JP3207559B2 - MOS drive type semiconductor device - Google Patents

MOS drive type semiconductor device

Info

Publication number
JP3207559B2
JP3207559B2 JP28869492A JP28869492A JP3207559B2 JP 3207559 B2 JP3207559 B2 JP 3207559B2 JP 28869492 A JP28869492 A JP 28869492A JP 28869492 A JP28869492 A JP 28869492A JP 3207559 B2 JP3207559 B2 JP 3207559B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
mos
thickness
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28869492A
Other languages
Japanese (ja)
Other versions
JPH06140633A (en
Inventor
秀雄 松田
隆 藤原
道明 日吉
大 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28869492A priority Critical patent/JP3207559B2/en
Publication of JPH06140633A publication Critical patent/JPH06140633A/en
Application granted granted Critical
Publication of JP3207559B2 publication Critical patent/JP3207559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高耐圧を有するMOS
駆動型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS having a high withstand voltage.
The present invention relates to a driving semiconductor device.

【0002】[0002]

【従来の技術】従来、MOS駆動型半導体装置、例えば
IGBTは、図7又は図8に示すような素子構造を有し
ている。図7及び図8において、11は、N- 型ベ−ス
層、12は、P型ベ−ス層、13は、N型エミッタ層、
14は、P型エミッタ層、15は、カソ−ド電極、16
は、アノ−ド電極、17は、ゲ−ト電極、18は、バッ
ファ層である。
2. Description of the Related Art Conventionally, a MOS drive type semiconductor device, for example, an IGBT has an element structure as shown in FIG. 7 or FIG. 7 and 8, 11 is N Mold base layer, 12 is a P-type base layer, 13 is an N-type emitter layer,
14 is a P-type emitter layer, 15 is a cathode electrode, 16
Is an anode electrode, 17 is a gate electrode, and 18 is a buffer layer.

【0003】上記MOS駆動型半導体装置では、当該半
導体素子が形成されるチップの終端部(縁部)には、一
般に、複数の拡散層19、…から構成される多重のガ−
ドリング(プレ−ナ構造)が採用されている。これによ
り、当該半導体装置の耐圧を向上させている。
In the MOS drive type semiconductor device described above, generally, a multi-layered structure composed of a plurality of diffusion layers 19 is provided at the end (edge) of a chip on which the semiconductor element is formed.
A dring (planar structure) is employed. Thereby, the withstand voltage of the semiconductor device is improved.

【0004】しかし、上述のような多重のガ−ドリング
からなるプレ−ナ構造を採用すると、第一に、チップの
終端部において複数の拡散層19、…(電流が流れない
領域)が大きな面積を占め、チップ上における有効面積
が減少する、という欠点がある。また、第二に、当該プ
レ−ナ構造においても、理論上得ることができる耐圧の
約8割しか耐圧を得ることができない、という欠点があ
る。
However, when the planar structure composed of multiple guard rings as described above is adopted, first, a plurality of diffusion layers 19,... And the effective area on the chip is reduced. Second, the planar structure has a drawback that only about 80% of the theoretically obtainable withstand voltage can be obtained.

【0005】[0005]

【発明が解決しようとする課題】このように、従来は、
チップの終端部において、多重のガ−ドリングからなる
プレ−ナ構造を採用しているが、かかる構造では、チッ
プ上における有効面積が減少したり、理論値よりも低い
耐圧しか得られない、という欠点がある。
As described above, conventionally,
At the end of the chip, a planar structure composed of multiple guard rings is employed. However, such a structure reduces the effective area on the chip and provides a withstand voltage lower than the theoretical value. There are drawbacks.

【0006】本発明は、上記欠点を解決すべくなされた
もので、その目的は、チップ上における有効面積を増や
し、理論値に近い電圧阻止能力を有するMOS駆動型半
導体装置を提供することである。
The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide a MOS-driven semiconductor device having an effective area on a chip and having a voltage blocking capability close to a theoretical value. .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明のMOS駆動型半導体装置は、第1導電型の
第1の層と、前記第1の層上に形成される第2導電型の
第2の層と、前記第2の層の表面領域に形成される第1
導電型の複数の第3の層と、前記第3の層の表面領域に
形成される第2導電型の第4の層と、前記第1の層に接
続される第1の電極と、前記第3及び第4の層に接続さ
れる第2の電極と、前記第3の層に跨がるように形成さ
れる第3の電極と、前記第2の層の終端部の表面領域に
一つのみ形成され、前記第2の電極に接続されることに
より前記第3の層の電位と同電位に保たれる第1導電型
の第5の層とを備える。
In order to achieve the above object, a MOS drive type semiconductor device according to the present invention comprises a first layer of a first conductivity type and a second layer formed on the first layer. A second layer of a mold and a first layer formed in a surface region of the second layer.
A plurality of third layers of a conductivity type; a fourth layer of a second conductivity type formed in a surface region of the third layer; a first electrode connected to the first layer; A second electrode connected to the third and fourth layers, a third electrode formed so as to straddle the third layer, and a first electrode in a surface region of a terminal portion of the second layer. And a fifth layer of the first conductivity type that is connected to the second electrode and maintained at the same potential as the potential of the third layer.

【0008】また、前記第5の層の厚さは、前記第3の
層の厚さよりも大きくなっている。前記第3の層の直下
における第1の層の厚さは、前記第5の層の直下におけ
る第1の層の厚さよりも大きくなっており、前記第2の
層の厚さがほぼ均一である。
[0008] The thickness of the fifth layer is larger than the thickness of the third layer. The thickness of the first layer immediately below the third layer is greater than the thickness of the first layer immediately below the fifth layer, and the thickness of the second layer is substantially uniform. is there.

【0009】また、前記第5の層の直下における第1の
層の導電型を第2導電型に変え、かつ、当該第2導電型
の第1の層の不純物濃度を前記第2の層の不純物濃度よ
りも高くしている。また、前記第1の層と前記第2の層
との間にバッファ層を設けたものである。前記第2の層
の終端部は、斜めに切り落とされており、かつ、当該終
端部は、樹脂によって保護されている。
In addition, the conductivity type of the first layer immediately below the fifth layer is changed to the second conductivity type, and the impurity concentration of the first layer of the second conductivity type is changed to the second layer. It is higher than the impurity concentration. Further, a buffer layer is provided between the first layer and the second layer. The terminal end of the second layer is cut off diagonally, and the terminal end is protected by resin.

【0010】[0010]

【作用】上記構成によれば、第2の層の終端部には、第
3の層と同電位の一つの第5の層が形成され、かつ、い
わゆるメサ構造を採用している。また、通電領域におけ
る第1の層の深さも大きくしている。これにより、素子
特性を劣化させることなく、チップ上における有効面積
を増やすことができ、理論値に近い電圧素子能力を有す
るMOS駆動型半導体装置を提供できる。さらに、当該
MOS駆動型半導体装置とダイオ−ドとをモノリシック
に形成することもでき、当該半導体装置を利用した応用
装置全体の小型化に貢献できる。
According to the above construction, one fifth layer having the same potential as that of the third layer is formed at the terminal end of the second layer, and a so-called mesa structure is employed. Further, the depth of the first layer in the energized region is also increased. As a result, the effective area on the chip can be increased without deteriorating element characteristics, and a MOS-driven semiconductor device having a voltage element capability close to the theoretical value can be provided. Further, the MOS drive type semiconductor device and the diode can be formed monolithically, which can contribute to downsizing of the entire application device using the semiconductor device.

【0011】[0011]

【実施例】以下、図面を参照しながら、本発明の一実施
例について詳細に説明する。図1は、本発明の第1の実
施例に係わるMOS駆動型半導体装置(IGBT)を示
すものである。図1において、21は、N- 型ベ−ス
層、22は、P型ベ−ス層、23は、N型エミッタ層、
24は、P型エミッタ層、25は、カソ−ド電極、26
は、アノ−ド電極、27は、ゲ−ト電極である。
An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a MOS drive type semiconductor device (IGBT) according to a first embodiment of the present invention. In FIG. 1, 21 is N Mold base layer, 22 is a P-type base layer, 23 is an N-type emitter layer,
24 is a P-type emitter layer, 25 is a cathode electrode, 26
Is an anode electrode, and 27 is a gate electrode.

【0012】上記MOS駆動型半導体装置は、当該半導
体素子が形成されるチップの終端部(縁部)に一つの拡
散層28を有している。この拡散層28は、チップの終
端部おいて当該チップを取り囲むようにして形成されて
いる。また、拡散層28は、カソ−ド電極25に接続さ
れており、P型ベ−ス層22と同電位となっている。さ
らに、チップの終端面は、斜め(例えば基板主面に対し
約60°)に切り落とされ、かつ、シリコ−ン樹脂29
等で保護されている。なお、このシリコ−ン樹脂29等
は、チップの終端面を斜めに切り落とす加工による破砕
層をエッチングにより除去した後に形成される。
The MOS drive type semiconductor device has one diffusion layer 28 at the end (edge) of the chip on which the semiconductor element is formed. The diffusion layer 28 is formed at the terminal end of the chip so as to surround the chip. The diffusion layer 28 is connected to the cathode electrode 25 and has the same potential as the P-type base layer 22. Further, the terminal surface of the chip is cut off diagonally (for example, at about 60 ° with respect to the main surface of the substrate).
Etc. are protected. The silicon resin 29 and the like are formed after a crushed layer formed by diagonally cutting off the end surface of the chip is removed by etching.

【0013】上記構成によれば、チップ終端部の拡散層
28は一つであり、また、当該拡散層28は、P型ベ−
ス層22と同電位である。さらに、チップ終端面が斜め
に切り落とされたメサ構造を有する。これにより、チッ
プ上における有効面積を増やすことができると共に、理
論値に近い電圧阻止能力を有するMOS駆動型半導体装
置にすることができる。
According to the above configuration, the number of the diffusion layer 28 at the chip end is one, and the diffusion layer 28 is a P-type base.
The potential is the same as that of the semiconductor layer 22. Further, it has a mesa structure in which the chip end surface is cut off obliquely. Thereby, the effective area on the chip can be increased, and a MOS-driven semiconductor device having a voltage blocking ability close to the theoretical value can be obtained.

【0014】図2は、本発明の第2の実施例に係わるM
OS駆動型半導体装置(IGBT)を示すものである。
なお、図2において、図1と同じ部分には同じ符号を付
してある。
FIG. 2 is a block diagram showing a second embodiment of the present invention.
1 shows an OS drive type semiconductor device (IGBT).
In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals.

【0015】このMOS駆動型半導体装置は、チップの
終端部の拡散層28の深さを、P型ベ−ス層22の深さ
よりも大きくしたものである。P型ベ−ス層22の深さ
は、一般的には約10〜25[μm]であり、この程度
の深さで2500[V]以上の電圧阻止能力を持たせよ
うとするのは困難である。なぜなら、チップ終端部の鋭
角部は製造工程途上においてかけやすく、また、かけた
場合には拡散層28の深さが実質的に浅くなるためであ
る。そこで、チップの終端部の拡散層28の深さを、P
型ベ−ス層22の深さ(約10〜25[μm])よりも
深い、約30〜70[μm]としたものである。
In this MOS drive type semiconductor device, the depth of the diffusion layer 28 at the end of the chip is greater than the depth of the P-type base layer 22. The depth of the P-type base layer 22 is generally about 10 to 25 [μm], and it is difficult to provide a voltage blocking ability of 2500 [V] or more at such a depth. It is. This is because the sharp end portion of the chip end portion is easily formed during the manufacturing process, and when formed, the depth of the diffusion layer 28 is substantially reduced. Therefore, the depth of the diffusion layer 28 at the end of the chip is set to P
The depth is about 30 to 70 [μm], which is deeper than the depth (about 10 to 25 [μm]) of the mold base layer 22.

【0016】上記構成によれば、上記第1の実施例と同
様の効果が得られる他、さらに2500[V]以上の電
圧阻止能力を有するMOS駆動型半導体装置を歩留りよ
く製造できる、という効果が得られる。
According to the above configuration, the same effect as that of the first embodiment can be obtained, and further, a MOS drive type semiconductor device having a voltage blocking ability of 2500 [V] or more can be manufactured with high yield. can get.

【0017】図3は、本発明の第3の実施例に係わるM
OS駆動型半導体装置(IGBT)を示すものである。
なお、図3において、図2と同じ部分には同じ符号を付
してある。
FIG. 3 shows a third embodiment of the present invention.
1 shows an OS drive type semiconductor device (IGBT).
In FIG. 3, the same parts as those in FIG. 2 are denoted by the same reference numerals.

【0018】このMOS駆動型半導体装置は、チップの
終端部の拡散層28の深さを、P型ベ−ス層22の深さ
よりも大きくし、電圧阻止能力の向上を図った点におい
て第2の実施例と共通する。
This MOS drive type semiconductor device is characterized in that the depth of the diffusion layer 28 at the end of the chip is made larger than the depth of the P-type base layer 22 to improve the voltage blocking capability. This embodiment is common to the embodiment of FIG.

【0019】しかし、第2の実施例では、通電領域にお
けるN- 型べ−ス層21が、終端部の拡散層28直下の
- 型べ−ス層21に比べて、当該拡散層28を深くし
た分だけ厚くなってしまう。なお、通電領域におけるN
- 型べ−ス層21が厚くなると、以下の不都合が生じ
る。即ち、N- 型べ−ス層21の抵抗値 Rが増大する
ため、当該N- 型べ−ス層21中の電圧降下 V(=R
×I)もまた大きくなる。なお、電流Iは一定とする。
従って、当該半導体装置に発生する電力(熱エネルギ
−) P(=I×V)が増大し、通電状態における特性
を劣化させる。
However, in the second embodiment, N The mold base layer 21 is formed of N just below the diffusion layer 28 at the end. As compared with the mold base layer 21, the diffusion layer 28 becomes thicker by the depth. Note that N in the energization region
- When the mold base layer 21 is thick, the following disadvantages occur. In other words, N - Since the resistance value R of the mold base layer 21 increases, the N The voltage drop V (= R) in the mold base layer 21
× I) also increases. Note that the current I is constant.
Therefore, the power (thermal energy) P (= I × V) generated in the semiconductor device increases, and the characteristics in the energized state deteriorate.

【0020】そこで、本実施例では、通電領域における
P型エミッタ層24の深さを、他の領域(終端部)にお
ける当該P型エミッタ層24の深さよりも大きくしたも
のである。言い換えれば、N- 型ベ−ス層21の厚さ
tを場所によらず、即ち通電領域及びチップ終端部にお
いてほぼ一定としたものである。
Therefore, in the present embodiment, the depth of the P-type emitter layer 24 in the current-carrying region is made larger than the depth of the P-type emitter layer 24 in the other region (termination). In other words, N - The thickness of the mold base layer 21
t is substantially constant regardless of the location, that is, in the energized region and the chip end portion.

【0021】上記構成によれば、上記第2の実施例と同
様の効果が得られることに加えて、さらに通電状態にお
ける特性を向上、即ちMOS駆動型半導体装置に発生す
る熱量を最小限に抑えることができる。
According to the above configuration, in addition to obtaining the same effects as in the second embodiment, the characteristics in the energized state are further improved, that is, the amount of heat generated in the MOS drive type semiconductor device is minimized. be able to.

【0022】図4は、本発明の第4の実施例に係わるM
OS駆動型半導体装置(IGBT)を示すものである。
なお、図4において、図3と同じ部分には同じ符号を付
してある。
FIG. 4 is a block diagram of a fourth embodiment of the present invention.
1 shows an OS drive type semiconductor device (IGBT).
In FIG. 4, the same parts as those in FIG. 3 are denoted by the same reference numerals.

【0023】このMOS駆動型半導体装置は、チップの
終端部において、アノ−ド電極26側にチャネルストッ
パとしてのN型拡散層30を形成したものである。この
拡散層30は、チャネルストッパとしての役割を果たす
と共に、当該半導体素子(IGBT)と逆並列に接続さ
れるダイオ−ド31としての役割を果たすものである。
また、N型拡散層30の不純物濃度は、N- 型ベ−ス層
21の不純物濃度よりも高くなっている。
In this MOS drive type semiconductor device, an N-type diffusion layer 30 as a channel stopper is formed on the anode electrode 26 side at the end of the chip. The diffusion layer 30 functions as a channel stopper and also functions as a diode 31 connected in anti-parallel with the semiconductor element (IGBT).
The impurity concentration of the N-type diffusion layer 30 is N It is higher than the impurity concentration of the mold base layer 21.

【0024】上記構成によれば、上記第3の実施例と同
様の効果が得られる他、以下の効果を得ることができ
る。即ち、IGBTなどのMOS駆動型半導体装置は、
これにダイオ−ドを逆並列に接続して使用するのが一般
的であり、本実施例によれば、当該IGBTとダイオ−
ドをモノリシックに形成できるため、当該半導体装置を
利用した応用装置全体の小型化を達成できるメリットが
ある。
According to the above configuration, the same effects as those of the third embodiment can be obtained, and the following effects can be obtained. That is, a MOS-driven semiconductor device such as an IGBT is
In general, a diode is connected in anti-parallel and used, and according to this embodiment, the IGBT and the diode are connected.
Since the semiconductor device can be formed monolithically, there is an advantage that the size of the entire application device using the semiconductor device can be reduced.

【0025】図5及び図6は、それぞれ本発明の第5の
実施例に係わるMOS駆動型半導体装置(IGBT)を
示すものである。なお、図5において図3と同じ部分に
は同じ符号を付してある。また、図6において図4と同
じ部分には同じ符号を付してある。
FIGS. 5 and 6 show a MOS-driven semiconductor device (IGBT) according to a fifth embodiment of the present invention. In FIG. 5, the same parts as those in FIG. 3 are denoted by the same reference numerals. In FIG. 6, the same parts as those in FIG. 4 are denoted by the same reference numerals.

【0026】本実施例は、図3及び図4のMOS駆動型
半導体装置にバッファ層32を設けたものであり、これ
によりN- 型ベ−ス層21をさらに薄くすることがで
き、電圧降下を低くすることができる。なお、ここでは
IGBTについて記述したが、本発明がその他のMOS
駆動型半導体装置にも適用できることは、容易に類推で
きる。
[0026] This example is for a buffer layer 32 provided on the MOS-driven type semiconductor device of FIG. 3 and FIG. 4, thereby N - The mold base layer 21 can be further thinned, and the voltage drop can be reduced. Although the IGBT has been described here, the present invention is not limited to other MOS transistors.
It can be easily analogized that the present invention can also be applied to a drive type semiconductor device.

【0027】[0027]

【発明の効果】以上、説明したように、本発明のMOS
駆動型半導体装置によれば、次のような効果を奏する。
チップ終端部には、P型ベ−ス層と同電位の一つのP型
拡散層が形成され、かつ、メサ構造を採用している。ま
た、通電領域におけるP型エミッタ領域の深さも大きく
している。これにより、素子特性を劣化させることな
く、チップ上における有効面積を増やすことができ、理
論値に近い電圧素子能力を有するMOS駆動型半導体装
置を提供できる。さらに、IGBTとダイオ−ドをモノ
リシックに形成でき、当該半導体装置を利用した応用装
置全体の小型化に貢献できる。
As described above, the MOS of the present invention is used as described above.
According to the drive type semiconductor device, the following effects can be obtained.
One P-type diffusion layer having the same potential as that of the P-type base layer is formed at the chip end, and employs a mesa structure. Further, the depth of the P-type emitter region in the current-carrying region is also increased. As a result, the effective area on the chip can be increased without deteriorating element characteristics, and a MOS-driven semiconductor device having a voltage element capability close to the theoretical value can be provided. Further, the IGBT and the diode can be formed monolithically, which contributes to the miniaturization of the whole application device using the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係わるMOS駆動型半
導体装置を示す断面図。
FIG. 1 is a sectional view showing a MOS-driven semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係わるMOS駆動型半
導体装置を示す断面図。
FIG. 2 is a sectional view showing a MOS-driven semiconductor device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例に係わるMOS駆動型半
導体装置を示す断面図。
FIG. 3 is a sectional view showing a MOS-driven semiconductor device according to a third embodiment of the present invention.

