JP3206264B2 - Control method of magnetic bearing - Google Patents

Control method of magnetic bearing

Info

Publication number
JP3206264B2
JP3206264B2 JP32632493A JP32632493A JP3206264B2 JP 3206264 B2 JP3206264 B2 JP 3206264B2 JP 32632493 A JP32632493 A JP 32632493A JP 32632493 A JP32632493 A JP 32632493A JP 3206264 B2 JP3206264 B2 JP 3206264B2
Authority
JP
Japan
Prior art keywords
current
rotating body
current command
magnetic bearing
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32632493A
Other languages
Japanese (ja)
Other versions
JPH07151146A (en
Inventor
正夫 尾島
龍一 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18186502&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3206264(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP32632493A priority Critical patent/JP3206264B2/en
Publication of JPH07151146A publication Critical patent/JPH07151146A/en
Application granted granted Critical
Publication of JP3206264B2 publication Critical patent/JP3206264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、回転体を非接触で支承
する磁気軸受の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a magnetic bearing for supporting a rotating body in a non-contact manner.

【0002】[0002]

【従来の技術】従来技術としての従来例1のハードウェ
アを、図3の一般的な回路構成を用いて説明する。図3
は、磁気軸受制御系の回路構成全体を表すブロック図で
ある。図3において、1および9はA/D(アナログ→
デジタル)変換器でそれぞれ変位センサ8および位置指
令からのアナログ信号をデジタル信号化し、デジタル制
御部3に入力する。デジタル制御部3では変位センサ8
および位置指令からの両者の信号を基に、すなわち混合
器2a において位置指令から変位センサ8で検出の現在
位置を減算した位置偏差を導出した後に、デジタル演算
器2により電流指令Iref を計算する。この電流指令I
ref をD/A(デジタル→アナログ)変換器4によりア
ナログ信号に変換して、電流アンプ5に入力する。電流
アンプ5では電流指令Iref に比例した電流を磁気軸受
用電磁石6に流すことにより、回転体7は非接触で浮上
し、制御される。次に、上述した従来例1の磁気軸受制
御を行う動作のフローチャートを図4に示す。この制御
方法では、スタート[ステップ401 ]して、先ず制御演
算のためのパラメータ初期化を行う[ステップ402 ]。
それから、A/D変換器1,9では位置指令や位置セン
サのデータを取込み[ステップ403 ]、それによりデジ
タル演算器2で電流指令Iref を計算する[ステップ40
4 ]。なお、この計算で電流指令Iref はすでに線形化
されている。さらに、電流指令Iref を計算した後に、
この電流指令の絶対値|Iref |が電流アンプ5の出力
リミットの範囲内であるかを確認して[ステップ405
]、出力リミットの範囲内[ステップ405 でNO]であ
ればその指令通りに[ステップ406 ]D/A変換器4に
出力し[ステップ408 ]、出力リミットの範囲を越えて
いれば[ステップ405 でYES ]、電流指令Iref を電流
アンプ5の正あるいは負の最大電流に相当する値に置き
換えて[ステップ407 ]、D/A変換器4に出力する
[ステップ408 ]。その後、タイマ割込みによりB点に
戻り、制御ループが形成される。さらに、従来例2とし
て特開平2-42210 号がある。これは、回転体を上下方向
に支持する制御コイルと、制御コイルと回転体との距離
の増大に応じて制御電流を増大させる電流制御手段とを
備えた磁気軸受装置において、前記電流制御手段は、前
記制御コイルと回転体との離間距離が所定距離よりも短
いときには、それよりも大きなゲインで制御電流を制御
するゲイン制御手段を備えている磁気軸受装置であり、
なお回転体の高周波領域では前記ゲイン制御手段による
制御を停止し、制御可能な離間距離の全長にわたって略
一定のゲインで制御電流を制御する周波数応答手段を、
前記電流制御手段が備えている前項記載の磁気軸受装置
である。
2. Description of the Related Art The hardware of Conventional Example 1 as a conventional technique will be described with reference to a general circuit configuration shown in FIG. FIG.
FIG. 2 is a block diagram illustrating an entire circuit configuration of a magnetic bearing control system. In FIG. 3, 1 and 9 are A / D (analog →
The digital signals are converted into analog signals from the displacement sensor 8 and the position command by the (digital) converter, and are input to the digital control unit 3. In the digital control unit 3, the displacement sensor 8
Based on the signals from the position command and the position command, that is, after deriving the position deviation obtained by subtracting the current position detected by the displacement sensor 8 from the position command in the mixer 2a, the digital calculator 2 calculates the current command Iref. This current command I
ref is converted into an analog signal by a D / A (digital-to-analog) converter 4 and input to a current amplifier 5. In the current amplifier 5, a current proportional to the current command Iref is caused to flow through the electromagnet 6 for the magnetic bearing, so that the rotating body 7 floats in a non-contact manner and is controlled. Next, FIG. 4 shows a flowchart of an operation for performing the magnetic bearing control of the above-described conventional example 1. In this control method, the process is started (step 401), and parameters for control calculation are initialized (step 402).
Then, the A / D converters 1 and 9 take in the position command and the data of the position sensor [Step 403], whereby the digital calculator 2 calculates the current command Iref [Step 40].
Four ]. In this calculation, the current command Iref has already been linearized. Further, after calculating the current command Iref,
It is checked whether the absolute value | Iref | of the current command is within the output limit of the current amplifier 5 [Step 405].
], If it is within the range of the output limit [NO in step 405], it is output to the D / A converter 4 according to the instruction [step 406] [step 408], and if it is outside the range of the output limit [step 405] YES], the current command Iref is replaced with a value corresponding to the maximum positive or negative current of the current amplifier 5 [Step 407] and output to the D / A converter 4 [Step 408]. Thereafter, the control returns to the point B by a timer interrupt, and a control loop is formed. Further, as a conventional example 2, there is JP-A-2-42210. This is a magnetic bearing device including a control coil that supports the rotating body in a vertical direction, and current control means that increases a control current in accordance with an increase in the distance between the control coil and the rotating body. When the separation distance between the control coil and the rotating body is shorter than a predetermined distance, the magnetic bearing device includes gain control means for controlling a control current with a gain larger than the predetermined distance,
In a high frequency region of the rotating body, the control by the gain control unit is stopped, and a frequency response unit that controls the control current with a substantially constant gain over the entire length of the controllable separation distance,
The magnetic bearing device according to the preceding item, wherein the current control means is provided.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来例1に
おいては、磁気軸受に加わる外乱が大きい(例えば回転
体の不釣合いが大きい)場合、図5に示すように、電流
指令Iref は軸受を安定に保つため、回転体の回転周波
数に同期した振幅が大きな正弦波(図5中の実線51、実
際には離散化している)となる。このとき、電流指令I
ref は電流アンプ5の出力リミットを越えるため、予め
電流指令Iref に出力リミット(図5中の点線52)を設
け、電流アンプ5に過大な信号が入らないようにしてい
る。従って、磁気軸受用電磁石6に流れる電流iは出力
リミットを設けた電流指令Iref と同様な飽和した波形
となるため、制御系は線形性が崩れて不安定となり、延
いては制御不能になり、回転体のタッチダウンという異
常状態に陥る。このように、従来例1における磁気軸受
では、回転体の回転中に急激な負荷変動等により、回転
体の不釣合いが増し、上述したような不具合な現象が生
じてもそれを検出する手段がないため、遂には回転体が
タッチダウンするという問題点があった。また、従来例
2は、回転体と制御コイルの位置より、制御電流を少な
くして効率を上げるように、系の制御ゲインを設定する
手段である。これは、回転体と制御コイルの距離が長く
なれば、制御は元に戻そうとして、過大な力を必要と
し、電流が飽和し易すくなるが、制御ゲインを下げるこ
とにより、電流が飽和しないようにする磁気軸受装置で
あり、電流が飽和しないようにしても、極く瞬間的な一
過性的な原因ならいざ知らず、根本的な原因に基づく不
釣合いは是正できないとも考えられる。ところで、磁気
軸受で回転体を運転支承中に発生する回転体の不釣合い
により振動が増大した場合に、これを制御的に抑え込も
うとして過大な電流(一般的には回転周波数に同期した
正弦波波形となる)が軸受用電磁石に流れる。ところ
が、電流が大き過ぎると、電流アンプには出力制限があ
るため、この正弦波波のピーク値が制限値にかかり、飽
和した波形となり、制御的に非線形となるため磁気軸受
が発振することがある。そこで、本発明は、この電流が
制限を越えた場合に、飽和の程度をデジタル演算器内で
判断して、アラーム出力,非常停止する等の方法をと
り、回転体のタッチダウンによる損傷を未然に防止する
磁気軸受の制御方法を提供することを目的とする。
However, in the conventional example 1, when the disturbance applied to the magnetic bearing is large (for example, the unbalance of the rotating body is large), as shown in FIG. , A sine wave having a large amplitude synchronized with the rotation frequency of the rotating body (solid line 51 in FIG. 5, actually discrete). At this time, the current command I
Since ref exceeds the output limit of the current amplifier 5, an output limit (dotted line 52 in FIG. 5) is provided in advance for the current command Iref so that an excessive signal does not enter the current amplifier 5. Therefore, the current i flowing through the electromagnet 6 for magnetic bearing has a saturated waveform similar to the current command Iref having the output limit, and the control system loses its linearity and becomes unstable, and eventually becomes uncontrollable. It falls into an abnormal state called touchdown of the rotating body. As described above, in the magnetic bearing according to Conventional Example 1, the means for detecting the above-described inconvenient phenomenon increases even if the unbalance of the rotating body increases due to a sudden load change or the like during rotation of the rotating body. There was no problem, so the rotating body eventually touched down. Further, the second conventional example is a means for setting the control gain of the system so as to increase the efficiency by reducing the control current from the positions of the rotating body and the control coil. This is because if the distance between the rotating body and the control coil becomes longer, the control tends to return to its original state, requiring an excessive force, and the current is likely to be saturated, but the current is not saturated by reducing the control gain. Even if the current is not saturated, the magnetic bearing device does not know any instantaneous transient cause, and it is considered that the imbalance based on the root cause cannot be corrected. By the way, when the vibration increases due to the unbalance of the rotating body generated during the operation support of the rotating body by the magnetic bearing, an excessive current (generally, a sine wave synchronized with the rotating frequency) is intended to control the vibration. ) Flows into the bearing electromagnet. However, if the current is too large, the current amplifier has an output limit, so the peak value of this sine wave will reach the limit value, resulting in a saturated waveform, and non-linear control will cause the magnetic bearing to oscillate. is there. Therefore, in the present invention, when this current exceeds the limit, the degree of saturation is determined in the digital arithmetic unit, and an alarm is output and an emergency stop is performed. It is an object of the present invention to provide a method for controlling a magnetic bearing to prevent the occurrence of a magnetic field.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、回転体が空隙を介して磁気的に支承さ
れるように回転体が備える回転軸の両端に配置し各端に
並設した軸受用電磁石と、回転体の変位を検出する変位
センサと、位置指令とその変位センサの検出信号に基づ
き位置偏差を導出してから前記軸受用電磁石に与える電
流指令をデジタル演算するデジタル制御部と、その電流
指令に応じた電流を流す電流アンプを備えた磁気軸受制
御装置において、前記デジタル制御部で計算された電流
アンプへの電流指令を監視し、その電流指令が電流アン
プの出力リミットの値を越える時間が予め設定された期
間を超過するときは、アラーム出力を出力させあるいは
回転体の回転を停止させる磁気軸受の制御方法である。
すなわち、本発明は、デジタル演算器で計算された電流
指令を常時監視し、サンプリング周期ごとに連続して電
流リミットの範囲を越えていれば、その回数をカウント
し、その割合が回転体の回転周期のサンプリング回数と
比較して大きければ、アラーム出力するかあるいは回転
を非常停止させるような制御方法である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a rotating body provided at both ends of a rotating shaft provided in a rotating body so that the rotating body is magnetically supported through a gap. The electromagnet for bearings arranged side by side, a displacement sensor for detecting the displacement of the rotating body, and a position command and a position deviation based on a detection signal of the displacement sensor are derived, and then a current command given to the electromagnet for bearing is digitally calculated. In a magnetic bearing control device including a digital control unit and a current amplifier that flows a current according to the current command, a current command to the current amplifier calculated by the digital control unit is monitored, and the current command is set to the current amplifier. When the time exceeding the value of the output limit exceeds a preset period, an alarm output is output or the rotation of the rotating body is stopped.
That is, according to the present invention, the current command calculated by the digital calculator is constantly monitored, and if the current command exceeds the range of the current limit continuously for each sampling period, the number of times is counted, and the ratio is determined by the rotation of the rotating body. If the number of times of sampling is larger than the number of times of sampling in the cycle, the control method is to output an alarm or to stop the rotation in an emergency.

【0005】[0005]

【作用】本発明はこのような回転軸受の制御方法である
から、回転体の回転中でのタッチダウンが完全に防止さ
れ、装置に損傷を与えることなく回転体の回転を停止さ
せることができ、制御系の信頼性が向上する。
Since the present invention is such a method of controlling a rotating bearing, touchdown during rotation of the rotating body is completely prevented, and rotation of the rotating body can be stopped without damaging the device. Thus, the reliability of the control system is improved.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、本発明の一実施例のハードウェアを表す磁
気軸受の制御系の全体の構成ブロック図は、従来例の図
3と同じであるから再掲は省略する。図1は、本発明の
一実施例における磁気軸受の制御方法のソフトウェアを
示すフローチャートである。先ず、回転体の回転軸を磁
気軸受の制御が開始されると[ステップ101 ]、制御演
算のため後述するサンプリング周期T,フィルタ(不図
示)時定数,制御ゲイン等のパラメータの初期化つまり
定数の初期設定を行う[ステップ102 ]。次に、f/V
[周波数→電圧]変換器(不図示)を通した回転体の回
転数信号と変位センサ8のデータを、A/D変換器1へ
入力するとともに、位置指令をA/D変換器9へ入力す
る[ステップ103 ]。そして、デジタル演算器2[本発
明の一実施例では、例えばパーソナルコンピュータある
いはCPUボード等を適用する]では、回転体の回転数
より回転体が1/2回転する間のサンプリング回数nを
計算する[ステップ104 ]。ここで、図2(a) はサンプ
リング回数nを表す電流アンプへの電流指令図である。
横軸に時間の経過をとり、縦軸に電流指令Iref をとっ
ている。縦軸に示す0からIref limit までが正の電流
リミットの範囲内を表し、横軸に示す0からthalfまで
が回転体の1/2回転の時間帯であり,それをn等分し
て位置検出を行うサンプリングの1周期Tを作る。その
演算は、 n=1/(2×f×T) ただし、fは回転体の回転周波数でヘルツ(Hz) Tはサンプリング周期 としている。さらに、位置指令や変位センサ8のデータ
より、電流指令Iref を計算し[ステップ105 ]、この
電流指令の絶対値|Iref |が電流アンプ5の出力リミ
ットの範囲内であれば[ステップ106 でNOのとき]、リ
ミットオーバのカウンタ値(count)を0にして、電流指
令Iref をそのままD/A変換器4へ出力し[ステップ
107 ]、そしてD/A変換器4でD/A変換をして出力
し[ステップ113 ]、A点に戻り以下の演算を繰り返
す。しかし、磁気軸受に加わる外乱により、連続して電
流指令の絶対値|Iref |が出力リミットIref limit
を越えた場合[ステップ106 でYES のとき]には、リミ
ットオーバのカウンタ値(count) を1つ増して[ステッ
プ108 ]、カウンタ値(count)≦( 1/3) nの間は電
流指令Iref として電流アンプ5の正あるいは負の出力
最大(MAX)値をD/A変換器4へ出力する[ステッ
プ112 ]。そしてD/A変換器4でD/A変換をして出
力し[ステップ113 ]、A点に戻り以下の演算を繰り返
す。さらに、ステップ109 の判断においては、電流指令
の絶対値|Iref |>電流アンプリミットである[YES
]場合、カウンタ(不図示)は電流指令の絶対値|Ir
ef |が、サンプリング毎に連続してリミツットIref l
imtを越えたときにのみ、サンプリング回数の個数をカ
ウントして行き、このカウント値と事前に計算していた
回転体1/2回転間の、サンプリング回数nと比較す
る。そして、図2(a) に示すように、電流指令の絶対値
|Iref |が連続的に出力リミットIref limit を越え
て、カウンタ値(count)がサンプリング回数nに対して
設定していた割合以上[例えば、カウンタ値(count)>
( 1/3) n]になれば[ステップ109 でYES のと
き]、電流指令Iref の飽和による制御系の非線形性が
大きいと判断して、アラーム出力するかロータの回転を
非常停止させるようにして[ステップ110 ]、この制御
は一旦は終了する[ステップ111 ]。ただし、図2(b)
に示すように、カウンタ値(count)が増えている途中
で、電流指令の絶対値|Iref |が断続的にリミツット
Iref limtの値以下になった場合、ステップ107 へ移
り、カウンタ値(count)を0に戻し、下がった電流指令
Iref そのままをD/A変換器4へ出力する。なお、前
記設定していた割合である設定値カウンタ値(count)>
( 1/3) nは、回転体を安定に制御できるまでの値と
し、これは実験等によって求められ、例えば係数の( 1
/3) などは磁気軸受の仕様,回転数等の特性によりそ
の数値が調整される。ステップ107 とステップ112 のそ
れぞれの場合において、D/A変換器4に出力した後
は、ステップ113 からタイマ割込みによりA点に戻り、
この制御ループを再度形成してこれを演算遂行する。
Embodiments of the present invention will be described below with reference to the drawings. The overall configuration block diagram of the control system of the magnetic bearing representing the hardware of one embodiment of the present invention is the same as that of FIG. FIG. 1 is a flowchart showing software of a magnetic bearing control method according to an embodiment of the present invention. First, when the control of the magnetic bearing of the rotating shaft of the rotating body is started [Step 101], initialization, that is, parameters such as a sampling period T, a filter (not shown) time constant, and a control gain, which will be described later, for the control calculation are constant. Initial setting is performed [Step 102]. Next, f / V
[Frequency → voltage] A rotation speed signal of the rotating body and data of the displacement sensor 8 passed through a converter (not shown) are input to the A / D converter 1 and a position command is input to the A / D converter 9. [Step 103]. Then, in the digital arithmetic unit 2 (in one embodiment of the present invention, for example, a personal computer or a CPU board is applied), the number of samplings n during one-half rotation of the rotating body is calculated from the rotating speed of the rotating body. [Step 104]. Here, FIG. 2A is a diagram of a current command to the current amplifier representing the number of samplings n.
The horizontal axis indicates the passage of time, and the vertical axis indicates the current command Iref. The range from 0 to Iref limit on the vertical axis indicates the range of the positive current limit, and the range from 0 to thalf on the horizontal axis indicates the time period of 1/2 rotation of the rotating body. One sampling period T for detection is created. The calculation is as follows: n = 1 / (2 × f × T) where f is the rotation frequency of the rotating body and hertz (Hz) T is the sampling period. Further, a current command Iref is calculated from the position command and the data of the displacement sensor 8 [Step 105]. If the absolute value | Iref | of this current command is within the output limit of the current amplifier 5, [NO in Step 106] ), The counter value (count) of the limit over is set to 0, and the current command Iref is output to the D / A converter 4 as it is [step
107] Then, the D / A converter 4 performs D / A conversion and outputs the result [Step 113], returns to the point A, and repeats the following calculation. However, due to disturbance applied to the magnetic bearing, the absolute value | Iref |
If the value exceeds the value [YES in step 106], the counter value (count) of the limit over is increased by one [step 108], and the current command is supplied during the counter value (count) ≦ () n. The positive or negative maximum output (MAX) value of the current amplifier 5 is output to the D / A converter 4 as Iref [step 112]. Then, the D / A converter 4 performs D / A conversion and outputs the result (step 113), returns to the point A, and repeats the following calculation. Further, in the determination of step 109, the absolute value of the current command | Iref |> current amplifier limit [YES]
], The counter (not shown) calculates the absolute value | Ir of the current command.
ef | is continuously limited by each sampling.
Only when the value exceeds imt, the number of times of sampling is counted, and this count value is compared with the number of times of sampling n during 1/2 rotation of the rotating body calculated in advance. Then, as shown in FIG. 2 (a), the absolute value | Iref | of the current command continuously exceeds the output limit Iref limit, and the counter value (count) is equal to or greater than the ratio set for the number of samplings n. [For example, counter value (count)>
(1/3) n] [when YES in step 109], it is determined that the nonlinearity of the control system due to the saturation of the current command Iref is large, and an alarm is output or the rotation of the rotor is stopped in an emergency. [Step 110], this control is temporarily terminated [Step 111]. However, FIG. 2 (b)
As shown in (1), when the absolute value | Iref | of the current command intermittently falls below the value of the limit Iref limt while the counter value (count) is increasing, the process proceeds to step 107, where the counter value (count) is incremented. Is returned to 0, and the lowered current command Iref is output to the D / A converter 4 as it is. Note that the set value counter value (count), which is the ratio set as described above,>
(1/3) n is a value until the rotating body can be stably controlled, which is obtained by an experiment or the like.
/ 3) and the like are adjusted according to the characteristics of the magnetic bearing, such as the specification and the number of revolutions. In each of steps 107 and 112, after output to the D / A converter 4, the flow returns to point A by a timer interrupt from step 113.
This control loop is formed again and the operation is performed.

【0007】[0007]

【発明の効果】以上述べたように本発明によれば、外乱
等のある理由回転体の不釣合いが増加して制御系が不安
定になっても、回転体がタッチダウンする以前に停止さ
せることができるため、装置も損傷を受けることがな
く、制御系の安定度の向上に著しく寄与するという特段
の効果を奏することができる。
As described above, according to the present invention, even if the unbalance of the rotating body is increased due to disturbance or the like and the control system becomes unstable, the rotating body is stopped before touching down. Therefore, the device is not damaged, and a special effect of significantly contributing to the improvement of the stability of the control system can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における制御の過程を示すフ
ローチャートである。
FIG. 1 is a flowchart showing a control process according to an embodiment of the present invention.

【図2】本発明の電流アンプの電流指令を説明する図FIG. 2 is a diagram illustrating a current command of a current amplifier according to the present invention.

【図3】本発明の一実施例におけるハードウェアとして
の全体の制御系の構成ブロック図
FIG. 3 is a configuration block diagram of an entire control system as hardware according to an embodiment of the present invention.

【図4】従来例の制御方法を表す流れ図FIG. 4 is a flowchart showing a conventional control method.

【図5】従来例の電流アンプの電流指令を説明する図FIG. 5 is a diagram for explaining a current command of a conventional current amplifier.

【符号の説明】[Explanation of symbols]

1 A/D変換器 2 デジタル演算器 3 デジタル制御部 4 D/A変換器 5 電流アンプ 6 磁気軸受用電磁石 7 回転体 8 変位センサ 9 A/D変換器 f 回転体回転周波数(Hz) T サンプリング周期(時間) n サンプリング回数 Iref 電流指令 DESCRIPTION OF SYMBOLS 1 A / D converter 2 Digital arithmetic unit 3 Digital control part 4 D / A converter 5 Current amplifier 6 Electromagnet for magnetic bearings 7 Rotating body 8 Displacement sensor 9 A / D converter f Rotating body rotation frequency (Hz) T sampling Cycle (time) n Number of sampling times Iref Current command

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転体が空隙を介して磁気的に支承され
るように回転体が備える回転軸の両端に配置し各端に並
設した軸受用電磁石と、回転体の変位を検出する変位セ
ンサと、位置指令とその変位センサの検出信号に基づき
位置偏差を導出してから前記軸受用電磁石に与える電流
指令をデジタル演算するデジタル制御部と、その電流指
令に応じた電流を流す電流アンプを備えた磁気軸受制御
装置において、前記デジタル制御部で計算された電流ア
ンプへの電流指令を監視し、その電流指令が電流アンプ
の出力リミットの値を越える時間が予め設定された期間
を超過するときは、アラーム出力を出力させあるいは回
転体の回転を停止させることを特徴とする磁気軸受の制
御方法。
An electromagnet for bearings disposed at both ends of a rotating shaft provided in a rotating body so that the rotating body is magnetically supported via an air gap and arranged in parallel at each end, and a displacement for detecting a displacement of the rotating body. A sensor, a digital control unit that digitally calculates a current command given to the bearing electromagnet after deriving a position deviation based on a position command and a detection signal of the displacement sensor, and a current amplifier that flows a current according to the current command. In the magnetic bearing control device provided, the current command to the current amplifier calculated by the digital control unit is monitored, and when the time when the current command exceeds the value of the output limit of the current amplifier exceeds a preset period. A method for controlling a magnetic bearing, comprising: outputting an alarm output or stopping rotation of a rotating body.
JP32632493A 1993-11-29 1993-11-29 Control method of magnetic bearing Expired - Fee Related JP3206264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32632493A JP3206264B2 (en) 1993-11-29 1993-11-29 Control method of magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32632493A JP3206264B2 (en) 1993-11-29 1993-11-29 Control method of magnetic bearing

Publications (2)

Publication Number Publication Date
JPH07151146A JPH07151146A (en) 1995-06-13
JP3206264B2 true JP3206264B2 (en) 2001-09-10

Family

ID=18186502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32632493A Expired - Fee Related JP3206264B2 (en) 1993-11-29 1993-11-29 Control method of magnetic bearing

Country Status (1)

Country Link
JP (1) JP3206264B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096113B2 (en) * 1998-04-03 2008-06-04 株式会社ジェイテクト Control type magnetic bearing device
JP3215842B2 (en) * 1999-03-29 2001-10-09 セイコーインスツルメンツ株式会社 Magnetic bearing protection device and turbo molecular pump
JP3978982B2 (en) * 2000-06-28 2007-09-19 株式会社ジェイテクト Magnetic bearing control device
DE102005032184A1 (en) * 2005-07-09 2007-01-18 Saurer Gmbh & Co. Kg Method for operating an electric motor drive
DE102007028935B4 (en) * 2007-06-22 2018-12-27 Saurer Spinning Solutions Gmbh & Co. Kg Method and device for starting an electric machine with a magnetically mounted rotor
CN102540959B (en) * 2011-12-28 2014-04-09 深圳市合信自动化技术有限公司 Programmable logic controller (PLC) expansion device and PLC control system for displacement sensor
CN114593151A (en) * 2022-04-20 2022-06-07 南京磁之汇电机有限公司 Magnetic suspension bearing stopping method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPH07151146A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
JP3206264B2 (en) Control method of magnetic bearing
US4864209A (en) Negative feedback control system
US5467001A (en) Control method for an alternating current motor
JP3649985B2 (en) Motor control device
JP3114089B2 (en) Magnetic bearing device
KR970003208B1 (en) Slip frequency control method for induction motors
JP2601487Y2 (en) Magnetic bearing device
JP2626173B2 (en) Speed fluctuation suppression control method for induction motor
JP2856812B2 (en) AC motor control device
JP2000065060A (en) Initial adjusting method of magnetic bearing device
JPH04285492A (en) Digital control method for synchronous motor
JP2888169B2 (en) Induction motor control method and device
JPS6082079A (en) Gain automatic correcting method of speed control system of motor
JPH0676182B2 (en) Elevator control device
JPH05332360A (en) Control device for magnetic bearing
JPH06282334A (en) Digital servo control device
JPH0874509A (en) Speed up controller of steam turbine
JPH03103088A (en) Speed control system
JP2001334093A (en) Motor control device for sewing machine
JPH07104857A (en) Digital servo controller
JPH01320318A (en) Earthquake-proof type magnetic bearing device
JPH0433583A (en) Induction motor controller
JPH04236187A (en) Switching frequency controlling system
JPH0446576A (en) Control circuit for rotational speed of motor
JPH07118940B2 (en) Mobile speed control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees