JP3207704B2 - Superconductor manufacturing method - Google Patents

Superconductor manufacturing method

Info

Publication number
JP3207704B2
JP3207704B2 JP08676895A JP8676895A JP3207704B2 JP 3207704 B2 JP3207704 B2 JP 3207704B2 JP 08676895 A JP08676895 A JP 08676895A JP 8676895 A JP8676895 A JP 8676895A JP 3207704 B2 JP3207704 B2 JP 3207704B2
Authority
JP
Japan
Prior art keywords
superconductor
crystal
axis
seed
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08676895A
Other languages
Japanese (ja)
Other versions
JPH08283091A (en
Inventor
重夫 長屋
直樹 平野
誠 竹中
正晴 南
裕 河島
達哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP08676895A priority Critical patent/JP3207704B2/en
Publication of JPH08283091A publication Critical patent/JPH08283091A/en
Application granted granted Critical
Publication of JP3207704B2 publication Critical patent/JP3207704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導体の磁気反発力
を用いた軸受等に適用される超電導体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconductor applied to a bearing or the like using the magnetic repulsion of a superconductor.

【0002】[0002]

【従来の技術】従来の結晶組成を有する超電導体の製造
方法においては、種結晶や二方向温度勾配を用いない場
合や、図4に示すように種結晶を1個用いたり、二方向
温度勾配を用いる場合があり、前者の場合はランダム配
向の多結晶となり、後者の場合は一方向配向の結晶とな
る。
2. Description of the Related Art In a conventional method for manufacturing a superconductor having a crystal composition, a seed crystal or a two-way temperature gradient is not used, or as shown in FIG. May be used. In the former case, the crystal becomes a randomly oriented polycrystal, and in the latter case, the crystal becomes a unidirectionally oriented crystal.

【0003】[0003]

【発明が解決しようとする課題】結晶組成の超電導体の
場合、結晶の立体的な座標軸をa軸、b軸、c軸とする
とき、その原子配列によって、例えばab面の臨界電流
は大きいが、c軸方向は小さくなるという物性の異方性
が生じることがある。
In the case of a superconductor having a crystal composition, when the three-dimensional coordinate axes of the crystal are a-axis, b-axis, and c-axis, for example, the critical current in the ab plane is large depending on the atomic arrangement. In some cases, anisotropy of physical properties such that the c-axis direction becomes smaller may occur.

【0004】従来の多結晶ランダム配向結晶組成の超電
導体の場合、c軸があちこちを向いているため、最適な
特性が得られない。中心軸が同一線上にある円柱形超電
導体と円柱形永久磁石が軸方向に近づいて反発力を受け
るスラストタイプの超電導磁気軸受では、超電導電流は
もっぱら超電導体内部の周方向に流れるため、周方向に
電流が流れやすいようc軸を中心軸方向に配向した結晶
組成を持つ超電導体を用いると、多結晶ランダム配向の
場合より大きな配向が得られる。
In the case of a conventional superconductor having a polycrystalline random orientation crystal composition, the c-axis is oriented in various directions, so that optimum characteristics cannot be obtained. In a thrust-type superconducting magnetic bearing in which a cylindrical superconductor and a cylindrical permanent magnet whose central axes are on the same line approach each other in the axial direction and receive a repulsive force, the superconducting current flows exclusively in the circumferential direction inside the superconductor. When a superconductor having a crystal composition with the c-axis oriented in the direction of the central axis is used so that a current easily flows, a larger orientation can be obtained than in the case of the polycrystalline random orientation.

【0005】これに対し、例えば、リング形高温超電導
体の内側に円柱形またはリング形磁石が存在し、磁石が
半径方向に動いて反発力を受けるラジアルタイプの超電
導磁気軸受では、超電導電流は主として超電導体内部の
周方向および軸方向に流れる。従って、この場合は、c
軸を半径方向に配向させることが望ましい。
On the other hand, for example, in a radial type superconducting magnetic bearing in which a cylindrical or ring-shaped magnet is present inside a ring-shaped high-temperature superconductor and the magnet moves in a radial direction and receives a repulsive force, the superconducting current is mainly generated. It flows circumferentially and axially inside the superconductor. Therefore, in this case, c
It is desirable to orient the axis radially.

【0006】しかし、種結晶を一個用いる方法や二軸方
向に温度分布を与える方法では、結晶のc軸を半径方向
に配向させることは困難である。本発明は上記の課題を
解決しようとするものである。
However, it is difficult to orient the c-axis of the crystal in the radial direction by a method using one seed crystal or a method of providing a temperature distribution in two axial directions. The present invention seeks to solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明の超電導体の製造
方法においては、YBa 2 Cu 3 Oxを溶融させ、その
溶融したYBa 2 Cu 3 Oxの周囲にその結晶軸の方向
を中心方向に向けた複数の種結晶を配設した後、それを
冷却して凝固させ全ての結晶軸の方向が中心方向に向い
た超電導体を形成すること特徴としている。
According to the method of manufacturing a superconductor of the present invention, YBa 2 Cu 3 Ox is melted,
After disposing a plurality of seed crystals around the melted YBa 2 Cu 3 Ox with the direction of the crystal axis directed toward the center, the seed crystal was cooled and solidified, and the directions of all crystal axes turned toward the center. It is characterized by forming a superconductor.

【0008】[0008]

【作用】上記において、YBa 2 Cu 3 Oxを高温で溶
融した状態から徐々に冷却すると、結晶が発生しはじめ
る。
In the above, when YBa 2 Cu 3 Ox is gradually cooled from a molten state at a high temperature, crystals begin to be generated.

【0009】このとき、種結晶があると、この種結晶の
結晶軸に応じた方向に超電導体の結晶が発生し、この周
辺に同方向に配向した結晶が成長し、この結晶軸と直交
する両方向の導電性が良好な超電導体を得ることができ
る。
At this time, if there is a seed crystal, a superconductor crystal is generated in a direction corresponding to the crystal axis of the seed crystal, and crystals oriented in the same direction grow around this, and are orthogonal to this crystal axis. A superconductor having good conductivity in both directions can be obtained.

【0010】本発明においては、種結晶を複数個用い、
それぞれの種結晶を溶融したYBa 2 Cu 3 Oxの周囲
に配設しているため、結晶軸が中心方向に向いた超電導
体を作ることができ、その周方向及び軸方向に良好な導
電性を示す超電導体を得ることができる。
In the present invention, a plurality of seed crystals are used,
Since each seed crystal is arranged around the melted YBa 2 Cu 3 Ox , a superconductor having a crystal axis oriented toward the center can be produced, and good conductivity can be obtained in the circumferential direction and axial direction. The superconductor shown can be obtained.

【0011】[0011]

【実施例】本発明の一実施例に係る超電導体の製造方法
について、図1を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a superconductor according to one embodiment of the present invention will be described with reference to FIG.

【0012】図1に示す本実施例の製造方法において
は、高温で溶融された円柱形状のYBa2 Cu3 Oxの
周囲に複数の種結晶2、例えばMgO等をその結晶軸の
方向を半径方向に向けて配設した後、徐々に冷却して複
数のc軸が擬似的に半径方向に向いた超電導体1の結晶
を生成する。
[0012] In the production method of the present embodiment shown in FIG. 1, Y Ba 2 Cu 3 more seed crystal 2 around Ox cylindrical which is melted at a high temperature, the direction of the crystal axis, for example, such as MgO radius After being arranged in the direction, the crystal is gradually cooled to generate a crystal of the superconductor 1 in which a plurality of c-axes are pseudo-radially oriented.

【0013】上記において、超電導体1を製造する際、
高温で溶融した状態のYBa 2 Cu 3 Oxを徐々に冷却
すると結晶が発生しはじめる。このとき、溶融したYB
2 Cu 3 Oxの周囲に種結晶2があると、この種結晶
の結晶軸に応じた方向に超電導体の結晶が発生し、この
周辺に同方向に配向した結晶が成長していく。
In the above, when manufacturing the superconductor 1,
When YBa 2 Cu 3 Ox in a molten state at a high temperature is gradually cooled, crystals begin to be generated. At this time, the molten YB
If there is a seed crystal 2 around a 2 Cu 3 Ox , a superconductor crystal is generated in a direction corresponding to the crystal axis of the seed crystal, and crystals oriented in the same direction grow around this.

【0014】この種結晶が一個の場合は、全体が一方向
に配向した結晶になるが、本実施例においては、種結晶
を複数個用いており、それぞれの種結晶についてはc軸
が半径方向に配向するよう種結晶の結晶軸の向きをセッ
トしているため、各種結晶から成長した結晶内ではc軸
がほぼ半径方向に向いた超電導体を作ることができる。
そのため、本実施例の製造方法により製造された超電導
体は、その周方向及び軸方向に電流が流れやすいものと
なっている。
When the number of seed crystals is one, the whole crystal is oriented in one direction. In this embodiment, a plurality of seed crystals are used. Since the direction of the crystal axis of the seed crystal is set so as to be oriented in a direction, a superconductor in which the c-axis is oriented substantially in the radial direction in a crystal grown from various crystals can be produced.
Therefore, in the superconductor manufactured by the manufacturing method of the present embodiment, current easily flows in the circumferential direction and the axial direction.

【0015】本実施例に係る製造方法により製造された
超電導体1の適用例を図2により説明する。図2(a)
に示すものは、図2(c)に示すように穴1aをあけた
超電導体1をラジアルタイプの軸受として用いたもので
あり、超電導体1の穴1aにリング形永久磁石3を取り
付けた回転軸4を通している。図2(b)に示すもの
は、超電導体1の穴1aに軸5を嵌合して固定子6内に
挿入し、ロータとして用いたものである。
An application example of the superconductor 1 manufactured by the manufacturing method according to this embodiment will be described with reference to FIG. FIG. 2 (a)
2 uses a superconductor 1 having a hole 1a as a radial-type bearing as shown in FIG. 2 (c), and a rotation in which a ring-shaped permanent magnet 3 is attached to the hole 1a of the superconductor 1. Through axis 4. FIG. 2 (b) shows an example in which the shaft 5 is fitted into the hole 1a of the superconductor 1 and inserted into the stator 6 to be used as a rotor.

【0016】上記超電導体は、周方向および軸方向の臨
界電流を大きくすることができるため、前者の場合は、
磁石3を取り付けた軸4と超電導体1の反発力を大きく
することができ、後者の場合には、ロータに生じる電流
Iが大きくなり、トルクを大きくすることができる。
The superconductor can increase the critical current in the circumferential direction and the axial direction.
The repulsive force between the shaft 4 to which the magnet 3 is attached and the superconductor 1 can be increased. In the latter case, the current I generated in the rotor increases, and the torque can be increased.

【0017】本発明の他の実施例を図3に示す。図3に
示す本実施例は、複数個の種結晶2を用いるかわりに、
種結晶2に用いられる物質の結晶7でできた複数枚の板
を作り、この板で作ったるつぼを用いたものであり、こ
の場合も擬似的にc軸が半径方向を向いた超電導体を作
ることができる。
FIG. 3 shows another embodiment of the present invention. In this embodiment shown in FIG. 3, instead of using a plurality of seed crystals 2,
A plurality of plates made of a crystal 7 of the substance used for the seed crystal 2 are formed, and a crucible made of the plates is used. Can be made.

【0018】[0018]

【発明の効果】本発明の超電導体の製造方法において
は、YBa 2 Cu 3 Oxを溶融し、その周囲に種結晶を
配設した後、冷却して凝固させ、超電導体を形成させる
ことによって、超電導体の周方向および軸方向の臨界電
流を大きくすることができるため、これを磁気軸受に適
用した場合は、反発力の大きい軸受とすることができ、
モータに適用した場合、ロータに生じる電流が大きくな
り、トルクの増大が可能となる。
According to the method for producing a superconductor of the present invention, YBa 2 Cu 3 Ox is melted, a seed crystal is disposed around the melt, and then cooled and solidified to form a superconductor. Since the critical current in the circumferential and axial directions of the superconductor can be increased, when this is applied to a magnetic bearing, a bearing having a large repulsive force can be obtained.
When applied to a motor, the current generated in the rotor increases and the torque can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る超電導体の製造方法の
説明図である。
FIG. 1 is an explanatory diagram of a method for manufacturing a superconductor according to one embodiment of the present invention.

【図2】上記一実施例に係る方法により製造された超電
導体の適用例の説明図で、(a)はラジアルタイプの磁
気軸受に適用した場合、(b)はモータに適用した場合
の説明図、(c)は(a),(b)に適用される穴のあ
いた超電導体の説明図である。
FIGS. 2A and 2B are explanatory diagrams of an application example of a superconductor manufactured by the method according to the one embodiment. FIG. 2A illustrates a case where the superconductor is applied to a radial type magnetic bearing, and FIG. FIG. 1C is an explanatory view of a superconductor having holes applied to FIGS. 1A and 1B.

【図3】本発明の他の実施例に係る種結晶物質を板状に
して複数枚でるつぼを形成した超電導体の説明図であ
る。
FIG. 3 is an explanatory view of a superconductor in which a plurality of crucibles are formed in a plate shape from a seed crystal material according to another embodiment of the present invention.

【図4】従来の1個の種結晶によって形成された超電導
体の説明図である。
FIG. 4 is an explanatory view of a conventional superconductor formed by one seed crystal.

【符号の説明】[Explanation of symbols]

1 超電導体 2 種結晶 3 磁石 4,5 軸 6 固定子 7 板状の結晶 DESCRIPTION OF SYMBOLS 1 Superconductor 2 seed crystal 3 Magnet 4, 5 axis 6 Stator 7 Plate-shaped crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹中 誠 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 南 正晴 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 河島 裕 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 佐藤 達哉 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 (56)参考文献 特開 平6−316495(JP,A) 特開 平5−238731(JP,A) 特開 平4−212482(JP,A) 特開 平5−279028(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 CA(STN) JICSTファイル(JOIS) WPI(DIALOG)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Takenaka 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Masaharu Minami 2-1-1, Shin-ama, Arai-machi, Takasago-shi, Hyogo Prefecture No. 1 Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Hiroshi Kawashima 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Works, Mitsubishi Heavy Industries, Ltd. (72) Inventor Tatsuya Sato 2-chome, Araimachi, Takasago City, Hyogo Prefecture No. 1-1 Inside Takasago Works, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-6-316495 (JP, A) JP-A-5-238731 (JP, A) JP-A-4-212482 (JP, A) Kaihei 5-279028 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00 CA (STN) JICST file (JOIS) WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 YBa 2 Cu 3 Oxを溶融させ、その
融したYBa 2 Cu 3 Oxの周囲にその結晶軸の方向を
中心方向に向けた複数の種結晶を配設した後、それを冷
却して凝固させ全ての結晶軸の方向が中心方向に向いた
超電導体を形成すること特徴とする超電導体の製造方
法。
1. A melt the YBa 2 Cu 3 Ox, the soluble
After disposing a plurality of seed crystals around the melted YBa 2 Cu 3 Ox with the direction of the crystal axis directed toward the center, the seed crystal was cooled and solidified, and the directions of all the crystal axes turned toward the center. A method for manufacturing a superconductor, comprising forming a superconductor.
JP08676895A 1995-04-12 1995-04-12 Superconductor manufacturing method Expired - Fee Related JP3207704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08676895A JP3207704B2 (en) 1995-04-12 1995-04-12 Superconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08676895A JP3207704B2 (en) 1995-04-12 1995-04-12 Superconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH08283091A JPH08283091A (en) 1996-10-29
JP3207704B2 true JP3207704B2 (en) 2001-09-10

Family

ID=13895938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08676895A Expired - Fee Related JP3207704B2 (en) 1995-04-12 1995-04-12 Superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3207704B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414088B1 (en) 1995-09-13 2002-07-02 Mitsui Chemicals Inc Resin compositions and use of the same
US6472484B1 (en) 2000-03-31 2002-10-29 Mitsui Chemicals, Inc. Processes for producing polyolefin composition
US6632885B2 (en) 1999-04-13 2003-10-14 Mitsui Chemicals, Inc. Soft syndiotactic polypropylene composition and molded product
US6635733B2 (en) 2000-05-23 2003-10-21 Chisso Corporation Elastomeric polypropylene
US8258361B2 (en) 2007-07-04 2012-09-04 Mitsui Chemicals, Inc. Transition metal complex compounds, olefin oligomerization catalysts including the compounds, and processes for producing olefin oligomers using the catalysts
US9458257B2 (en) 2012-09-25 2016-10-04 Mitsui Chemicals, Inc. Process for producing olefin polymer and olefin polymer
US10457786B2 (en) 2013-02-20 2019-10-29 Prime Polymer Co., Ltd. Biaxially-stretched film and ethylene polymer composition
KR102427683B1 (en) * 2019-09-24 2022-08-03 주식회사키움 Education device and system of Cardiopulmonary Resuscitation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874318B2 (en) * 2008-11-04 2012-02-15 新日本製鐵株式会社 Superconducting bearing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414088B1 (en) 1995-09-13 2002-07-02 Mitsui Chemicals Inc Resin compositions and use of the same
US6632885B2 (en) 1999-04-13 2003-10-14 Mitsui Chemicals, Inc. Soft syndiotactic polypropylene composition and molded product
US6472484B1 (en) 2000-03-31 2002-10-29 Mitsui Chemicals, Inc. Processes for producing polyolefin composition
US6635733B2 (en) 2000-05-23 2003-10-21 Chisso Corporation Elastomeric polypropylene
US8258361B2 (en) 2007-07-04 2012-09-04 Mitsui Chemicals, Inc. Transition metal complex compounds, olefin oligomerization catalysts including the compounds, and processes for producing olefin oligomers using the catalysts
US9458257B2 (en) 2012-09-25 2016-10-04 Mitsui Chemicals, Inc. Process for producing olefin polymer and olefin polymer
US9896526B2 (en) 2012-09-25 2018-02-20 Mitsui Chemicals, Inc. Process for producing olefin polymer and olefin polymer
US10336838B2 (en) 2012-09-25 2019-07-02 Mitsui Chemicals, Inc. Process for producing olefin polymer and olefin polymer
US10336837B2 (en) 2012-09-25 2019-07-02 Mitsui Chemicals, Inc. Process for producing olefin polymer and olefin polymer
US10457786B2 (en) 2013-02-20 2019-10-29 Prime Polymer Co., Ltd. Biaxially-stretched film and ethylene polymer composition
KR102427683B1 (en) * 2019-09-24 2022-08-03 주식회사키움 Education device and system of Cardiopulmonary Resuscitation

Also Published As

Publication number Publication date
JPH08283091A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
US5126317A (en) Bearing system employing a superconductor element
JP3207704B2 (en) Superconductor manufacturing method
DE19847347C2 (en) Magnetic bearings
US6175175B1 (en) Levitation pressure and friction losses in superconducting bearings
US5479059A (en) Thin film superconductor magnetic bearings
JP3962107B2 (en) Oxide superconducting composite, method for producing the same, oxide superconducting magnet, and superconducting coil device
WO2006028065A1 (en) Rotary body used for energy storage apparatus, method of manufacturing rotary body, and energy storage apparatus
WO1991014286A1 (en) Crystal alignment technique for superconductive material
US6258753B1 (en) Process for producing optimized melt-textured bodies based on the high-temperature superconductor YBa2Cu3O7 (YBCO)
JP3177847B2 (en) Superconducting bearing device
EP0390789B1 (en) Superconducting structures
US5280011A (en) Alignment technique for anisotropicly conductive crystals utilizing a non-static magnetic field
Habisreuther et al. Requirements on melt-textured Y-Ba-Cu-O for the use in magnetic bearings or electric motors
JP4331850B2 (en) Superconducting bearing
JPH0782939B2 (en) Magnet using oxide superconductor and method for manufacturing the same
JPH0219604B2 (en)
JP3367068B2 (en) Superconducting bearing
JP3616856B2 (en) Bearing device
JP2614728B2 (en) Radial thrust magnetic bearing
JPH02192622A (en) Manufacture of superconductive wire material
Habisreuther et al. Using melt-textured YBCO for superconducting electromotors
JP3114175B2 (en) Shaft and bearing
JPH0479122B2 (en)
JP2006097678A (en) Rotary body used for energy storage apparatus, method of manufacturing rotary body, and energy storage apparatus
Ye et al. Drag torque in high Tc superconducting magnetic bearings with multi-piece superconductors in low speed high load applications

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010529

LAPS Cancellation because of no payment of annual fees