JP3207476B2 - Bilayer film fabrication substrate - Google Patents

Bilayer film fabrication substrate

Info

Publication number
JP3207476B2
JP3207476B2 JP33825291A JP33825291A JP3207476B2 JP 3207476 B2 JP3207476 B2 JP 3207476B2 JP 33825291 A JP33825291 A JP 33825291A JP 33825291 A JP33825291 A JP 33825291A JP 3207476 B2 JP3207476 B2 JP 3207476B2
Authority
JP
Japan
Prior art keywords
substrate
film
bilayer film
bilayer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33825291A
Other languages
Japanese (ja)
Other versions
JPH05175573A (en
Inventor
一 山口
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33825291A priority Critical patent/JP3207476B2/en
Publication of JPH05175573A publication Critical patent/JPH05175573A/en
Application granted granted Critical
Publication of JP3207476B2 publication Critical patent/JP3207476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は二分子膜作製基板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bilayer film forming substrate.

【0002】[0002]

【従来の技術】現在までのところ、シリコンを中心とし
た半導体技術によるトランジスタ、IC、LSI、超L
SIの開発が行われ、今日のエレクトロニクスの基礎が
築かれてきた。一方、生命または生体現象の解明に伴
い、新しい考え方に基づいた材料、素子の開発への期待
が高まっている。これは、生体現象を模倣して、情報処
理、認識、記憶などの面でこれまでと異なる原理に基礎
をおく材料、素子によって新しいエレクトロニクス技術
を担うという考え方に基づいている。
2. Description of the Related Art To date, transistors, ICs, LSIs, ultra-L
The development of SI has laid the foundation for today's electronics. On the other hand, with the elucidation of life or biological phenomena, expectations for the development of materials and devices based on new ideas are increasing. This is based on the idea that materials and elements based on different principles in information processing, recognition, storage, and the like imitate biological phenomena and play a new electronic technology.

【0003】生体膜は、生体機能を発現する場として、
外部からの情報の認識と膜内への伝送、物質の変換、輸
送などの種々の重要な役割を果たしている。このため、
生体系を模倣した材料、素子の作製にとって、人工的な
膜の開発が極めて重要である。こうした人工的な膜とし
ては、高分子キャスト膜、ラングミュア−ブロジェット
(LB)膜など種々のものが考えられているが、生体膜
モデルとしては二分子膜系が最も生体系に近い形態であ
る。この二分子膜は、水中において基板に設けられた小
孔内に、リン脂質などの両親媒性分子を疎水部のアルキ
ル鎖どうしを向けたかたちで、二分子層配列させた超薄
膜のことである。
[0003] Biological membranes serve as a place where biological functions are expressed.
It plays various important roles such as recognition of information from outside and transmission into the membrane, conversion of substances, and transport. For this reason,
The development of artificial membranes is extremely important for the production of materials and devices that mimic biological systems. Various artificial membranes such as a polymer cast membrane and a Langmuir-Blodgett (LB) membrane have been considered as such artificial membranes. As a biological membrane model, a bilayer membrane system is the form closest to the biological system. . This bilayer film is an ultrathin film in which bilayers are arranged in water by forming amphipathic molecules such as phospholipids into the pores formed in the substrate with the alkyl chains of the hydrophobic part facing each other. is there.

【0004】ところで、二分子膜の電気特性の測定を行
う場合、および二分子膜に対して電気的に摂動を与える
場合には、水中において膜の両側に電極を設置する必要
がある。従来、この電極は二分子膜を作製する基板とは
別に水中に設置されており、セル容積を小さくする上で
限界があった。そして、このことは二分子膜を用いた集
積素子を開発する上で、大きな障害となっていた。
By the way, when measuring the electrical characteristics of a bilayer membrane and when electrically perturbing the bilayer membrane, it is necessary to install electrodes on both sides of the membrane in water. Conventionally, this electrode has been installed in water separately from the substrate on which the bilayer film is formed, and there is a limit in reducing the cell volume. This has been a major obstacle in developing an integrated device using a bimolecular film.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、セル
容積を小さくでき、二分子膜を用いた集積素子の開発が
可能となる二分子膜作製基板を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bilayer film forming substrate capable of reducing the cell volume and developing an integrated device using a bilayer film.

【0006】[0006]

【課題を解決するための手段】本発明の二分子膜作製基
板は、貫通された小孔を有し表面が疎水的である薄膜基
板上に電極を形成したことを特徴とするものである。
The bilayer film-forming substrate of the present invention is characterized in that electrodes are formed on a thin film substrate having small holes penetrated and having a hydrophobic surface.

【0007】本発明において、基板の材質は、数μm〜
数mm径の貫通された小孔を形成でき、かつその表面に
電極を形成できるものであれば特に限定されるものでは
ない。例えば、テフロン、ポリイミド、ポリエチレン、
ポリスチレン、ポリ塩化ビニリデンなどの高分子を用い
ることができる。また、鉄、ニッケル、銅、白金、金、
銀、チタンなどの純金属、ステンレスなどの合金、シリ
コンなどの半導体を用いることもできる。基板の厚さ
は、板としての強度を保つことができる厚さ、例えば数
μm〜数mmであれば十分である。
In the present invention, the material of the substrate is from several μm to
There is no particular limitation as long as a small hole having a diameter of several mm can be formed and an electrode can be formed on the surface thereof. For example, Teflon, polyimide, polyethylene,
Polymers such as polystyrene and polyvinylidene chloride can be used. Also, iron, nickel, copper, platinum, gold,
Pure metals such as silver and titanium, alloys such as stainless steel, and semiconductors such as silicon can also be used. The thickness of the substrate is sufficient if it can maintain the strength as a plate, for example, several μm to several mm.

【0008】本発明において、基板に小孔を形成させる
には、種々の方法が用いられる。高分子シートに対して
は、高圧放電によってシートを打ち抜く方法が挙げられ
る。金属基板に対しては、レーザなどの利用による熱的
な方法、エッチングによる方法が挙げられる。さらに、
より制御された大きさおよび形状の小孔を得るために、
レジストを用いたマイクロリソグラフィによる方法、電
解析出法により小孔がパターン化された金属基板を析出
させる方法なども利用できる。半導体基板に対しては、
エッチングによる方法が挙げられる。
In the present invention, various methods are used to form small holes in the substrate. For the polymer sheet, a method of punching out the sheet by high-pressure discharge may be used. For a metal substrate, a thermal method using a laser or the like and a method using etching can be used. further,
In order to obtain more controlled size and shape pores,
A method by microlithography using a resist, a method of depositing a metal substrate having small holes patterned by an electrolytic deposition method, and the like can also be used. For semiconductor substrates,
An etching method may be used.

【0009】基板として金属または半導体を用いる場
合、電極を形成する前に、その表面にそれ自身の絶縁性
の酸化膜を形成するか、その表面をテフロンなどの絶縁
性の高分子によって被覆する。酸化膜の形成方法として
は、熱酸化など各材料で通常行われている方法を用いる
ことができる。高分子などによる絶縁コートの方法とし
ては、スピンコート、ディッピングコートなどが挙げら
れる。テフロンなどの高分子を用いた場合、同時に基板
表面を疎水化することもできる。
When a metal or semiconductor is used as the substrate, before forming an electrode, an insulating oxide film of its own is formed on the surface thereof, or the surface is covered with an insulating polymer such as Teflon. As a method for forming the oxide film, a method usually used for each material such as thermal oxidation can be used. Examples of the method of insulating coating with a polymer or the like include spin coating and dipping coating. When a polymer such as Teflon is used, the substrate surface can be made hydrophobic at the same time.

【0010】基板表面を疎水化する方法としては、用い
る基板により種々の方法が考えられるが、二分子膜を形
成する脂質の膜形成が可能であれば特に限定されない。
例えば、ヘキサデシルトリクロロシランなどのモノアル
キルトリクロロシラン類、ジアルキルジクロロシラン
類、トリアルキルモノクロロシラン類、ヘキサメチルジ
シラザンなどにより表面処理する方法、LB法により基
板上にステアリン酸カドミウム塩などの分子膜を形成す
る方法などが挙げられる。
There are various methods for hydrophobizing the surface of the substrate depending on the substrate used. However, the method is not particularly limited as long as the lipid film forming the bilayer membrane can be formed.
For example, surface treatment with monoalkyltrichlorosilanes such as hexadecyltrichlorosilane, dialkyldichlorosilanes, trialkylmonochlorosilanes, hexamethyldisilazane, etc., molecular film such as cadmium stearate on a substrate by LB method And the like.

【0011】本発明において、電極は基板に安定に保持
されるものであれば特に限定されない。例えば、金、白
金、銀、銅、ニッケルなどの金属電極が挙げられる。ま
た、安定な電位を記録するためには、銀/塩化銀電極、
カロメル電極などの金属−難溶塩電極が好ましい。電極
の形状は特に限定されないが、小孔の周囲を取り囲むよ
うに環状に形成することが好ましい。基板表面に選択的
に電極を形成する方法としては、用いる基板、電極の材
質により種々の方法が考えられる。例えば、接着、電解
析出、蒸着などの方法が挙げられる。以上のような構成
の基板に二分子膜を作製する方法としては、周知の貼り
合わせ法(モンタール法)、または刷毛塗り法のいずれ
も用いることができる。
In the present invention, the electrodes are not particularly limited as long as they are stably held on the substrate. For example, metal electrodes such as gold, platinum, silver, copper, and nickel can be used. In addition, in order to record a stable potential, a silver / silver chloride electrode,
Metal-poorly soluble salt electrodes such as calomel electrodes are preferred. The shape of the electrode is not particularly limited, but is preferably formed in a ring shape so as to surround the periphery of the small hole. Various methods are conceivable for selectively forming electrodes on the substrate surface, depending on the substrate used and the material of the electrodes. For example, methods such as adhesion, electrolytic deposition, and vapor deposition can be used. As a method for producing a bilayer film on the substrate having the above structure, any of a well-known laminating method (Montal method) and a brush coating method can be used.

【0012】[0012]

【作用】本発明の二分子膜作製基板では、電極が基板上
に一体化して形成されているため、セル容積を小さくで
きるとともにセル構造が単純になり、容易に集積化する
ことができる。
In the substrate for producing a bilayer film according to the present invention, since the electrodes are formed integrally on the substrate, the cell volume can be reduced and the cell structure can be simplified, so that it can be easily integrated.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 実施例1
Embodiments of the present invention will be described below with reference to the drawings. Example 1

【0014】図1は本実施例における基板の平面図、図
2は断面図である。厚さ50μmのテフロン基板1に、
高圧放電によって600μm径の小孔2を形成した。こ
の基板表面に銀ペーストを用いて銀を接着した後、銀表
面に塩化銀を析出させて、小孔2の周囲を取り囲むよう
に環状の銀/塩化銀電極3を形成し、二分子膜作製基板
とした。
FIG. 1 is a plan view of a substrate in this embodiment, and FIG. 2 is a cross-sectional view. On a 50 μm thick Teflon substrate 1,
Small holes 2 having a diameter of 600 μm were formed by high-pressure discharge. After silver is adhered to the substrate surface using a silver paste, silver chloride is deposited on the silver surface, and a ring-shaped silver / silver chloride electrode 3 is formed so as to surround the perimeter of the small hole 2 to form a bilayer film. A substrate was used.

【0015】この基板を2室が電気的に絶縁されるよう
に、テフロン製電気化学セルに固定した。セルには、
0.1MKCl水溶液を満たした。この基板の小孔にモ
ノオレイン/n−デカン(50mg/ml)の溶液をシ
リンジによって吹き付け、二分子膜4を作製した。基板
上に形成された電極3を介して三角波(40Hz、20
mVp-p )を導入し、変位電流を測定した。その結果、
水中に電極を設置して測定した場合と同様の結果が得ら
れた。したがって、二分子膜が形成されていること、お
よび基板上に形成された電極3により二分子膜4の電気
特性を正常に測定できることが確認された。また、電極
3を介して80mVの直流電圧を印加したところ、小孔
の側壁に近い部分に形成されている膜厚の厚い部分が減
少して二分子膜面積が増大した。このことから、電極3
により膜4に対して摂動を与えられることも確認され
た。 実施例2
This substrate was fixed to a Teflon electrochemical cell so that the two chambers were electrically insulated. The cell contains
A 0.1 M KCl aqueous solution was filled. A solution of monoolein / n-decane (50 mg / ml) was sprayed onto the small holes of the substrate by a syringe to produce a bilayer film 4. A triangular wave (40 Hz, 20 Hz) is applied through the electrode 3 formed on the substrate.
mV pp ) and the displacement current was measured. as a result,
The same results as those obtained when the electrodes were placed in water and measured were obtained. Therefore, it was confirmed that the bilayer film was formed, and that the electrical characteristics of the bilayer film 4 could be normally measured by the electrode 3 formed on the substrate. Further, when a DC voltage of 80 mV was applied via the electrode 3, the thick portion formed near the side wall of the small hole was reduced and the area of the bilayer film was increased. From this, the electrode 3
It was also confirmed that perturbation was given to the film 4 by the method. Example 2

【0016】実施例1と同様に二分子膜作製基板を作製
し、電気化学セルに固定した。水相には0.1MKCl
を用い、基板の小孔中に貼り合わせ法により大豆レシチ
ンの二分子膜を作製した。基板上の電極を介して電気測
定を行った。その結果、膜が形成されていること、およ
び安定な電気測定が可能であることが確認された。 実施例3
A bilayer film forming substrate was prepared in the same manner as in Example 1, and fixed to an electrochemical cell. 0.1M KCl in aqueous phase
A soybean lecithin bilayer was prepared by laminating in a small hole of a substrate by using. Electrical measurements were made via electrodes on the substrate. As a result, it was confirmed that a film was formed and stable electric measurement was possible. Example 3

【0017】図3は本実施例における基板の断面図であ
る。電解析出法により、600μm径の小孔12を有す
る厚さ10μmのニッケル基板11を作製した。この表
面にスピンコート法によりテフロン層13を被覆した
後、その表面に実施例1と同様の方法で銀/塩化銀電極
14を形成し、二分子膜作製基板とした。
FIG. 3 is a sectional view of the substrate in this embodiment. A nickel substrate 11 having a thickness of 10 μm and a small hole 12 having a diameter of 600 μm was prepared by an electrolytic deposition method. After the surface was coated with a Teflon layer 13 by a spin coating method, a silver / silver chloride electrode 14 was formed on the surface in the same manner as in Example 1 to obtain a bilayer film forming substrate.

【0018】この基板を2室が電気的に絶縁されるよう
に、テフロン製電気化学セルに固定した。セルには、
0.1MKCl水溶液を満たした。この基板の小孔に、
4´−オクチルアゾベンゼン−4−オキシブチリック酸
(AZ)/モノオレイン/n−デカン(重量比で1:1
0:100)の溶液をシリンジによって吹き付け、二分
子膜15を作製した。基板上に形成された電極14を介
して正弦波(1kHz、10mVp-p )を導入し、同期
整流法により膜抵抗、膜容量を測定した結果、膜15が
形成されていることが確認された。
The substrate was fixed in a Teflon electrochemical cell so that the two chambers were electrically insulated. The cell contains
A 0.1 M KCl aqueous solution was filled. In the small hole of this substrate,
4'-octylazobenzene-4-oxybutyric acid (AZ) / monoolein / n-decane (1: 1 by weight)
0: 100) was sprayed with a syringe to form a bilayer film 15. A sine wave (1 kHz, 10 mV pp ) was introduced through the electrode 14 formed on the substrate, and the film resistance and the film capacitance were measured by the synchronous rectification method. As a result, it was confirmed that the film 15 was formed.

【0019】次に、この二分子膜15に対して波長36
0nmおよび450nmの光を交互に照射し、膜伝導
度、膜容量の可逆的な変化を観測した。その結果、膜伝
導度変化と膜容量変化とのクロストークが小さく、良好
な電気測定が行えることが確認された。これは、水中に
電極を設置した場合と比較して、電極−二分子膜間の抵
抗成分を低減できるためであると考えられる。 実施例4
Next, a wavelength 36
Light of 0 nm and 450 nm was alternately irradiated, and reversible changes in membrane conductivity and membrane capacity were observed. As a result, it was confirmed that crosstalk between the change in the film conductivity and the change in the film capacitance was small, and good electrical measurement could be performed. This is considered to be because the resistance component between the electrode and the bilayer film can be reduced as compared with the case where the electrode is provided in water. Example 4

【0020】図4は本実施例における基板の断面図であ
る。厚さ50μmのシリコン基板21に、エッチングに
よって300μm径の小孔22を形成した。熱酸化によ
り基板21表面にシリコン酸化膜23を形成した。ヘキ
サメチルジシラザンを用いた気相処理によって基板表面
のシリコン酸化膜23を疎水化した。次に、蒸着により
金電極24を形成し、二分子膜作製基板とした。
FIG. 4 is a sectional view of the substrate in this embodiment. A small hole 22 having a diameter of 300 μm was formed in a silicon substrate 21 having a thickness of 50 μm by etching. A silicon oxide film 23 was formed on the surface of the substrate 21 by thermal oxidation. The silicon oxide film 23 on the substrate surface was hydrophobized by a gas phase treatment using hexamethyldisilazane. Next, a gold electrode 24 was formed by vapor deposition to obtain a bilayer film forming substrate.

【0021】この基板を2室が電気的に絶縁されるよう
に、テフロン製電気化学セルに固定した。セルには、
0.1MKCl水溶液を満たした。この基板の小孔にモ
ノオレイン/n−デカン(50mg/ml)の溶液をシ
リンジによって吹き付け、二分子膜25を作製した。基
板上に形成された電極24を介して三角波(40Hz、
20mVp-p )を導入し、変位電流を測定した。その結
果、膜が形成されていること、および良好な電気測定を
行えることが確認された。
The substrate was fixed in a Teflon electrochemical cell so that the two chambers were electrically insulated. The cell contains
A 0.1 M KCl aqueous solution was filled. A solution of monoolein / n-decane (50 mg / ml) was sprayed onto the small holes of the substrate by a syringe to form a bilayer film 25. A triangular wave (40 Hz, 40 Hz) is applied through an electrode 24 formed on the substrate.
20 mV pp ) and the displacement current was measured. As a result, it was confirmed that the film was formed and good electrical measurement could be performed.

【0022】[0022]

【発明の効果】以上詳述したように本発明の二分子膜作
製基板では、電極と二分子膜とが一つの基板内に設置さ
れているため、セル容積のコンパクト化が可能になると
ともに、素子の集積化が容易になる。
As described in detail above, in the bilayer film forming substrate of the present invention, the electrodes and the bilayer film are installed in one substrate, so that the cell volume can be made compact and Element integration becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における基板の平面図。FIG. 1 is a plan view of a substrate according to a first embodiment of the present invention.

【図2】本発明の実施例1における基板の断面図。FIG. 2 is a sectional view of a substrate according to the first embodiment of the present invention.

【図3】本発明の実施例3における基板の断面図。FIG. 3 is a sectional view of a substrate according to a third embodiment of the present invention.

【図4】本発明の実施例4における基板の断面図。FIG. 4 is a sectional view of a substrate according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…テフロン基板、2…小孔、3…銀/塩化銀電極、4
…二分子膜、11…ニッケル基板、12…小孔、13…
テフロン層、14…銀/塩化銀電極、21…シリコン基
板、22…小孔、23…シリコン酸化膜、24…金電
極、25…二分子膜。
DESCRIPTION OF SYMBOLS 1 ... Teflon substrate, 2 ... Small hole, 3 ... Silver / silver chloride electrode, 4
... bilayer film, 11 ... nickel substrate, 12 ... small hole, 13 ...
Teflon layer, 14 silver / silver chloride electrode, 21 silicon substrate, 22 small hole, 23 silicon oxide film, 24 gold electrode, 25 bilayer film.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 49/00 B01J 19/00 H01L 29/43 C08J 5/00 B05B 1/00 H01L 29/28 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 49/00 B01J 19/00 H01L 29/43 C08J 5/00 B05B 1/00 H01L 29/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 貫通された小孔を有し表面が疎水的であ
る薄膜基板上に電極を形成したことを特徴とする二分子
膜作製基板。
1. A bilayer film forming substrate, wherein electrodes are formed on a thin film substrate having small holes penetrated and having a hydrophobic surface.
JP33825291A 1991-12-20 1991-12-20 Bilayer film fabrication substrate Expired - Fee Related JP3207476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33825291A JP3207476B2 (en) 1991-12-20 1991-12-20 Bilayer film fabrication substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33825291A JP3207476B2 (en) 1991-12-20 1991-12-20 Bilayer film fabrication substrate

Publications (2)

Publication Number Publication Date
JPH05175573A JPH05175573A (en) 1993-07-13
JP3207476B2 true JP3207476B2 (en) 2001-09-10

Family

ID=18316368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33825291A Expired - Fee Related JP3207476B2 (en) 1991-12-20 1991-12-20 Bilayer film fabrication substrate

Country Status (1)

Country Link
JP (1) JP3207476B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185802B1 (en) * 2018-11-16 2020-12-02 제트스타 주식회사 Blocking apparatus for a scattering of soil
KR102193836B1 (en) * 2018-11-30 2020-12-22 제트스타 주식회사 Blocking apparatus for a scattering of soil
KR102642843B1 (en) * 2017-06-27 2024-03-05 가부시끼 가이샤 구보다 Walk-behind type managing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102642843B1 (en) * 2017-06-27 2024-03-05 가부시끼 가이샤 구보다 Walk-behind type managing machine
KR102185802B1 (en) * 2018-11-16 2020-12-02 제트스타 주식회사 Blocking apparatus for a scattering of soil
KR102193836B1 (en) * 2018-11-30 2020-12-22 제트스타 주식회사 Blocking apparatus for a scattering of soil

Also Published As

Publication number Publication date
JPH05175573A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
Römer et al. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina
US5766934A (en) Chemical and biological sensors having electroactive polymer thin films attached to microfabricated devices and possessing immobilized indicator moieties
Tien et al. Formation of self-assembled lipid bilayers on solid substrates
US6863833B1 (en) Microfabricated apertures for supporting bilayer lipid membranes
US8187865B2 (en) Nanowire sensor, sensor array, and method for making the same
KR100449069B1 (en) Microelectrode, microelectrode array and a method for manufacturing the microelectrode
US7144486B1 (en) Multilayer microcavity devices and methods
US20100084267A1 (en) Pair of measuring electrodes, biosensor comprising a pair of measuring electrodes of this type, and production process
JPH08505227A (en) Nanostructured electrode membrane
JPS63314999A (en) Piezoelectric converter and manufacture of the same
JP3063393B2 (en) Biosensor and manufacturing method thereof
US6843899B2 (en) 2D/3D chemical sensors and methods of fabricating and operating the same
Hianik et al. Electrostriction of lipid bilayers on a solid support. Influence of hydrocarbon solvent and dc voltage
Zhao et al. Interfacial bonding of gold nanoparticles on a H-terminated Si (100) substrate obtained by electro-and electroless deposition
JP3207476B2 (en) Bilayer film fabrication substrate
TWI229704B (en) Molecular electronic device using metal-metal bonded complexes
Bauerdick et al. Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication
Wieckowska et al. Tailored Lipid Monolayers Doped with Gold Nanoclusters: Surface Studies and Electrochemistry of Hybrid‐film‐covered Electrodes
JP2556993B2 (en) Micropore electrode cell for electrochemical measurement and method for producing the same
Zhang et al. Conducting polymer supported bilayer lipid membrane reconstituted with alamethicin
JP2788286B2 (en) Bilayer film fabrication substrate
JPH05261277A (en) Production of bimolecular film
Mujeeb-U-Rahman et al. Fabrication of patterned integrated electrochemical sensors
Tahar et al. A PANI supported lipid bilayer that contains NhaA transporter proteins provides a basis for a biomimetic biocapacitor
Hianik et al. Electrostriction of biotin-streptavidin-modified bilayer lipid membranes on a metal support

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees