is applied to a flat surface, or a binder such as cement or asphalt is used as an aggregate. Liquid resins are used for mixing with other solid substances to form a mixture to construct an appropriately shaped structure.

【0003】ところが、上記液体樹脂はその流動性のた
めにその使用条件が制約される。すなわち、液体樹脂を
厚く塗布したり盛り付ける場合、特に垂直状に置かれた
壁面に、刷毛やヘラ或はスプレーガン等を使って塗布す
る場合には、塗布した液体樹脂が固化するまでの間に自
重によって下方に移動する液だれ現象が生じ、塗布面が
均一に仕上がらないばかりか、固化が完全に実行できな
い等の問題がある。
However, the use conditions of the above liquid resin are restricted by its fluidity. In other words, when the liquid resin is applied or put on thickly, especially when applied to a vertical wall using a brush, a spatula, or a spray gun, the liquid resin is applied until it solidifies. There is a problem that a dripping phenomenon that moves downward due to its own weight occurs, and not only is the coated surface not uniformly finished, but also solidification cannot be completely performed.

【0004】そこで、塗布面に液体樹脂を液だれしない
程度の厚さで塗布し固化させ、その塗布面に同じ作業を
何回となく繰り返しながら目的の厚さにする必要があ
る。
Therefore, it is necessary to apply the liquid resin on the application surface in a thickness that does not allow the liquid resin to drip and solidify the resin, and to repeat the same operation on the application surface several times to obtain the desired thickness.

【0005】また、セメントやアスファルトのようなバ
インダー(結合剤)として使用する場合は、液体樹脂を
別の固形物と混ぜ合わせて混合物を作り、適宜形状の構
造物の材料として使用するが、この混合物を型枠等に入
れてブロックや構造体を作ったり、或は路面や土木建築
構造物等の構造体を作る場合も、被結合体に被覆させた
液体樹脂が固化するまでの間に液だれ現象を起し、図1
1(a),(b)のように固形物1の隙間を通って下方
に液体樹脂2だけが沈下し、構造物の上部と下部では著
しく液むらが生じ、構造体の強度や結合状況が均一にな
らず、十分な強度が期待できない場合がある。したがっ
て、上記混ぜ合わせる固形物の粒径の1.5倍〜2倍程
度の厚みのものしか作ることができない等の問題があ
る。
[0005] When used as a binder (binder) such as cement or asphalt, a liquid resin is mixed with another solid material to form a mixture, which is used as a material of a suitably shaped structure. Even when the mixture is put into a mold or the like to form a block or structure, or a structure such as a road surface or a civil engineering structure, the liquid is not allowed to solidify until the liquid resin coated on the object is solidified. Figure 1
As shown in FIGS. 1 (a) and 1 (b), only the liquid resin 2 sinks downward through the gap between the solids 1, and significant liquid unevenness occurs at the upper and lower parts of the structure. It may not be uniform and sufficient strength may not be expected. Therefore, there is a problem that only a material having a thickness of about 1.5 to 2 times the particle diameter of the solid matter to be mixed can be produced.

【0006】そこで、液だれ現象を少なくするために、
液体樹脂に増粘剤や添加物を加え粘度を高める工夫をし
たものも提案されているが、粘度を必要以上に高める
と、作業性が悪くなり、また必要以上に液体樹脂を使用
する結果となり、適性粘度の領域では液体樹脂の液だれ
現象を完全に解消することは不可能である。
Therefore, in order to reduce the dripping phenomenon,
There have been proposals to increase the viscosity by adding thickeners and additives to the liquid resin.However, if the viscosity is increased more than necessary, workability will deteriorate and the use of the liquid resin more than necessary will result. However, it is impossible to completely eliminate the dripping phenomenon of the liquid resin in the region of the appropriate viscosity.

【0007】また、ロックウール(岩綿)と液体樹脂を
混ぜ合わせ、さらに増粘剤を加え粘度を高める方法も提
案されているけれども、ロックウールは液体樹脂と混ぜ
合わせる段階でバラバラになり粉体化する。すなわち、
ロックウールは岩石を高熱で溶融し冷却させることによ
って作られ、太さ7ミクロン長さ20ミリメートル程度
の繊維状に加工され、綿の様な形態になっているが、ロ
ックウールの繊維化した一本一本の糸状の物質は岩石を
細かくした集合体であり、微力な外圧力で簡単にバラバ
ラな粉末状なってしまい繊維としての形態を保つことは
できない。しかも、ロックウールの素材そのものは液体
樹脂を吸収したり含浸したりするような性質はなく、単
に粉体化したロックウールの表面に樹脂が付着している
だけのものであり、単に増粘作用をさせ粘度を高めよう
とするだけのものである。しかも、この粉体化したロッ
クウールは表面に空気中の水分を付着させるため、液体
樹脂の増粘剤としては樹脂その物の特性に対してマイナ
スの要因となり必ずしも適当ではない。
[0007] A method has also been proposed in which rock wool (rock wool) is mixed with a liquid resin, and a thickener is further added to increase the viscosity. Become That is,
Rock wool is made by melting rock with high heat and cooling it. It is processed into a fibrous shape with a thickness of about 7 microns and a length of about 20 millimeters, and has a cotton-like shape. This single thread-like substance is an aggregate made of fine rocks, and easily becomes powdery by a small external pressure, and cannot maintain the form as a fiber. Moreover, the rock wool material itself does not have the property of absorbing or impregnating the liquid resin, but merely has the resin adhered to the surface of the powdered rock wool, and merely has a thickening effect. It is merely an attempt to increase the viscosity. In addition, since the powdered rock wool causes moisture in the air to adhere to the surface, it becomes a negative factor to the properties of the resin itself as a thickener for the liquid resin, and is not always suitable.

【0008】すなわち、液体樹脂が液体の領域である限
りに於ては、液だれ現象を取り除くことは不可能であ
り、液だれ現象が生じなくなるまで粘度を高めれば、結
果として、固体樹脂になってしまい、樹脂そのものが本
来持ち合わせている粘性や揮発性によって一部の硬化現
象が始まり、内部硬化を生じたり、樹脂そのものの性能
や特性に大きな悪影響を及ぼす。したがって、このよう
な液体樹脂を塗布させたり、別の固形物と混ぜ合わせて
混合物を作ったりすることは容易にはできず、またでき
たとしても適正なものにはならない等の問題がある。
That is, as long as the liquid resin is in the liquid region, it is impossible to eliminate the dripping phenomenon. If the viscosity is increased until the dripping phenomenon does not occur, the solid resin is consequently formed. Some curing phenomena begin due to the viscosity and volatility inherently possessed by the resin itself, causing internal curing and greatly affecting the performance and characteristics of the resin itself. Therefore, there is a problem that it is not easy to apply such a liquid resin or to mix it with another solid material to form a mixture, and even if it is made, it will not be proper.

【0009】本発明はこのような点に鑑み、液体樹脂本
来の特性を損なうことなく、使用に適した粘度を選択で
き、しかも液だれ現象が生じない繊維化樹脂及びその繊
維化樹脂により成型された構造物を得ることを目的とす
る。
In view of the above, the present invention can select a viscosity suitable for use without deteriorating the inherent properties of a liquid resin, and furthermore, a fibrous resin which does not cause dripping and a fibrous resin molded from the fibrous resin. The purpose is to obtain a structured structure.

【0010】[0010]

【課題を解決するための手段】第1の発明は、表面に液
体樹脂を飽和状態になるまで付着被覆させた太さ50ミ
クロン以下、長さ20ミリメートル以下の繊維の集合体
からなり、当該繊維の集合体が各繊維表面を被覆する液
体樹脂の粘着性により、繊維相互が無作為的に重なり、
連なり、絡み合うペースト状に練り上げ構成されている
ことを特徴とする繊維化樹脂である。
According to a first aspect of the present invention, a liquid is provided on a surface.
50mm thick with body resin adhered and coated until saturated
An assembly of fibers less than cron and less than 20 mm in length
Consisting of a liquid in which the aggregate of the fibers covers the surface of each fiber.
Due to the adhesiveness of the body resin, the fibers randomly overlap each other,
A fibrous resin characterized by being formed into a continuous, entangled paste .

【0011】また、第2の発明は、少なくとも表面に液
体樹脂を飽和状態になるまで付着被覆させた太さ50ミ
クロン以下、長さ20ミリメートル以下の繊維の集合体
からなり、当該繊維の集合体が各繊維表面を被覆する液
体樹脂の粘着性により、繊維相互が無作為的に重なり、
連なり、絡み合うペースト状に練り上げ構成された繊維
化樹脂と、細粒径の固形物からなる骨材とを混合混練
し、その混練した状態の混合物によって所定形状に成型
固化したことを特徴とする構造体である。
[0011] In the second invention, at least the surface is provided with a liquid.
50mm thick with body resin adhered and coated until saturated
An assembly of fibers less than cron and less than 20 mm in length
Consisting of a liquid in which the aggregate of the fibers covers the surface of each fiber.
Due to the adhesiveness of the body resin, the fibers randomly overlap each other,
Fibers that are kneaded and kneaded together in a paste
And resin, and aggregate consisting of solid fine particle size were mixed and kneaded, a structure that a mixture of the kneaded state characterized by being molded and solidified into a predetermined shape.

【0012】[0012]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施の形態について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】太さ50ミクロン以下、長さ20ミリメー
トル以下に加工した天然繊維や化学繊維等の繊維10を
液体樹脂11の温度より数度高い温度に加温して液体樹
脂11に浸し、上記繊維が吸湿性や吸水性がある場合に
は、その繊維の内部に飽和状態になるまでしみ込ませ
る。次に、上記繊維表面に充分被覆するのに足りる量の
液体樹脂を飽和状態になるまでさらに供給する。また吸
湿性や吸水性の無い繊維、つまり繊維の内部にしみ込む
要因がない繊維については、繊維の表面を充分被覆する
のに足りる量の液体樹脂を飽和状態になるまで供給す
る。
A fiber 10 such as a natural fiber or a chemical fiber processed to a thickness of 50 μm or less and a length of 20 mm or less is heated to a temperature several degrees higher than the temperature of the liquid resin 11 and immersed in the liquid resin 11. If it is hygroscopic or water-absorbent, it is impregnated into the fiber until it is saturated. Next, a sufficient amount of liquid resin to sufficiently coat the fiber surface is further supplied until it becomes saturated. For fibers having no hygroscopicity or water absorption, that is, fibers having no factor that penetrates into the interior of the fiber, a sufficient amount of liquid resin for sufficiently covering the surface of the fiber is supplied until the fiber is saturated.

【0014】このようにして液体樹脂で飽和状態になっ
た繊維を多量集め、これをゆっくりと混ぜ合わせること
によって、図1(a)、(b)に示すようなペースト状
の新しい物質に練り上げる。この状態は、繊維10と繊
維10がその表面を被覆した液体樹脂11の粘性によ
り、並行に重なり、また連なり、或は縦列的に重なり、
または連なり、無作為に絡み合い、結果としてペースト
状態の液体樹脂が被覆された繊維の集合体であり、この
集合体によって繊維化樹脂12が形成される。
A large amount of the fibers saturated with the liquid resin in this way is collected, and the fibers are slowly mixed to knead into a paste-like new substance as shown in FIGS. 1 (a) and 1 (b). In this state, due to the viscosity of the liquid resin 11 on which the fiber 10 and the fiber 10 cover the surface, the fiber 10 overlaps or continues in a row, or overlaps in tandem,
Alternatively, it is an aggregate of fibers that are connected and randomly entangled with each other, and as a result, are coated with the liquid resin in a paste state, and the fiberized resin 12 is formed by this aggregate.

【0015】液体樹脂の粘度は、通常1〜50ポイズの
範囲であるが、上述のように液体樹脂を繊維に飽和状態
になるまで供給し、混ぜ合わせ練り上げることにより5
000ポイズから400000ポイズの粘度を有した樹
脂に変化させることができる。すなわち、繊維の1本1
本がそれぞれその表面が厚膜状に液体樹脂で被覆され、
さらに繊維と繊維が複雑に絡み合った状態であることに
よって上記高粘度が得られる。
The viscosity of the liquid resin is usually in the range of 1 to 50 poise. However, as described above, the liquid resin is supplied to the fibers until they are saturated, and the fibers are mixed and kneaded.
It can be changed from 000 poise to a resin having a viscosity of 400,000 poise. That is, one fiber 1
Each book is covered with a liquid resin in the form of a thick film,
Furthermore, the high viscosity can be obtained by the fibers being intricately entangled with each other.

【0016】通常、液体樹脂の粘度と繊維の物性によっ
て違いはあるが、液体樹脂1W%に対して繊維は0.0
5W%〜0.5w%で飽和状態になり、このように液体
樹脂が繊維に飽和状態で付着している場合には液体樹脂
だけが沈澱することはない。
Usually, there is a difference depending on the viscosity of the liquid resin and the physical properties of the fiber, but the fiber is 0.0% for 1 W% of the liquid resin.
When the liquid resin is saturated at 5 W% to 0.5 W%, the liquid resin alone does not precipitate when the liquid resin adheres to the fiber in a saturated state.

【0017】ところで、繊維に液体樹脂を浸し混ぜ合わ
せて飽和状態にさせる場合には、単に液体樹脂と繊維と
を混合させるだけでは、繊維に液体樹脂の被覆に依る適
正な一体化は必ずしも得ることができず、被覆した液体
樹脂の状況によって接着強度が影響され、適正な接着強
度も期待できず、場合によっては固化後、接着構造内部
における繊維と樹脂の剥離現象を生じることがある。
By the way, when a liquid resin is immersed in a fiber and mixed to make it saturated, simply mixing the liquid resin with the fiber does not necessarily result in proper integration by coating the fiber with the liquid resin. The adhesive strength is affected by the situation of the coated liquid resin, and an appropriate adhesive strength cannot be expected. In some cases, after solidification, the fiber and the resin may be separated from each other within the adhesive structure.

【0018】そこで、本発明においては、前述のよう
に、繊維に液体樹脂を浸し混ぜ合わせて飽和状態にさせ
る場合に、繊維が液体樹脂の温度より1℃以上、繊維と
液体樹脂が変質しない範囲内で加温されている。したが
って、上記加温によって繊維の体積が熱膨張により増大
し、同時に表面積が増加し、その時点で飽和状態とさせ
られるため、飽和後常温に下がった時点では繊維の表面
に被覆された液体樹脂の膜厚が増大し、これにより完成
した繊維化樹脂の接着強度が増大し、繊維の液体樹脂の
吸着性が十分高められる。
Therefore, in the present invention, as described above, when a liquid resin is immersed in a fiber and mixed to make the fiber into a saturated state, the temperature of the fiber is 1 ° C. or higher than the temperature of the liquid resin, Heated inside. Therefore, the volume of the fiber is increased by thermal expansion due to the above-mentioned heating, and at the same time, the surface area increases. The film thickness is increased, thereby increasing the adhesive strength of the finished fiberized resin, and the fiber's liquid resin adsorptivity is sufficiently enhanced.

【0019】このようにして本発明においては液体部分
を取り除いた状態と同様の繊維化樹脂となり、垂直状に
置いた壁面に塗布する場合でも、液体樹脂の場合と同等
の作業方法で塗布出来ると共に、液だれ現象が無いため
に使用目的に合わせて被覆の厚さも調整出来る。その上
表面の仕上がりや、被覆体の強度や諸性能も均一な物に
なり、樹脂の特性を充分に引き出す事ができる。
As described above, in the present invention, the fibrous resin becomes the same as that in the state where the liquid portion is removed, and even when the resin is applied to a vertically placed wall surface, it can be applied by the same operation method as that of the liquid resin. Since there is no dripping phenomenon, the thickness of the coating can be adjusted according to the purpose of use. In addition, the surface finish and the strength and various properties of the coated body are uniform, and the properties of the resin can be sufficiently brought out.

【0020】また、本発明による繊維化樹脂であれば、
樹脂による沈下現象(液だれ現象)は生じることがな
く、その上樹脂その物の特性を損なう事もない。さらに
この繊維化樹脂で容積構造体を作る場合、容積構造体全
体のうち、どの部分に対しても均一な状態で繊維化樹脂
が行当たり、接着強度や結合状況や諸特性も樹脂本来の
特質をそのまま発揮できる。また、従来の液体樹脂で
は、樹脂その物の物性が非常に微細な液体粒子の集合体
により液体を構成しているため、固形物と固形物の間の
空隙はそのまま空間として残るか、液体樹脂で充満され
るかの状況であったが、本発明による繊維化樹脂を使用
した場合は、固形物の表面が繊維化樹脂で被覆した状態
で固形物と固形物が混ぜ合わされ、その混合物が型枠等
に打設されるので、固形物が最終的に振動や転圧によっ
て固定置された時には、それまでの作業工程間に固形物
と固形物が擦り合わされたりして、固形物に被覆した繊
維化樹脂が絡み合い、結果として、図2(a),(b)
に示すように固形物13と固形物13の間にある空隙
は、固形物に被覆した繊維化樹脂12の一部により蜘の
巣の様な状況で繊維が張り合い、網目状態の繊維化樹脂
フィルターが無作為的に且つ立体的に出来上がる。そし
て、この状態で容積構造体がそれぞれ各樹脂の特性や作
業性に合致した硬化方法によって固化される事により、
その形状を維持したまま構造体を完成させる事が出来
る。
Further, if the fiberized resin according to the present invention,
There is no sinking phenomenon (drip phenomenon) caused by the resin, and furthermore, the characteristics of the resin itself are not impaired. Furthermore, when a volume structure is made with this fiberized resin, the fiberized resin hits the line uniformly in any part of the entire volume structure, and the adhesive strength, bonding condition, and various characteristics are inherent to the resin. Can be used as it is. Further, in the conventional liquid resin, since the physical properties of the resin itself constitute a liquid by an aggregate of liquid particles, the gap between the solids remains as a space or the liquid resin However, when the fibrous resin according to the present invention is used, the solid is mixed with the solid while the surface of the solid is covered with the fibrous resin, and the mixture is molded. Since the solid is finally fixed and set by vibration or compaction, the solid is rubbed with the solid during the previous working process, so that the solid is coated on the solid. As shown in FIGS. 2 (a) and 2 (b)
As shown in the figure, the gap between the solid 13 and the solid 13 is formed by a fiber-like resin filter in a mesh state, where fibers are stuck together in a spider's web due to a part of the fiberized resin 12 coated on the solid. Is made randomly and three-dimensionally. Then, in this state, the volume structure is solidified by a curing method that matches the characteristics and workability of each resin,
The structure can be completed while maintaining its shape.

【0021】この方法によって固化した構造体の接着強
度は、繊維化樹脂その物の強度を発揮すると共に、固化
した後の含有成分の溶出はほとんどなく、また、繊維化
樹脂は液体樹脂の特性をそのまま何ら損なうことなく引
き継いでいるため、使用目的によって多種多様に選択出
来る現状の液体樹脂材料選定に於いて、何ら特別の配慮
の必要がない。
The adhesive strength of the structure solidified by this method exhibits the strength of the fibrous resin itself, hardly dissolves the contained components after solidification, and the fibrous resin exhibits the properties of the liquid resin. Since it is taken over without any loss, there is no need to take any special consideration in the current selection of liquid resin materials that can be selected in various ways depending on the purpose of use.

【0022】その上、現状産業界で使用されている強化
プラスチックと対比した場合でも、強化プラスチックは
液体樹脂の中にガラス繊維で織った布状の物を挟み込ん
で固化させる事により、液体樹脂の固化強度だけでは得
られなかった高強度を生み出す事に成功しているが、そ
の製作工程では高度の成形技術を余儀なく必要とされて
いる。
In addition, even when compared with the reinforced plastics currently used in the industry, the reinforced plastics are solidified by sandwiching a cloth-like material woven of glass fiber in the liquid resin, thereby solidifying the liquid resin. Although it has succeeded in producing high strength that could not be obtained by solidification strength alone, its manufacturing process requires a high degree of molding technology.

【0023】繊維化樹脂の場合は、繊維を液体樹脂で飽
和状態にさせた物であり、既に繊維化樹脂が強化プラス
チックと同等の性能を持っている。
In the case of a fibrous resin, the fibers are saturated with a liquid resin, and the fibrous resin already has the same performance as a reinforced plastic.

【0024】また、繊維化樹脂は液体樹脂と同様に固化
の手段も、硬化剤による二液性でも、加熱による熱可塑
性でも、空気中の水分に反応させる酸化性でも、何れの
場合に対しても何ら特別な手段を講じる必要はなく、使
用方法も多様に選択できる。
Like the liquid resin, the fibrous resin can be solidified by any means such as solidifying means, two-part by a hardener, thermoplastic by heating, or oxidizing by reacting with moisture in the air. There is no need to take any special measures, and the method of use can be variously selected.

【0025】以下、本発明による繊維化樹脂及びその繊
維化樹脂を接着剤、コーティング材、成形材、及びバイ
ンダーとして使用したものの実施例を説明する。
Examples of the fibrous resin according to the present invention and those using the fibrous resin as an adhesive, a coating material, a molding material and a binder will be described below.

【0026】実施例1 吸湿性や吸水性の無い繊維の中からガラス繊維太さ7ミ
クロン以下、長さ8ミリメートル以下の物を選び45ポ
イズの粘度の液体樹脂1W%に対して40℃に加温した
ガラス繊維0.05W%を5分の1づつ液体樹脂に充分
浸し、攪拌装置でゆっくりガラス繊維を解しながら攪拌
した。
Example 1 A glass fiber having a thickness of 7 μm or less and a length of 8 mm or less was selected from fibers having no hygroscopicity or water absorbency, and heated to 40 ° C. with respect to 1 W% of a liquid resin having a viscosity of 45 poise. 0.05 W% of the heated glass fiber was sufficiently immersed in the liquid resin one-fifth at a time, and stirred while slowly breaking the glass fiber with a stirrer.

【0027】繊維に飽和状態になるまで5分の1づつ液
体樹脂を供給しながら、ゆっくり混合させ攪拌作業を繰
り返し行い、液体樹脂の液体が目視出来なくなる状態に
成るまで攪拌し飽和状態に至った。
While supplying the liquid resin in one-fifth increments until the fibers become saturated, the mixture was slowly mixed and the stirring operation was repeated, and the mixture was stirred until the liquid of the liquid resin became invisible. .

【0028】出来上がった繊維化樹脂は1200000
ポイズの粘度を有し、やわらかいペースト状の繊維の集
合体であり、使用に際して何ら支障は認められなかっ
た。
The finished fibrous resin is 1200000
It was an assembly of soft paste-like fibers having a poise viscosity, and no problems were observed during use.

【0029】また、繊維として綿や絹のような天然繊維
や、ガラス、炭素、アルミ、セラミック等の化学繊維を
使用し、それぞれの組合せに於いても、液体樹脂1W%
に対して繊維0.01W%〜0.2W%の範囲でそれぞ
れ飽和状態になった。
Also, natural fibers such as cotton and silk, and chemical fibers such as glass, carbon, aluminum, and ceramics are used as the fibers.
In contrast, the fibers became saturated in the range of 0.01 W% to 0.2 W%.

【0030】また、極端に粘度の低い粘度1の液体樹
脂、1W%に対してその液体樹脂より20℃だけ温度が
高くなるように加温した繊維0.1W%を浸し混ぜ合わ
せ、ゆっくり攪拌し飽和状態にした繊維化樹脂に対し、
増粘剤を0.01W%〜0.05W%を加え、粘度調整
をすることにより、50000ポイズから400000
ポイズの範囲で粘度を調整する事が出来た。何れの場合
も、繊維化した樹脂の状況を目視し繊維化樹脂が完成さ
れた事を確認できた。 実施例2 45℃のガラス繊維(太さ7ミクロン長さ3ミリメート
ルに加工した物)50グラムを容器に入れ充分ほぐし更
に、20℃のエポキシ系液体合成樹脂を500グラムづ
つ加えゆっくり混ぜ合わせ混練しながらエポキシ系液体
合成樹脂を更に500グラムづつ加え総量1500グラ
ムで飽和状態に成った事を確認出来、繊維化樹脂を完成
させた。
Further, 0.1 W% of the heated fiber is soaked and mixed with 1 W% of the liquid resin having an extremely low viscosity and 1 W% so that the temperature becomes 20 ° C. higher than that of the liquid resin, and the mixture is slowly stirred. For the fiberized resin in the saturated state,
By adding 0.01 W% to 0.05 W% of a thickener and adjusting the viscosity, 50,000 poise to 400,000
The viscosity could be adjusted within the poise range. In each case, the state of the fiberized resin was visually observed, and it was confirmed that the fiberized resin was completed. Example 2 50 g of 45 ° C. glass fiber (processed to a thickness of 7 μm and a length of 3 mm) was put into a container and sufficiently loosened. Further, 500 g of an epoxy-based liquid synthetic resin at 20 ° C. was added, and the mixture was slowly mixed and kneaded. While adding 500 g of the epoxy-based liquid synthetic resin at a time, it was confirmed that a saturated state was reached at a total amount of 1500 g, and the fiberized resin was completed.

【0031】次に、出来上がった繊維化樹脂に固化させ
るための硬化剤をエポキシ系液体合成樹脂の総量に対し
て重量比で50W%を加え、更に混練し繊維化樹脂接着
剤とし、図3に示したように縦300ミリメートル、横
300ミリメートル、厚さ10ミリメートルの木板14
の片面に繊維化樹脂接着剤12をヘラと刷毛を使って約
0.2ミリメートルの厚さで塗布し、その面に、一辺が
50ミリメートルの立方体に加工した木材、ゴム、金
属、セメントコンクリート等の各材質で出来たブロック
状固形物の一面を接着面とし接着剤を塗布した木板14
の片面に乗せ接着をした。
Next, a curing agent for solidifying the finished fiberized resin is added at a weight ratio of 50 W% to the total amount of the epoxy-based liquid synthetic resin, and further kneaded to obtain a fiberized resin adhesive. As shown, the wooden board 14 is 300 mm long, 300 mm wide, and 10 mm thick.
Is applied with a spatula and a brush to a thickness of about 0.2 mm on one side of the surface, and the surface is processed into a cube having a side of 50 mm, such as wood, rubber, metal, cement concrete, etc. Wooden board 14 with one surface of a block-shaped solid material made of each material as an adhesive surface and an adhesive applied thereto
And bonded on one side.

【0032】固化後、それぞれのブロックの被接着面先
端に加重を掛け接着強度を試みたが、接着面の剥離は全
く認められず木片が割れてしまった。
After the solidification, a load was applied to the tip of the surface to be bonded of each block to test the bonding strength. However, no peeling of the bonding surface was observed and the piece of wood was broken.

【0033】また、図4に示したように、木材、ゴム、
金属、セメントコンクリート等各材質の一辺が50ミリ
メートルの立方体に加工したブロック状固形物15の一
面に繊維化樹脂接着剤12を約0.2ミリメートルの厚
さで塗布し、同じ材質同志の接着と、違う材質との接着
を試みたが、通常使用に耐え得る接着強度の有ることが
認められた。
Also, as shown in FIG.
A fiberized resin adhesive 12 is applied at a thickness of about 0.2 mm to one surface of a block-shaped solid material 15 formed into a cube having a side of 50 mm such as metal, cement concrete, etc. An attempt was made to bond with a different material, but it was found that the bond strength was sufficient to withstand normal use.

【0034】以上の結果、ガラス繊維にエポキシ系液体
合成樹脂を飽和状態にさせて出来上がった繊維化樹脂が
接着剤として充分性能を保持していることを確認するこ
とができた。 実施例3 50℃に加温した炭素繊維(太さ5ミクロン長さ5ミリ
メートルに加工した物)50グラムを容器に入れ充分ほ
ぐし更に、20℃のポリエステル系液体合成樹脂を50
0グラムずつ加え、ゆっくり混ぜ合わせ混練しながらポ
リエステル系液体合成樹脂を更に500グラムずつ加え
ながら混練を繰り返し、総量1700グラムで飽和状態
になったのを確認でき繊維化樹脂を完成させた。
As a result, it was confirmed that the fibrous resin obtained by saturating the glass fiber with the epoxy liquid synthetic resin had sufficient performance as an adhesive. Example 3 50 g of a carbon fiber heated to 50 ° C. (processed to a thickness of 5 μm and processed to a length of 5 mm) was put into a container and sufficiently loosened.
Kneading was repeated while adding 500 g each of the polyester-based liquid synthetic resin while slowly mixing and kneading, and a total amount of 1700 g was confirmed to be a saturated state, thereby completing the fibrous resin.

【0035】次に、出来上った繊維化樹脂を固化させる
ため硬化剤をポリエステル系液体合成樹脂に対して重量
比3w%を加え混練し、成形材として使用した。
Next, in order to solidify the finished fibrous resin, a curing agent was added at a weight ratio of 3 w% to the polyester-based liquid synthetic resin, kneaded, and used as a molding material.

【0036】図5(a)、(b)に示したような金属製
の成形型16に完成したポリエステル系繊維化樹脂12
を注入し図6に示したような密閉できる容器17(内容
積200ミリリットル肉厚10ミリメートル)及び蓋1
8を成形し固化させ完成させた。
The polyester fiberized resin 12 completed in a metal mold 16 as shown in FIGS. 5 (a) and 5 (b).
And a sealable container 17 (internal volume 200 ml, wall thickness 10 mm) as shown in FIG.
8 was molded and solidified to be completed.

【0037】更に、完成したポリエステル系繊維化樹脂
の密閉容器の中に、PCB(97%)を入れ密封し、溶
出検査を行なったところ成分溶出はなく完全に封じ込め
ができた。また、容器自体の強度も、通常の液体合成樹
脂による成形品に比較して、繊維が含まれているため強
度が上回っていることも確認できた。
Further, PCB (97%) was put in a sealed container of the completed polyester fiberized resin and sealed, and an elution test was carried out. As a result, there was no elution of the components, and complete sealing was possible. Further, it was also confirmed that the strength of the container itself was higher than that of a molded article made of a usual liquid synthetic resin because the container contained fibers.

【0038】以上の結果、炭素繊維にポリエステル系液
体合成樹脂を飽和状態にさせて出来上がった繊維化樹脂
を成形材として使用でき、その上、強化プラスチック同
等の強度があり、更にPCBの封じ込めもできることが
確認できた。
As a result, a fibrous resin obtained by saturating a carbon fiber with a polyester-based liquid synthetic resin can be used as a molding material. In addition, it has the same strength as a reinforced plastic and can also contain a PCB. Was confirmed.

【0039】実施例4 天然繊維の錦糸と絹糸をそれぞれ50%ずつの量で長さ
5ミリメートルに加工した60℃の繊維50グラムを掻
き混ぜなから充分解しながら15℃のビニールエステル
系液体合成樹脂を500グラムずつ加え、ゆっくり混ぜ
合わせ混練しながらビニールエステル系液体合成樹脂を
更に500グラムずつ加えながら混練を繰り返し、総量
2000グラムで飽和状態になったのを確認でき繊維化
樹脂を完成させた。更に、粘度を調整するために増粘剤
を総量10グラムを2回に分けて加え混練し、ビニール
エステル系繊維化樹脂を作業のしやすい粘度に調整し
た。次に、出来上がった繊維化樹脂を固化させるための
硬化剤を加え混練しコーティング材として使用した。
EXAMPLE 4 A vinyl ester-based liquid synthesis at 15 ° C. was performed while 50 g of a fiber of 60 ° C. obtained by processing 50 mm each of a natural fiber, broth and silk, in an amount of 50% each to a length of 5 mm, while stirring. The resin was added in an amount of 500 grams, and the kneading was repeated while the vinyl ester-based liquid synthetic resin was further added in an amount of 500 grams each while slowly mixing and kneading, and it was confirmed that the resin was saturated in a total amount of 2,000 grams, thereby completing the fibrous resin. . Further, in order to adjust the viscosity, a total of 10 g of a thickener was added in two portions and kneaded, and the vinyl ester-based fiberized resin was adjusted to a viscosity which facilitates the work. Next, a hardening agent for solidifying the completed fiberized resin was added and kneaded, and used as a coating material.

【0040】図7に示したように、ひび割れしたセメン
トコンクリート製平板19を垂直に立てて置きヘラを使
用してひび割れ部分の隙間にビニールエステル系繊維化
樹脂12を充填し、次に平板の片面全面に約3ミリメー
トルの厚さで塗布した。
As shown in FIG. 7, a cracked cement concrete flat plate 19 is set upright, and the space between the cracked portions is filled with the vinyl ester fiberized resin 12 using a spatula. The whole surface was applied with a thickness of about 3 mm.

【0041】この作業実施で、ひび割れ部分の充填効果
と接着効果及び塗布の際の液だれ現象有無の確認と作業
性等を確認したが、それぞれの効果も作業性も非常に良
好で、また、液だれ現象も全く認められなかった。固化
後、ひび割れ部分や塗布した面の接着強度、表面強度は
充分有り、また、ひび割れ部分からの漏出も認められな
かった。
In this operation, the effect of filling the cracked portion, the effect of adhesion, the presence or absence of the liquid dripping phenomenon at the time of application, and the workability were confirmed. Both effects and workability were very good. No dripping was observed. After solidification, the adhesive strength and surface strength of the cracked portion and the coated surface were sufficient, and no leakage from the cracked portion was observed.

【0042】以上の結果、天然繊維にビニールエステル
系液体合成樹脂を飽和状態にさせて出来上った繊維化樹
脂をコーティング材として使用でき、その上、液だれ現
象が全くなく、粘度調整によって作業性も良いことが確
認できた。
As a result, a fibrous resin obtained by saturating a vinyl ester-based liquid synthetic resin with natural fibers can be used as a coating material, and furthermore, there is no dripping phenomenon and the work is performed by adjusting the viscosity. It was confirmed that the nature was good.

【0043】実施例5 太さ7ミクロン、長さ3ミリメートルのガラス繊維50
%と長さ6ミリメートルのガラス繊維50%を混ぜ合わ
せ加工した物23キログラムを掻き混ぜながら充分に解
し、35℃に加温して混練用攪拌装置に入れ、15℃の
ポリエステル系液体合成樹脂477キロラムを攪拌装置
で混練させながら加え、約5分後に飽和状態を確認し繊
維化樹脂を完成させた。更に、増粘剤を1キログラムを
加え150000ポイズの粘度を有したポリエステル系
繊維化樹脂を約500キログラム完成させた。この繊維
化樹脂をバインダー(結合剤)として使用し各種固形物
を骨材にして容積構造体を製作した。
Example 5 Glass fiber 50 7 microns thick and 3 millimeters long
% And 6% length of glass fiber 50% are mixed together, and 23 kg is processed by stirring thoroughly, heated to 35 ° C. and put into a kneading stirrer, and a polyester liquid synthetic resin at 15 ° C. 477 kiloram was added while kneading with a stirrer, and after about 5 minutes, a saturated state was confirmed and the fibrous resin was completed. Further, 1 kg of a thickener was added to complete about 500 kg of a polyester fiberized resin having a viscosity of 150,000 poise. Using this fiberized resin as a binder, various solids were used as aggregates to produce a volume structure.

【0044】骨材には、砂利(粒径2〜8ミリメート
ル)、砕石(粒径2〜20ミリメートル)、川砂、廃材
(プラスチック、ガラス、貝殻、ゴム、金属スラグ、木
片、籾殻、陶磁器、セメントやアスファルトコンクリー
ト)を3〜10ミリメートルの粒径に加工した物、等を
選び使用した。
Aggregates include gravel (particle size 2 to 8 mm), crushed stone (particle size 2 to 20 mm), river sand, waste materials (plastic, glass, shells, rubber, metal slag, wood chips, rice hulls, china, cement And asphalt concrete) processed to a particle size of 3 to 10 mm, and the like.

【0045】図8に示したような縦300ミリメートル
横300ミリメートル厚さ30ミリメートルの平板ブロ
ック20を先に述べた各種骨材を使用して作製した。
A flat plate block 20 having a length of 300 millimeters and a width of 300 millimeters and a thickness of 30 millimeters as shown in FIG. 8 was manufactured using the above-mentioned various aggregates.

【0046】先ず始めに、骨材をセメントコンクリート
やモルタル等を混練する時に使用するミキサーに投入
(一種類)し、投入した骨材重量に対して4w%〜10
w%の繊維化樹脂を加え、ミキサーにより攪拌混練し骨
材と繊維化樹脂の混合物を作った。約5分間攪拌し繊維
化樹脂12が骨材21の表面に厚膜状に被覆しているの
が確認できた。次に繊維化樹脂を固化させるための硬化
剤を、使用した繊維化樹脂に対して重量比3w%を混合
物に投入し混練した。
First, the aggregate is put into a mixer used for kneading cement concrete, mortar and the like (one type), and 4 w% to 10 w% based on the weight of the put aggregate.
Then, w% of the fiberized resin was added, and the mixture was stirred and kneaded with a mixer to prepare a mixture of the aggregate and the fiberized resin. After stirring for about 5 minutes, it was confirmed that the fibrous resin 12 coated the surface of the aggregate 21 in a thick film form. Next, a hardening agent for solidifying the fiberized resin was added to the mixture at a weight ratio of 3% by weight based on the used fiberized resin, and kneaded.

【0047】できあがった骨材混合物を平板ブロックの
型枠内に投入しながら、型枠全体に軽い振動を与え金ゴ
テで表面を押さえながら仕上げた。固化後できあがった
平板ブロック状の容積構造体を型枠から外しポリエステ
ル系繊維化樹脂バインダーで別の固型物と接着し、容積
構造体を完成させられることを確認できた。
While putting the completed aggregate mixture into the mold of the flat plate block, light vibration was applied to the entire mold, and the surface was pressed down with a gold trowel to finish the mold. It was confirmed that the flat block-shaped volume structure completed after solidification was removed from the mold and bonded to another solid product with a polyester fiberized resin binder to complete the volume structure.

【0048】以上の結果、繊維化樹脂は、多種多様の固
形物を骨材として使用するために、最も適したバインダ
ー(結合剤)であると共に、作業性に於いても何ら特殊
性も見当らず、完成した構造体の強度や諸特性も非常に
優れていることがわかった。
As a result, the fibrous resin is the most suitable binder (binder) for using a wide variety of solids as an aggregate, and has no special characteristic in workability. It was also found that the strength and various characteristics of the completed structure were very excellent.

【0049】実施例6 太さ7ミクロン、長さ0.3ミリメートルの非常に短く
加工した45℃に加温したガラス繊維23キログラム
を、混練用攪拌装置に入れ、15℃のポリエステル系液
体合成樹脂430キログラムとウレタン系液体合成樹脂
47キログラムを予め混ぜ合わせた物477キログラム
を投入し、攪拌装置でゆっくり混練させ、約5分後に飽
和状態を確認し、繊維化樹脂を完成させた。この状態で
0.3ミリメートルの短いガラス繊維が被覆した樹脂の
粘性によって連なり、長い繊維の様に糸を引くような状
況が確認できた。次に増粘剤を5キログラム加え粘度を
200000ポイズに高め、使用に適した粘度に調整し
た。このポリエステルウレタン系繊維化樹脂をバインダ
ー(結合剤)として使用し、砂利と砕石を骨材にして路
盤の表面舗装材を作り路面舗装を施工した。
EXAMPLE 6 23 kg of a very short glass fiber heated to 45 ° C. and having a thickness of 7 μm and a length of 0.3 mm was put into a kneading agitator, and a polyester liquid synthetic resin at 15 ° C. 477 kg of a mixture obtained by previously mixing 430 kg of the urethane-based liquid synthetic resin and 47 kg of the urethane-based liquid synthetic resin was charged and kneaded slowly with a stirrer. After about 5 minutes, the saturated state was confirmed, and the fibrous resin was completed. In this state, it was confirmed that a short glass fiber of 0.3 mm was connected by the viscosity of the coated resin and a thread was drawn like a long fiber. Next, 5 kg of a thickener was added to increase the viscosity to 200,000 poise, and adjusted to a viscosity suitable for use. Using this polyester urethane fiberized resin as a binder, a pavement surface pavement was made using gravel and crushed stone as aggregate, and pavement pavement was performed.

【0050】骨材は、砂利(粒径3〜8ミリメートル)
と砕石(粒径3〜15ミリメートル)を選び使用した。
The aggregate is gravel (particle diameter 3 to 8 mm)
And crushed stone (particle size: 3 to 15 mm) were used.

【0051】先ず始めに、幅員5メートル延長10メー
トルの路盤を用意し、延長を2分割の5メートルずつに
分け、基礎路盤材を二種類にし、一方では砕石層22を
厚さ150ミリメートルとし他方ではアスファルトコン
クリート層23を厚さ50ミリメートルとし、その基礎
路盤の上面に厚さ30ミリメートルで繊維化樹脂バイン
ダーを使用した表面舗装材を施工した。
First, a roadbed with a width of 5 meters and an extension of 10 meters is prepared, and the length is divided into two sections of 5 meters each, and two types of foundation roadbed materials are used. In this example, the asphalt concrete layer 23 was formed to have a thickness of 50 mm, and a surface pavement material having a thickness of 30 mm and using a fiberized resin binder was applied to the upper surface of the foundation roadbed.

【0052】次に、砂利24の2立米(約3.4トン)
を生コンクリート用の大型ミキサー車に投入し繊維化樹
脂バインダー12を砂利24の重量比6%、約204キ
ログラムを加え、ミキサーを回転させ10分間混練し
た。砂利の表面に繊維化樹脂が厚膜状に被覆しているの
が確認できたので、更に、硬化剤4キログラム加え1分
間混練し表面舗装材を完成させた。
Next, 2 cubic meters of gravel 24 (about 3.4 tons)
Was put into a large mixer truck for ready-mixed concrete, and about 204 kg of a fiberized resin binder 12 of 6% by weight of gravel 24 was added, and the mixer was rotated and kneaded for 10 minutes. Since it was confirmed that the surface of the gravel was covered with the fibrous resin in a thick film form, 4 kg of a curing agent was further added and kneaded for 1 minute to complete a surface pavement material.

【0053】次に、完成した舗装材をミキサー車から取
出し路面に直接投下させ、レーキで敷き均し、コンパク
ターで振動を与えながら転圧し、最後に金ゴテで仕上げ
施工を完了した。
Next, the completed pavement material was taken out of the mixer truck, dropped directly onto the road surface, spread with a rake, rolled while applying vibration with a compactor, and finally finished with a metal trowel.

【0054】図9に示したように、完成した表層路盤
は、樹脂の液だれは全くなく、適切な空隙があり、均一
な断面構造が得られた。
As shown in FIG. 9, the completed surface subgrade had no resin dripping at all, had appropriate voids, and had a uniform cross-sectional structure.

【0055】次に、砕石25の2立米(約3.3トン)
を大型ミキサー車を使用して、砂利の場合と同様の作業
で表面舗装材を完成させた。路面敷き均しはアスファル
ト舗装に使用するフィニッシャー(路盤材敷き転圧機
械)を使用し機械施工を行なった。フィニッシャーはミ
キサー車から舗装材を投下し、後はフィニッシャーが自
走しながら敷き均し、更に、振動を与えながら路面を押
さえ仕上げる機能を持った機械なので、人力による作業
が大巾に削減できた。
Next, 2 crushed rice of crushed stone 25 (about 3.3 tons)
Using a large mixer truck, surface pavement was completed in the same manner as in the case of gravel. The road surface was leveled by using a finisher (rolling machine with roadbed material) used for asphalt pavement. The finisher drops the paving material from the mixer truck, and the finisher is a machine that has the function of leveling the road while running on its own, and furthermore, it has a function to hold down the road surface while applying vibration, so the work by human power has been greatly reduced. .

【0056】完成した表層路盤は、図10に示したよう
に、樹脂の液だれは全くなく、適切な空隙があり、均一
な断面構造が得られた。
As shown in FIG. 10, the completed roadbed had no dripping of the resin, had appropriate gaps, and had a uniform cross-sectional structure.

【0057】以上の結果、繊維化樹脂は現在一般に使用
されている土木建築機械設備やその道具をそのまま使用
できることの他、使用及び作業方法も何ら特殊性は無
く、かえって作業性が非常に良く、完成した表層路盤も
優れた構造体であり、繊維化樹脂がバインダーとして充
分な素材であることが確認できた。
As a result, in addition to the fact that the fiberized resin can be used as it is for the civil engineering and construction machinery and tools generally used at present, there is no special use and work method, and the workability is extremely good. The completed surface layer roadbed was also an excellent structure, and it was confirmed that the fiberized resin was a sufficient material as a binder.

【0058】[0058]

【発明の効果】本発明における繊維化樹脂は、前述のよ
うに構成したので、繊維の表面に飽和状態に成るまで被
覆させ、被覆した表面の樹脂の粘性によって繊維と繊維
が複雑に絡み合いペースト状の新たな物質を構成し、液
だれ現象を解消することができた。その上、多種多様な
繊維と、多種多様な樹脂の組合せにより新たな優れた特
性を持った繊維化樹脂を作り出すことができ、今までの
液体樹脂では不可能であった利用領域まで、使用するこ
とができるようになった。また、繊維化樹脂は、既に樹
脂と繊維が一体化しているため強化プラスチックと同等
若しくはそれ以上の強度特性があり、樹脂を繊維化した
ために利用の仕方によっては様々な新たな特性を生み出
すことが可能である。
As described above, the fiberized resin of the present invention is coated as described above until the surface of the fiber is saturated, and the fibers are complicatedly entangled with each other due to the viscosity of the resin on the coated surface. A new substance was formed, and the dripping phenomenon could be eliminated. In addition, a variety of fibers and a wide variety of resins can be combined to create fiberized resins with new and superior properties. Now you can do it. In addition, fiberized resin has the same or higher strength characteristics as reinforced plastic because resin and fiber are already integrated, and depending on how it is used as fiberized resin, various new characteristics can be created. It is possible.

【0059】繊維化樹脂を接着剤として利用した場合、
液だれ現象が無いため、容器から取り出す際も、塗布、
盛り付け、注入等の作業に於いても、接着剤の垂れ流れ
により回りを汚したり、塗布ムラを生じたりすることは
なくなり、結果として、接着剤の無駄使いは減少し接着
強度も向上する。
When fiberized resin is used as an adhesive,
Because there is no dripping phenomenon, even when removing from the container,
Also in the work such as laying and pouring, the adhesive does not stain the surroundings due to the dripping flow, and does not cause uneven coating. As a result, the waste of the adhesive is reduced and the adhesive strength is improved.

【0060】また繊維化樹脂をコーティング材や防護膜
材等に利用した場合、液だれ現象がないため、前記の特
徴の他に、目的の塗膜厚を一回の作業で均一に塗布する
ことができる。しかも接着強度も塗膜強度も非常に優れ
ている。
When the fibrous resin is used as a coating material or a protective film material, since there is no dripping phenomenon, in addition to the above-mentioned characteristics, it is necessary to uniformly apply a desired coating film thickness in a single operation. Can be. Moreover, both the adhesive strength and the coating strength are very excellent.

【0061】繊維化樹脂を成形材として利用した場合、
前記の特徴の他に、繊維化樹脂が既に繊維を含んでいる
ために、強化プラスチックと同等もしくはそれ以上の強
度を得られ、而もそのために成形工程中にガラス繊維の
布を挟み込む必要もない。したがって、成形作業の簡略
化が期待でき、成形製品強度も非常に優れた物が得られ
る。
When a fiberized resin is used as a molding material,
In addition to the above-mentioned features, since the fibrous resin already contains fibers, strength equal to or higher than that of the reinforced plastic can be obtained, and therefore, it is not necessary to sandwich the glass fiber cloth during the molding process. . Therefore, simplification of the molding operation can be expected, and a product having extremely excellent molded product strength can be obtained.

【0062】繊維化樹脂をバインダー(結合剤)として
利用した場合、液だれ現象が無いため、前記の特徴の他
に、固形物を骨材として繊維化樹脂と混ぜ合わせ繊維化
樹脂混合物を作りこれを材料として如何なる容積形状の
構造体であっても、構築することができる。
When the fibrous resin is used as a binder (binder), there is no dripping phenomenon. In addition to the above-described features, a solid material is mixed with the fibrous resin as an aggregate to form a fibrous resin mixture. Any volume-shaped structure can be constructed by using as a material.

【0063】この場合、液だれがないため構造物のどの
部分についても均一できれいな出来上がりとなり、骨材
と骨材との接着強度は強化プラスチックと同等若しくは
それ以上に強いため、構造体の変形はほとんどない。そ
の上、骨材と骨材との間の空隙も繊維化樹脂で蜘蛛の巣
状で固化しているため強く、長期間その形状を維持でき
る。また、固形物を混ぜ合わせるため、固形物の表面は
繊維化樹脂で厚膜状に被覆されるため、固形物の含有成
分の溶出は殆どない。そのために、固形物として、産業
廃棄物を30ミリメートル以下の粒径に加工さえしてし
まえば、あらゆる廃棄物を骨材(固形物)として再利用
することができる。また、本発明による構造体は、空隙
率が30%〜18%有るので、単位体積重量が軽く、吸
音効果、透水効果、に優れ、通気性が良く熱による表面
温度の上昇を防ぐ効果も有る。
In this case, since there is no dripping, any part of the structure becomes uniform and clean, and the bonding strength between the aggregates is equal to or higher than that of the reinforced plastic. rare. In addition, the voids between the aggregates are also solidified in a spider web shape with the fibrous resin, so that the shape can be maintained for a long time. In addition, since the solids are mixed, the surface of the solids is coated with a fibrous resin in a thick film form, so that the components contained in the solids hardly elute. Therefore, as long as the industrial waste is processed to a particle size of 30 mm or less as a solid, any waste can be reused as aggregate (solid). Further, since the structure according to the present invention has a porosity of 30% to 18%, it has a low unit volume weight, is excellent in sound absorption effect and water permeability effect, has good air permeability, and has an effect of preventing surface temperature from rising due to heat. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)、(b)はペースト状態の繊維化樹脂の
状況図とその部分拡大図。
1 (a) and 1 (b) are a diagram of a fibrous resin in a paste state and a partially enlarged view thereof.

【図2】(a)、(b)は繊維化樹脂バインダーで作っ
た構造体の断面構造図と部分拡大図。
FIGS. 2A and 2B are a sectional structural view and a partially enlarged view of a structure made of a fibrous resin binder.

【図3】木板に繊維化樹脂接着剤を塗布し、それにブロ
ックを接着させた状況図。
FIG. 3 is a diagram showing a state in which a fiberized resin adhesive is applied to a wooden board, and a block is adhered to the adhesive.

【図4】諸材質のブロックとブロックを接着させた状況
図。
FIG. 4 is a diagram showing a state in which blocks made of various materials are bonded to each other.

【図5】(a)、(b)は容器成形に使用した金属製の
成形片の容器部分断面図と蓋部分断面図。
FIGS. 5A and 5B are a partial cross-sectional view and a partial cross-sectional view of a metal molded piece used for molding the container.

【図6】成形によって完成したポリエステル系繊維化樹
脂の密閉容器外観図。
FIG. 6 is an external view of a closed container made of a polyester-based fiberized resin completed by molding.

【図7】(a)、(b)はひび割れしたコンクリート平
板に繊維化樹脂を注入及びコーティングした状況図及び
部分拡大図。
FIGS. 7 (a) and 7 (b) are a schematic view and a partially enlarged view in which a fibrous resin is injected and coated on a cracked concrete flat plate.

【図8】繊維化樹脂バインダーを使用して製作した平板
ブロックの一部拡大断面図。
FIG. 8 is a partially enlarged cross-sectional view of a flat plate block manufactured using a fiberized resin binder.

【図9】繊維化樹脂バインダーと砂利の混合物による路
面舗装の断面図。
FIG. 9 is a cross-sectional view of a pavement with a mixture of a fiberized resin binder and gravel.

【図10】繊維化樹脂バインダーと砕石の混合物による
路面舗装の断面図。
FIG. 10 is a cross-sectional view of road pavement using a mixture of a fiberized resin binder and crushed stone.

【図11】(a)、(b)は液だれ現象が生じた不均一
な構造体の断面図及び部分拡大図。
11A and 11B are a cross-sectional view and a partially enlarged view of a non-uniform structure in which a dripping phenomenon has occurred.

【符号の説明】[Explanation of symbols]

10 繊維 11 液体樹脂 12 繊維強化樹脂 13 固形物 14 木板 15 ブロック状固形物 16 成形型 17 容器 18 蓋 19セメントコンクリート製平板 20 平板ブロック 21 骨材 22 採石層 23 アスファルトコンクリート層 24 砂利 25 砕石 DESCRIPTION OF SYMBOLS 10 Fiber 11 Liquid resin 12 Fiber reinforced resin 13 Solid matter 14 Wood board 15 Block-shaped solid matter 16 Mold 17 Container 18 Lid 19 Cement concrete flat plate 20 Flat plate block 21 Aggregate 22 Quarry layer 23 Asphalt concrete layer 24 Gravel 25 Crushed stone

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 32/02 C04B 14/38 C04B 14/42 C04B 26/10 C04B 26/18 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 32/02 C04B 14/38 C04B 14/42 C04B 26/10 C04B 26/18

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面に液体樹脂を飽和状態になるまで付着
被覆させた太さ50ミクロン以下、長さ20ミリメート
ル以下の繊維の集合体からなり、当該繊維の集合体が各
繊維表面を被覆する液体樹脂の粘着性により、繊維相互
が無作為的に重なり、連なり、絡み合うペースト状に練
り上げ構成されていることを特徴とする繊維化樹脂。
1. A liquid resin is adhered to a surface until it becomes saturated.
Coated thickness less than 50 microns, length 20 mm
Fiber aggregates, and each fiber aggregate
Due to the adhesiveness of the liquid resin coating the fiber surface,
Are randomly overlapped, connected, and kneaded into a tangled paste
A fibrous resin characterized by having a raised configuration.
【請求項2】上記繊維は、当該繊維の内部にも液体状態
の樹脂が飽和状態になるまで含浸されていることを特徴
とする請求項1記載の繊維化樹脂。
2. The fibrous resin according to claim 1 , wherein said fiber is impregnated inside said fiber until the liquid resin is saturated.
【請求項3】砕石、砂等の細粒径の固形物からなる骨材
と混合混練され、上記骨材を互いに結合することを特徴
とする請求項1または2記載の繊維化樹脂。
3. The fibrous resin according to claim 1, wherein the fibrous resin is mixed and kneaded with an aggregate made of a solid having a small particle size such as crushed stone or sand, and the aggregates are bonded to each other.
【請求項4】少なくとも表面に液体樹脂を飽和状態にな
るまで付着被覆させた太さ50ミクロン以下、長さ20
ミリメートル以下の繊維の集合体からなり、当該繊維の
集合体が各繊維表面を被覆する液体樹脂の粘着性によ
り、繊維相互が無作為的に重なり、連なり、絡み合うペ
ースト状に練り上げ構成された繊維化樹脂と、細粒径の
固形物からなる骨材とを混合混練し、その混練した状態
の混合物によって所定形状に成型固化したことを特徴と
する構造体。
4. A liquid resin is saturated at least on its surface.
50 microns or less, length 20
It consists of an aggregate of fibers of millimeters or less,
Due to the adhesiveness of the liquid resin that covers each fiber surface
Fibers randomly overlap, connect and intertwine
A structure characterized by mixing and kneading a fibrous resin kneaded and formed into a paste shape and an aggregate made of a solid material having a fine particle diameter, and molding and solidifying the mixture in the kneaded state into a predetermined shape.
【請求項5】繊維化樹脂と骨材との混練した状態の混合
物を型枠等に入れることにより成型したことを特徴とす
る請求項4記載の構造体。
5. The structure according to claim 4, wherein the mixture in a kneaded state of the fiberized resin and the aggregate is put into a mold or the like and molded.
【請求項6】繊維化樹脂と骨材との混練した状態の混合
物を層状に敷設することにより路面舗装として構成した
ことを特徴とする請求項4記載の構造体。
6. The structure according to claim 4 , wherein the kneaded mixture of the fiberized resin and the aggregate is laid in layers to form a road surface pavement.
JP22175597A 1997-08-18 1997-08-18 Fiberized resin and structure molded with the fiberized resin Expired - Lifetime JP3209151B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22175597A JP3209151B2 (en) 1997-08-18 1997-08-18 Fiberized resin and structure molded with the fiberized resin
EP98108311A EP0898017A1 (en) 1997-08-18 1998-05-07 Fiberized resin and structure produced therefrom by molding
KR1019980016721A KR19990023127A (en) 1997-08-18 1998-05-11 Fibrous resin and structure formed by the fibrous resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22175597A JP3209151B2 (en) 1997-08-18 1997-08-18 Fiberized resin and structure molded with the fiberized resin

Publications (2)

Publication Number Publication Date
JPH1160322A JPH1160322A (en) 1999-03-02
JP3209151B2 true JP3209151B2 (en) 2001-09-17

Family

ID=16771707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22175597A Expired - Lifetime JP3209151B2 (en) 1997-08-18 1997-08-18 Fiberized resin and structure molded with the fiberized resin

Country Status (3)

Country Link
EP (1) EP0898017A1 (en)
JP (1) JP3209151B2 (en)
KR (1) KR19990023127A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI228553B (en) * 2001-11-16 2005-03-01 Du Pont Method of producing coating compositions and coating compositions made therefrom
KR100814575B1 (en) * 2001-12-28 2008-03-17 두산인프라코어 주식회사 Resin Concrete Creation Product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152764A (en) * 1984-12-27 1986-07-11 Nippon Yunikaa Kk Additive for asphalt modification
US5232779A (en) * 1989-04-17 1993-08-03 Ecco Gleittechnik Gmbh Reinforcement fibers and/or process fibers based on plant fibers, method for their production, and their use
JP2879353B2 (en) * 1990-04-02 1999-04-05 株式会社竹中工務店 High durability pavement material and pavement method
DE4026976A1 (en) * 1990-08-25 1992-02-27 Richard Rupprecht Permanently elastic, thermoplastic joint sealing cpd. - contains bitumen or tar binder, plastic or rubber hardener and mineral filler, with short glass fibres added as stabiliser
JPH072565A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp fiber glass binder
JPH072563A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp hard binder
JPH0820672A (en) * 1993-02-01 1996-01-23 Haruki Obata Frp fiber glass binder
JPH072564A (en) * 1993-02-01 1995-01-06 Haruki Obata Reinforced plastic fiber glass binder

Also Published As

Publication number Publication date
KR19990023127A (en) 1999-03-25
EP0898017A1 (en) 1999-02-24
JPH1160322A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
CN1163567C (en) Double waterproof materials of asphalt mastic spread film and sheet on concrete structure and its working method
CN105263684B (en) Dry powder and mortar plate and its manufacture method and manufacturing equipment
JP6531022B2 (en) Method for producing cold construction type asphalt mixture and cold construction type asphalt mixture
CN101016716B (en) Influent polymer cement concrete pavement structure on asphalt surface and construction method
CN101016717B (en) Porous cement concrete cement pavement having bond coat on rolled cement concrete and construction method therefor
JP3209151B2 (en) Fiberized resin and structure molded with the fiberized resin
CN108914734A (en) High tensile pervious concrete sandwich structure and preparation method
CN100552141C (en) The structure of bridge deck having polymer porous concrete surface layer and job practices
JP3145353B2 (en) Method for producing composite synthetic resin composition
KR100195530B1 (en) Method for producing block
JP2005008841A (en) Special adhesive, method for producing special adhesive at normal temperature and method for utilizing the same at normal temperature
KR100272798B1 (en) Water permeable concrete with high degree fluidity
CN1280226C (en) Regeneration and combination method for waste ceramic and its combined products
JPH10151612A (en) Manufacture of composite type porous block
FI74758B (en) FOERFARANDE FOER FRAMSTAELLNING AV BELAEGGNING FOER IDROTTSPLANER, ISYNNERHET TENNISPLANER.
KR100451053B1 (en) Paving method using stone powder for water permeable cement concrete road
JPH0136963Y2 (en)
JPS58110463A (en) Composite concrete
CN106587772A (en) Concrete composition and preparation method and construction method of cement base floor
JP2004218283A (en) Binder for pavement, water permeable resin mortar for pavement, and function-retaining and reinforcing method of drainable pavement
JPH01275483A (en) Production of concrete block similar to native rock and apparatus for washing out the same
JPS63125717A (en) Water-stopping construction work
JPH10265250A (en) Block molding and its production
JP2005139412A (en) Composite synthetic resin composition, its production process, and molded product, pavement structure and paving method using the same
JP2000038519A (en) Water-permeable block, structure, pavement structure and paving process using composite synthetic resin composition