【図4】本発明の第4の実施例に係わるMOS駆動型半
導体装置を示す断面図。
FIG. 4 is a sectional view showing a MOS-driven semiconductor device according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例に係わるMOS駆動型半
導体装置を示す断面図。
FIG. 5 is a sectional view showing a MOS-driven semiconductor device according to a fifth embodiment of the present invention.

【図6】本発明の第5の実施例に係わるMOS駆動型半
導体装置を示す断面図。
FIG. 6 is a sectional view showing a MOS-driven semiconductor device according to a fifth embodiment of the present invention.

【図7】従来のMOS駆動型半導体装置を示す断面図。FIG. 7 is a sectional view showing a conventional MOS drive type semiconductor device.

【図8】従来のMOS駆動型半導体装置を示す断面図。FIG. 8 is a sectional view showing a conventional MOS drive type semiconductor device.

【符号の説明】[Explanation of symbols]

21 …N- 型ベ−ス層、 22 …P型ベ−ス層、 23 …N型エミッタ層、 24 …P型エミッタ層、 25 …カソ−ド電極、 26 …アノ−ド電極、 27 …ゲ−ト電極、 28 …P型拡散層、 29 …シリコ−ン樹脂、 30 …N型拡散層、 31 …ダイオ−ド、 32 …バッファ層。21 ... N - Type base layer, 22 ... P type base layer, 23 ... N type emitter layer, 24 ... P type emitter layer, 25 ... cathode electrode, 26 ... anode electrode, 27 ... gate electrode, 28 ... P-type diffusion layer, 29 ... silicon resin, 30 ... N-type diffusion layer, 31 ... diode, 32 ... buffer layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 唐澤 大 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (56)参考文献 特開 平4−229661(JP,A) 特開 昭63−104480(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Dai Dai Karasawa 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant, Inc. (56) References JP-A-4-229661 (JP, A) JP-A-63 −104480 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 29/78

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型の第1の層と、前記第1の層
上に形成される第2導電型の第2の層と、前記第2の層
の表面領域に形成される第1導電型の複数の第3の層
と、前記第3の層の表面領域に形成される第2導電型の
第4の層と、前記第1の層に接続される第1の電極と、
前記第4の層、或いは前記第3及び第4の層に接続され
る第2の電極と、前記第3の層に跨がるように絶縁層を
介して形成される第3の電極と、前記第2の層の終端部
の表面領域に一つのみ形成され、前記第2の電極に接続
されることにより前記第3の層の電位と同電位に保たれ
る第1導電型の第5の層とを具備し、前記第5の層の厚
さは、前記第3の層の厚さよりも大きくなっていること
を特徴とするMOS駆動型半導体装置。
1. A first layer of a first conductivity type, a second layer of a second conductivity type formed on the first layer, and a first layer formed on a surface region of the second layer. A plurality of third layers of one conductivity type, a fourth layer of second conductivity type formed in a surface region of the third layer, a first electrode connected to the first layer,
A fourth electrode or a second electrode connected to the third and fourth layers, and a third electrode formed via an insulating layer so as to extend over the third layer; Only one is formed in the surface region of the terminal portion of the second layer, and is connected to the second electrode so as to be maintained at the same potential as the potential of the third layer. And the thickness of the fifth layer
The MOS drive type semiconductor device , wherein the thickness is larger than the thickness of the third layer .
【請求項2】 前記第3の層の直下における第1の層の
厚さは、前記第5の層の直下における第1の層の厚さよ
りも大きくなっており、前記第2の層の厚さがほぼ均一
であることを特徴とする請求項に記載のMOS駆動型
半導体装置。
2. The thickness of the first layer immediately below the third layer is greater than the thickness of the first layer immediately below the fifth layer, and the thickness of the second layer is 2. The MOS-driven semiconductor device according to claim 1 , wherein said MOS drive type semiconductor device has a substantially uniform thickness.
【請求項3】 前記第5の層の直下における第1の層の
導電型を第2導電型に変え、かつ、当該第2導電型の第
1の層の不純物濃度を前記第2の層の不純物濃度よりも
高くしたことを特徴とする請求項1又は2に記載のMO
S駆動型半導体装置。
3. The method according to claim 1, wherein the conductivity type of the first layer immediately below the fifth layer is changed to the second conductivity type, and the impurity concentration of the first layer of the second conductivity type is changed to the second layer. 3. The MO according to claim 1, wherein the impurity concentration is higher than the impurity concentration.
S drive type semiconductor device.
【請求項4】 前記第2の層の終端部は、斜めに切り落
とされており、かつ、当該終端部は、樹脂によって保護
されていることを特徴とする請求項1乃至のいずれか
1項に記載のMOS駆動型半導体装置。
4. A terminal portion of the second layer is cut off obliquely, and the termination section, any one of claims 1 to 3, characterized in that it is protected by the resin 2. The MOS-driven semiconductor device according to 1.
JP28869492A 1992-10-27 1992-10-27 MOS drive type semiconductor device Expired - Lifetime JP3207559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28869492A JP3207559B2 (en) 1992-10-27 1992-10-27 MOS drive type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28869492A JP3207559B2 (en) 1992-10-27 1992-10-27 MOS drive type semiconductor device

Publications (2)

Publication Number Publication Date
JPH06140633A JPH06140633A (en) 1994-05-20
JP3207559B2 true JP3207559B2 (en) 2001-09-10

Family

ID=17733488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28869492A Expired - Lifetime JP3207559B2 (en) 1992-10-27 1992-10-27 MOS drive type semiconductor device

Country Status (1)

Country Link
JP (1) JP3207559B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275536B2 (en) 1994-05-31 2002-04-15 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP3612226B2 (en) * 1998-12-21 2005-01-19 株式会社東芝 Semiconductor device and semiconductor module
JP5082211B2 (en) * 2005-03-25 2012-11-28 富士電機株式会社 Manufacturing method of semiconductor device
JP2007184486A (en) * 2006-01-10 2007-07-19 Denso Corp Semiconductor device
JP4265684B1 (en) * 2007-11-07 2009-05-20 トヨタ自動車株式会社 Semiconductor device
JP5520024B2 (en) * 2009-12-09 2014-06-11 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP6317694B2 (en) 2015-03-16 2018-04-25 株式会社東芝 Semiconductor device
JP7043750B2 (en) * 2017-07-14 2022-03-30 株式会社デンソー SiC- MOSFET

Also Published As

Publication number Publication date
JPH06140633A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
JP2590284B2 (en) Semiconductor device and manufacturing method thereof
JP3417013B2 (en) Insulated gate bipolar transistor
JPH07105496B2 (en) Insulated gate bipolar transistor
JPH05152574A (en) Semiconductor device
US5166760A (en) Semiconductor Schottky barrier device with pn junctions
US5278443A (en) Composite semiconductor device with Schottky and pn junctions
JPH05347413A (en) Manufacture of semiconductor device
JP3321189B2 (en) Power semiconductor device
JP2817536B2 (en) Semiconductor device
JP3207559B2 (en) MOS drive type semiconductor device
US5210601A (en) Compression contacted semiconductor device and method for making of the same
JPH08148675A (en) Semiconductor device
JP3281194B2 (en) Power semiconductor device
JP2003174168A (en) Insulating gate bipolar transistor and its manufacturing method
JP3297087B2 (en) High voltage semiconductor device
JPH08236762A (en) Reverse check type semiconductor device and its manufacture
JPH0642541B2 (en) Schottky barrier semiconductor device
JPH0845874A (en) Semiconductor device
JP5077508B2 (en) Semiconductor device and manufacturing method thereof
JPS6257250A (en) Semiconductor device
JP3266117B2 (en) Semiconductor device and manufacturing method thereof
JP2928417B2 (en) Method for manufacturing semiconductor device
JPS59163865A (en) Gate turn-off thyristor
JPH0416443Y2 (en)
JP3435246B2 (en) Reverse conducting thyristor with planar gate structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9