JP3204239U - Diamond tool for drilling - Google Patents

Diamond tool for drilling Download PDF

Info

Publication number
JP3204239U
JP3204239U JP2016001168U JP2016001168U JP3204239U JP 3204239 U JP3204239 U JP 3204239U JP 2016001168 U JP2016001168 U JP 2016001168U JP 2016001168 U JP2016001168 U JP 2016001168U JP 3204239 U JP3204239 U JP 3204239U
Authority
JP
Japan
Prior art keywords
drill
neck
core drill
drilling
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016001168U
Other languages
Japanese (ja)
Inventor
久議 花神
久議 花神
Original Assignee
株式会社花神鉄工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社花神鉄工所 filed Critical 株式会社花神鉄工所
Priority to JP2016001168U priority Critical patent/JP3204239U/en
Application granted granted Critical
Publication of JP3204239U publication Critical patent/JP3204239U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

【課題】真直度精度を向上させ、研削効率を上げることの出来る深孔加工用コアドリルを提供する。【解決手段】深孔加工用コアドリルにおいて、ドリル先端のメタルボンド砥石1に続く一段細くなっている首部2に対し、ドリル先端径と同寸となる間欠肉盛り部5を設け、加工済み孔を倣いとし、首部の曲がりを防ぎ、間欠肉盛り隙間は深孔加工機装着時にはコアドリルの振れ防止把持部としてまた加工孔内では研削液および切子の排出通路となる構造を有する。【選択図】図2To provide a core drill for deep hole drilling capable of improving straightness accuracy and increasing grinding efficiency. In a core drill for deep hole machining, an intermittent build-up part 5 having the same dimension as the diameter of the drill tip is provided on the neck 2 which is narrowed by one step following the metal bond grindstone 1 at the tip of the drill. In this case, the bending of the neck portion is prevented, and the intermittent build-up gap has a structure that serves as an anti-vibration grip portion for the core drill when the deep hole processing machine is mounted, and also serves as a grinding fluid and facet discharge passage in the processing hole. [Selection] Figure 2

Description

本考案は、脆性材料の穿孔において、孔径Dに対し深さLが大きくなるに従い真直度が悪くなる。この真直度を改善する穿孔工具に関するものである。  In the present invention, in the drilling of the brittle material, the straightness becomes worse as the depth L becomes larger than the hole diameter D. The present invention relates to a drilling tool that improves the straightness.

従来から脆性材料に穿孔する場合、ガンドリル加工に類する加工方法が採用され、コアドリルが用いられている。しかし孔径Dが小さくなり、深さLが大きくなるに従い真直度が悪くなり幾何学公差として精度追求のできるものは無かった。  Conventionally, when drilling a brittle material, a processing method similar to gun drilling is employed, and a core drill is used. However, as the hole diameter D decreased and the depth L increased, the straightness deteriorated, and there was no one that could pursue accuracy as a geometrical tolerance.

幾何学的公差として満足出来なくても繰り返し精度はある程度安定しているため、孔間距離はかなり小さくすることが出来る。このため多数の孔を千鳥状あるいは格子状配置に明けても隣接孔と貫通することなく境界壁は残り、それぞれ単独孔となり、加工としてある程度認められている。  Even if the geometrical tolerance is not satisfied, the repeatability is stable to some extent, so that the distance between holes can be considerably reduced. For this reason, even if a large number of holes are opened in a staggered or grid pattern, the boundary walls remain without penetrating adjacent holes, each becoming a single hole, which is recognized to some extent as processing.

孔間位置関係は問題なくとも真直度は悪いため被削材基準との関係に留意する必要がある。例えば長さLの正方柱に貫通孔を明けた場合、加工入口が正方形中心に位置していても出口では中心位置から外れているのが普通である。  It is necessary to pay attention to the relationship with the workpiece standard because the straightness is poor even if the positional relationship between holes is not a problem. For example, when a through-hole is drilled in a square pillar having a length L, it is normal that the exit is out of the center position even if the processing entrance is located at the center of the square.

この位置ズレ量は穿孔時の研削抵抗に左右され、研削抵抗が大きくなると比例してズレ量も大きくなる。当然L/Dが大きくなるとズレ量も大きくなる。ズレ方向は加工時の姿勢、コアドリル軸方向に依存する部分もある。正方柱を横に寝かせ加工した場合、出口孔位置は中心より上側に位置し、左右のズレ量はキリの回転方向に依存し、右回転では左側となる。正方柱を立てて加工した場合、ズレ方向は工具特性に依存し同一工具ではほぼ同じ傾向を示すが工具が異なると異なった曲がりとなりズレ方向は一定しない傾向が見られる。  The amount of positional deviation depends on the grinding resistance during drilling, and the amount of deviation increases in proportion to the increase in grinding resistance. Naturally, as L / D increases, the amount of deviation also increases. The deviation direction also depends on the posture during machining and the core drill axis direction. When the square pillar is laid down sideways, the exit hole position is located above the center, and the amount of misalignment on the left and right depends on the direction of rotation of the drill, and on the right side is the left side. When machining with a square pillar upright, the deviation direction depends on the tool characteristics and shows almost the same tendency with the same tool, but when the tools are different, the bending direction becomes different and the deviation direction tends not to be constant.

特願2009−141990  Japanese Patent Application No. 2009-141990 実開昭62−121211  Japanese Utility Model Publication 62-122121 実開昭63−127877  Shokai 63-127877

ユニタック株式会社カタログ ダブルチューブシステム  Unitac Corporation Catalog Double Tube System 日立金属技報Vol.26「微細深穴加工用ドリル構造の改良とその効果」  Hitachi Metals Technical Report Vol. 26 “Improvement of drill structure for micro deep hole drilling and its effect”

金属加工では穴深さLが径Dの10倍を超えると深穴加工としている。また金属加工技術報告ではL/Dが10〜100が可能になったと報告されている。一方脆性材料の深孔加工ではコアドリルを用い、L/Dが200〜300の加工がすでに行われている。更に深い加工も可能であるが加工精度、真直度が問題となり精度を向上させるには加工速度を極端に低下させる必要がある。この真直度を改善し加工速度を向上させるコアドリルを提供する。  In the metal processing, when the hole depth L exceeds 10 times the diameter D, deep hole processing is performed. Moreover, it is reported that L / D can be 10 to 100 in the metal working technology report. On the other hand, in the deep hole processing of a brittle material, a core drill is used and processing with an L / D of 200 to 300 has already been performed. Although deeper machining is possible, machining accuracy and straightness become problems, and in order to improve accuracy, it is necessary to extremely reduce the machining speed. A core drill that improves the straightness and increases the processing speed is provided.

深孔用コアドリル形状は、先端からメタルボンド砥石部、中空ステンレスパイプの首部、テーパーシャンクとの繋ぎ部となる継足し鋼管部からなる。孔径はメタルボンド砥石部の外形で、中心部の研削残り、コア径は砥石部内径で決まる。首部外径は砥石部外径より小さく、内径は砥石部内径より大きい寸法となる。加工可能深さは首部長さで決まる。この首部パイプには一般的に既成品が用いられている。  The core drill shape for deep holes is composed of an additional steel pipe portion that serves as a joint portion from the tip to a metal bond grindstone portion, a hollow stainless steel pipe neck portion, and a tapered shank. The hole diameter is the outer shape of the metal bond grindstone part, the grinding remaining at the center part, and the core diameter is determined by the grindstone inner diameter. The neck outer diameter is smaller than the grindstone outer diameter, and the inner diameter is larger than the grindstone inner diameter. The processable depth is determined by the neck length. For the neck pipe, a ready-made product is generally used.

研削液はロータリー継ぎ手、シャンク、首部パイプを通り研削部、メタルボンド砥石先端部に高圧供給され、コアドリル外側に押し出され切子と共に加工孔と首部外側との隙間を通り孔外部に排出される。従って首部外形と孔および首部内径とコアには隙間が必要となる。  The grinding fluid passes through the rotary joint, shank, and neck pipe, and is supplied to the grinding section and the tip of the metal bond grindstone at high pressure. Therefore, a clearance is required between the neck outer shape and the hole, and the neck inner diameter and the core.

この隙間が孔の幾何学的公差、真直度を悪くする原因となっている。砥石径が大きくなると首部パイプに剛性を持たせることも可能となるが径が2ミリあるいは1ミリ以下で例えば長さが300ミリになると研削押圧に負け首部に曲がりが発生する。この曲がりは砥石先端の研削圧に影響し結果として孔に曲がりが発生することになる。  This gap causes the hole geometrical tolerance and straightness to deteriorate. When the diameter of the grindstone is increased, the neck pipe can be made rigid. However, when the diameter is 2 mm or 1 mm or less, for example, the length is 300 mm, the neck is bent due to the grinding pressure. This bending affects the grinding pressure at the tip of the grindstone, and as a result, the hole is bent.

曲がり量は隙間に影響される。曲がり量自体は穿孔が進むと重畳されるため小さな隙間でも穿孔深さが大きくなると曲がり量も当然大きくなる。この曲がり方向はコアドリルで水平加工した場合重力の影響を受ける。首部のたわみはピン固定梁と考えて良く、結果として研削面圧がコア下側で大きくなり穿孔方向は上向く事になる。しかしドリルは回転している為たわみ方向が若干変わり回転方向によりズレ方向も変わってくる。  The amount of bending is affected by the gap. Since the bending amount itself is superimposed as the drilling progresses, the bending amount naturally increases as the drilling depth increases even in a small gap. This bending direction is affected by gravity when horizontal machining is performed with a core drill. The deflection of the neck may be considered as a pin-fixed beam, and as a result, the grinding surface pressure increases below the core and the drilling direction is upward. However, since the drill is rotating, the deflection direction is slightly changed and the displacement direction is also changed depending on the rotation direction.

コアドリルで垂直加工した場合、重力影響での首部の曲がりは無くなる。しかし柱の垂直荷重による座屈と同じ様に考えることが出来る。外部環境条件を同じとすると座屈方向は柱の個体差によるのと同じで座屈の前段である弾性域での曲がり方向も個体差となるのでドリルにより曲がり方向が固定されてくる。  When vertical machining is performed with a core drill, bending of the neck due to gravity is eliminated. However, it can be considered in the same way as the buckling due to the vertical load of the column. If the external environmental conditions are the same, the buckling direction is the same as the individual difference of the column, and the bending direction in the elastic region, which is the previous stage of buckling, also becomes the individual difference, so the bending direction is fixed by the drill.

この首部曲がりが無くなると、研削にベストの条件で研削圧を上げる事が可能となり穿孔効率が上がることは容易に推測される。従って研削圧を上げても首部が曲がらないことが重要な要件となる。  If this neck bending is eliminated, it is possible to easily estimate that the grinding pressure can be increased under the best conditions for grinding and the drilling efficiency is increased. Therefore, it is an important requirement that the neck does not bend even if the grinding pressure is increased.

金属に穿孔する場合ドリルが一般的に用いられる。ストレートシャンクが普通であるが加工可能深さはツイスト部長さが上限でシャンク部まで突っ込むと切子の排出および切削液の供給、排出も行えなくなり加工は出来なくなる。ストレートシャンクの場合切り刃のある先端径、ツイスト部、シャンク部は同じ太さで非常に剛性が高く真直度の良い穴加工が行える。この場合でも切子の排出がうまくいかない場合、真直度を悪くすることが報告されており切子の排出が重要であることが伺える。  A drill is generally used when drilling in metal. Straight shank is normal, but the maximum possible machining depth is the length of the twisted part. If it is pushed into the shank part, it will not be possible to discharge the facet and supply / discharge the cutting fluid. In the case of a straight shank, the tip diameter with a cutting edge, the twisted part, and the shank part have the same thickness and can be drilled with extremely high rigidity and good straightness. Even in this case, if the discharge of the facet is not successful, it has been reported that the straightness is deteriorated, and it can be said that the discharge of the facet is important.

金属加工を脆性材加工に適用すると首部太さはメタルボンド砥石径と同じで、しかし研削液および切子の排出が容易となる構造を持たせれば良いことが分かる。ダブルチューブシステムなどはこれに近い構造を備えている。しかし首部において全域が砥石径と同じである必要が無いことは容易に考えられる。首部断面、円の中心位置を考えると3点が決まれば円の中心位置が決定されるため孔壁に3点以上接すれば首部位置が定まることになる。接触支持点をコアドリル軸方向に等間隔に設けるか、スプライン軸の様に連続した山でも位置決め機能を発揮することになる。  When metal processing is applied to brittle material processing, the neck thickness is the same as the diameter of the metal bond grindstone, but it can be seen that a structure that facilitates the discharge of the grinding fluid and the face is sufficient. The double tube system has a similar structure. However, it is easily conceivable that the entire region of the neck portion does not have to be the same as the grindstone diameter. Considering the neck cross-section and the center position of the circle, the center position of the circle is determined if three points are determined, and therefore the neck position is determined if three or more points are touched to the hole wall. The contact support points are provided at equal intervals in the core drill axis direction, or the positioning function is exhibited even with a continuous mountain like a spline shaft.

コアドリルも長さが長くなると従来のボール盤加工のようにシャンク部の把持だけでは先端に振れが発生し加工出来なくなる。このため長尺のガンドリル用加工機が提案されている。コアドリル加工も同様に回転駆動部、研削液の供給ロータリー継ぎ手部、振れ防止把持部から構成される加工機が用いられる。振れ防止把持部は先端支持と中間支持部に分けられ、コアドリル長さにより中間支持数、位置が決定される。この支持部は穿孔作業と共に場所移動される。  If the length of the core drill is increased, the tip end will be shaken and the machining cannot be performed only by gripping the shank as in conventional drilling. For this reason, a long gun drilling machine has been proposed. Similarly, in the core drilling process, a processing machine including a rotation drive unit, a grinding fluid supply rotary joint unit, and a shake prevention gripping unit is used. The shake prevention gripping part is divided into a tip support and an intermediate support part, and the number and position of intermediate supports are determined by the length of the core drill. This support is moved in place with the drilling operation.

振れ防止の先端支持部からのコアドリル突き出し量は少ない方が好ましい。これは突き出し量が大きくなれば振れも大きくなることと穿孔入り口位置精度にも関わる為である。被削材であるワークとコアドリル先端が接触する加工初期段階ではワークとドリル先端が均一に同時的に接触しないため接触部位の抵抗力により芯振れが発生する。この状態で穿孔を進めると振れは孔で拘束され収まるが入り口位置精度が悪くなる。従って加工初期は芯振れ防止のため微少量ステップ加工が好ましい。  It is preferable that the amount of core drill protrusion from the tip support portion for preventing vibration is small. This is because as the protrusion amount increases, the deflection increases and the accuracy of the position of the drilling entrance is also involved. In the initial stage of machining when the workpiece, which is the work material, contacts the tip of the core drill, the workpiece and the tip of the drill do not uniformly contact at the same time. When drilling is advanced in this state, the runout is restrained and settled by the hole, but the entrance position accuracy is deteriorated. Therefore, in the initial stage of machining, a small amount of step machining is preferable to prevent center runout.

微少量ステップ加工でコアドリルが安定し穿孔が進むと今度は定量ステップ加工工程に移行する。定量ステップ加工ではコアドリルの回転を止め、ワークとの位置関係もそのまま維持される。振れ防止支持部の把持機構を解きドリル駆動側に定寸移動させる。これによりドリル先端突出し量は定寸分増加し、この定寸分が次の穿孔可能寸法となる。これを繰り返し深孔加工が行われる。  When the core drill is stabilized and drilling progresses in a small amount of step machining, the process moves to a quantitative step machining process. In fixed step machining, the rotation of the core drill is stopped and the positional relationship with the workpiece is also maintained. Unscrew the gripping mechanism of the shake prevention support part and move it to the drill drive side. As a result, the amount of protrusion of the drill tip increases by a fixed dimension, and this fixed dimension becomes the next drillable dimension. This is repeated and deep hole machining is performed.

図1に従来仕様のコアドリルを示す。図2には本考案であるコアドリルを示している。コアドリルの肉盛部径はドリル先端径と同じにすることによってドリル首部の曲がり防止が行われる。曲がりが防止されるためワークの取り付け、加工時のドリル姿勢に関係なく真直度の良い加工孔が得られる。  FIG. 1 shows a conventional core drill. FIG. 2 shows a core drill according to the present invention. The diameter of the built-up portion of the core drill is the same as the diameter of the tip of the drill, thereby preventing the bending of the drill neck. Since bending is prevented, a machined hole with good straightness can be obtained regardless of the workpiece mounting and drilling posture during machining.

図3には肉盛部の断面形状を示す。肉盛り切り欠き部は研削液と切子の排出通路となる。この通路断面積は研削残りのコアと首部内径との隙間面積より大きくし、流出抵抗を増加させないことが望ましい。  FIG. 3 shows a cross-sectional shape of the built-up portion. The build-up notch serves as a discharge passage for the grinding fluid and the facet. It is desirable that the passage cross-sectional area be larger than the gap area between the unground core and the neck inner diameter so as not to increase the outflow resistance.

肉盛り手段として一般的な肉盛溶接、溶射が考えられる。母材肉厚が薄く熱的影響を受ける場合はメッキが考えられる。ダイヤモンド工具メーカーでは砥粒の電着が行われているが同一手段でも可能と考えられる。  General overlay welding and thermal spraying can be considered as the overlaying means. Plating can be considered when the base metal thickness is thin and is affected by heat. Diamond tool manufacturers use electrodeposition of abrasive grains, but the same method is considered possible.

孔内部での姿勢は肉盛り部により支持されるが機械に装着され高速回転される際、従来のままの支持位置、あるいは支持方法では肉盛り部と干渉し芯出し不良が起きる恐れがある。図2考案コアドリルの場合肉盛り部以外の首部を保持する方式に変更する必要がある。  Although the posture inside the hole is supported by the built-up portion, when it is mounted on a machine and rotated at a high speed, the conventional support position or support method may interfere with the built-up portion and cause a centering failure. In the case of the core drill shown in FIG. 2, it is necessary to change to a system that holds the neck portion other than the built-up portion.

図4には首部の展開図を示している。肉盛り部は円周を3等分しており、スプライン軸状にしたものとなっている。基本的に軸の曲がり防止の肉盛り支え部、研削液、切子の排出が行える空間、溝があれば良く種々な凹凸形状が考えられる。肉厚パイプの使用が可能であれば肉盛りでなく幅広溝を加工する方法も考えられる。  FIG. 4 shows a development view of the neck. The built-up portion has a circumference divided into three equal parts, and has a spline shaft shape. Basically, various uneven shapes may be considered as long as there is a groove support portion for preventing bending of the shaft, a space for discharging the grinding fluid and facets, and grooves. If it is possible to use a thick pipe, a method of processing a wide groove instead of building up can be considered.

機械での保持方法として溝部支持が良いのか、肉盛り部支持が良いのかはコアドリル仕様により選択する必要がある。図4仕様ではスプライン凸部を避けパイプを把持し支持することになる。  It is necessary to select whether the groove support or the build-up support is good as a holding method in the machine according to the core drill specification. In the specification shown in FIG. 4, the pipe is held and supported while avoiding the spline protrusion.

脆性材料へ高度な加工を施した部品は電子部品製造過程でも多々使用されておりまた光フィバーなどでも伝送効率向上手段として孔加工が施されている。これら分野での使用が期待される。  Parts that have been subjected to advanced processing on brittle materials are often used in the manufacturing process of electronic parts, and optical fiber is also used as a means for improving transmission efficiency. Expected to be used in these fields.

従来のコアドリル図Conventional core drill diagram 本考案に関わるコアドリル図Core drill diagram related to the present invention コアドリルAA’断面図Core drill AA 'sectional view コアドリル首部展開図Core drill neck development

1 メタルボンド砥石部
2 首部
3 継足し鋼管部
4 繋ぎねじ部
5 肉盛り部
DESCRIPTION OF SYMBOLS 1 Metal bond grindstone part 2 Neck part 3 Additional steel pipe part 4 Connecting screw part 5 Overlaying part

Claims (1)

深孔加工用コアドリルにおいて、ドリル先端のメタルボンド砥石に続く一段細くなっている首部に対し、ドリル先端径と同寸となる間欠肉盛り部を設け、加工済み孔を倣いとし、首部の曲がりを防ぎ、間欠肉盛り隙間は深孔加工機装着時にはコアドリルの振れ防止把持部としてまた加工孔内では研削液および切子の排出通路となる構造を有する工具。  In deep hole drilling core drills, an intermittent build-up part that is the same size as the drill tip diameter is provided on the narrowed neck part following the metal bond grindstone at the tip of the drill, and the neck part is bent by following the processed hole. A tool having a structure in which the intermittent build-up gap serves as an anti-vibration gripping portion of the core drill when mounted on a deep hole machining machine and serves as a grinding fluid and facet discharge passage in the machining hole.
JP2016001168U 2016-02-25 2016-02-25 Diamond tool for drilling Expired - Fee Related JP3204239U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016001168U JP3204239U (en) 2016-02-25 2016-02-25 Diamond tool for drilling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016001168U JP3204239U (en) 2016-02-25 2016-02-25 Diamond tool for drilling

Publications (1)

Publication Number Publication Date
JP3204239U true JP3204239U (en) 2016-05-26

Family

ID=56069325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016001168U Expired - Fee Related JP3204239U (en) 2016-02-25 2016-02-25 Diamond tool for drilling

Country Status (1)

Country Link
JP (1) JP3204239U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182764A (en) * 2015-03-26 2016-10-20 京セラ株式会社 Core drill
CN110281075A (en) * 2019-07-23 2019-09-27 大连新钢液压管件有限公司 A kind of lathe high pressure cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182764A (en) * 2015-03-26 2016-10-20 京セラ株式会社 Core drill
CN110281075A (en) * 2019-07-23 2019-09-27 大连新钢液压管件有限公司 A kind of lathe high pressure cooling device

Similar Documents

Publication Publication Date Title
JP6312159B2 (en) Drill system for deep holes
JP6208716B2 (en) Disposable milling cutter
KR20160013797A (en) Blade positioning structure of disposable milling cutter
JP3204239U (en) Diamond tool for drilling
US20100129169A1 (en) Corner Portion Working Tool
CN103028752A (en) Processing method for phi 52H7*850 deep hinge pin keyhole at matched position of parts of different materials
KR101342479B1 (en) cutting tool holder of Computer Numerical Control Lathe
JP4982253B2 (en) Combination holder
JP6634241B2 (en) Cutting tool holder and cutting tool, and method of manufacturing cut workpiece using the same
CN105945319A (en) Method for accurate numerically-controlled drilling on large-curvature arc surface
CN110560747A (en) Inner-cooling stepped drill for inhibiting burrs at drill processing outlet
CN210059905U (en) Drilling device
US10967441B2 (en) Drilling system and modular drilling head for deep hole drilling
KR102593220B1 (en) Tool for manufacturing a product of round cap type
CN108788648A (en) Processing method, jig and the lathe of jig
CN216656379U (en) Pull boring cutter for processing stainless steel material
JPH0553812U (en) Deep hole processing tool
JP4258927B2 (en) Drilling method for ceramic plate
CN204262382U (en) The cutter of detachable wear-out part
CN214023847U (en) Machine reamer for high-precision machining of ultra-deep hole
CN211661159U (en) Machine presss from both sides formula outer deep hole drill bit of arranging
CN216265331U (en) Honing stick
CN218575006U (en) Boring cutter for processing
CN114571610B (en) Zirconia micro-pore processing technology and device
CN212945608U (en) Undercarriage part lug hole machining tool

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3204239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees