JP3202430B2 - Xenon vibration control method for nuclear reactor - Google Patents
Xenon vibration control method for nuclear reactorInfo
- Publication number
- JP3202430B2 JP3202430B2 JP22724993A JP22724993A JP3202430B2 JP 3202430 B2 JP3202430 B2 JP 3202430B2 JP 22724993 A JP22724993 A JP 22724993A JP 22724993 A JP22724993 A JP 22724993A JP 3202430 B2 JP3202430 B2 JP 3202430B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- xenon
- power
- deviation
- aox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、原子炉内に発生するこ
とのあるキセノンの空間分布の振動に由来して、炉心中
に生ずる出力分布振動(以下キセノン振動という)の制
御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling power distribution vibration (hereinafter referred to as xenon vibration) generated in a reactor core due to vibration of a spatial distribution of xenon that may occur in a nuclear reactor. is there.
【0002】[0002]
【従来の技術】原子炉においては、核分裂反応の結果と
して直接生ずるキセノン並びに同結果として生ずるよう
素の崩壊によって発生するキセノンが強い中性子吸収能
力を持つため、炉心中の出力分布形状が周期的に変動す
るキセノン振動という現象が発生する。この現象が発生
すると、周知のように、原子炉内の出力分布の片寄りが
大きくなり、炉心を構成する核燃料の最高線出力密度の
上昇を伴うなど、核燃料の健全性維持に不適当な出力分
布が出現する可能性があり、安全性上問題となる。この
ような事態を避けるため、キセノン振動が発生した場合
には安全性に問題がない範囲に抑制する必要がある。2. Description of the Related Art In a nuclear reactor, xenon directly generated as a result of a fission reaction and xenon generated by the decay of iodine generated as a result have a strong neutron absorption capacity, so that the power distribution shape in the reactor core is periodically changed. A phenomenon called fluctuating xenon oscillation occurs. When this phenomenon occurs, it is well known that the power distribution in the reactor becomes more deviated and the maximum linear power density of the nuclear fuel that constitutes the reactor core increases, making it unsuitable for maintaining the integrity of nuclear fuel. Distributions may appear, which is a safety issue. In order to avoid such a situation, it is necessary to suppress the occurrence of xenon vibration to a range where there is no problem in safety.
【0003】キセノン振動の最適制御法については、本
出願人の特開平02ー183196号公報や、1991
年に頒布された「日本原子力学会誌」(Vol.33 N
o.3、第280〜285頁)の論文「軸方向出力分布偏
差のオンラインデータ処理に基づくPWRの軸方向キセ
ノン振動の最適制御法」に示されるように、既知の技術
である。[0003] Regarding the optimal control method of xenon oscillation, Japanese Patent Application Laid-Open No. 02-183196 of the present applicant and
Journal of the Atomic Energy Society of Japan (Vol.33 N)
o. 3, pp. 280-285), which is a known technique, as shown in the paper "Optimal Control Method of PWR Axial Xenon Vibration Based on Online Data Processing of Axial Output Distribution Deviation".
【0004】[0004]
【発明が解決しようとする課題】しかし、これ等の既知
技術では、運転員に与えられる情報は、最適制御を行う
上での制御棒移動のタイミング及びその時点での制御棒
移動量に関する情報に限られていた。このため、それ以
外の時間にキセノン振動を制御する必要がある場合や、
最適制御ではなくとも良い場合等においては、運転員に
対するキセノン振動制御のための情報、例えば制御棒の
移動方向や移動量についての情報が不十分であった。However, in these known techniques, the information given to the operator is based on the information on the timing of the control rod movement and the amount of control rod movement at that time for performing the optimal control. Was limited. Therefore, when it is necessary to control the xenon oscillation at other times,
In the case where it is not necessary to perform the optimal control, the information for controlling the xenon vibration for the operator, for example, the information on the moving direction and the moving amount of the control rod is insufficient.
【0005】従って、本発明は、キセノン振動制御のた
めに制御棒の移動方向や移動量等について十分な情報を
運転員に随時与えることができる原子炉のキセノン振動
制御方法を提供することを目的とするものである。Accordingly, an object of the present invention is to provide a method for controlling xenon vibration of a nuclear reactor, which can provide sufficient information to a driver at any time as to the direction and amount of movement of a control rod for xenon vibration control. It is assumed that.
【0006】[0006]
【課題を解決するための手段及び作用】上述の目的を達
成するため、本発明に係る原子炉のキセノン振動制御方
法では、原子炉の炉心上半分での出力を(PT)、同原
子炉の炉心下半分での出力を(PB)とし、該炉心の前
記炉心上半分及び前記炉心下半分の領域におけるそれぞ
れのキセノン濃度及びよう素濃度を前記炉心上半分での
出力(PT)、前記炉心下半分での出力(PB)の情報
に基づき算出し、時々刻々算出される前記キセノン濃度
及び前記よう素濃度を平衡状態の濃度として出現させる
炉心上半分の出力及び炉心下半分の出力即ち、キセノン
濃度に基づく炉心上半分の出力(PTX)及び炉心下半
分の出力(PBX)並びによう素濃度に基づく炉心上半
分の出力(PTI)及び炉心下半分の出力(PBI)を
求める。次いで、上述の各出力(PT、PB、PTX、
PBX、PTI、PBI)の値から、次の各パラメー
タ、即ち、現在の過渡キセノン濃度がその状態で平衡状
態として実現するのに対応する軸方向出力分布の偏差
(AOX)と、現在の過渡よう素濃度がその状態で平衡
状態として実現するのに対応する軸方向出力分布の偏差
(AOI)と、その時の前記炉心の軸方向出力分布偏差
(AOP)と、前記偏差(AOX、AOI、AOP)に
より定義されるパラメータ(DAOIX、DAOPX)
とを算出する。これ等のパラメータは次のように表され
る。 AOP=(PT−PB)/(PT+PB) AOX=(PTX−PBX)/(PTX+PBX) AOI=(PTI−PBI)/(PTI+PBI) DAOIX=AOI−AOX DAOPX=AOP−AOX 次いで、パラメータ(DAOIX)をY軸に、パラメー
タ(DAOPX)をX軸にした軌跡を表示し、該軌跡の
情報に基づきキセノン振動を制御する。In order to achieve the above-mentioned object, a method for controlling xenon vibration of a nuclear reactor according to the present invention uses the power in the upper half of the reactor core (PT), The power in the lower half of the core is defined as (PB), and the xenon concentration and iodine concentration in the upper half of the core and the lower half of the core are respectively calculated as the power (PT) in the upper half of the core and the lower part of the core. The output of the upper half of the core and the output of the lower half of the core, that is, the xenon concentration, which is calculated based on the information on the output (PB) in half and causes the xenon concentration and the iodine concentration calculated every moment to appear as concentrations in an equilibrium state, that is, the xenon concentration The power of the upper half of the core (PTX) and the power of the lower half of the core (PBX) and the power of the upper half of the core (PTI) and the power of the lower half of the core (PBI) based on iodine concentration are determined. Next, each output (PT, PB, PTX,
From the values of (PBX, PTI, PBI), the following parameters, namely, the deviation (AOX) of the axial output distribution corresponding to the current transient xenon concentration realizing as an equilibrium state in that state, and the current transient The deviation (AOI) of the axial power distribution corresponding to the element concentration being realized as an equilibrium state in that state, the axial power distribution deviation (AOP) of the core at that time, and the deviation (AOX, AOI, AOP) (DAOIX, DAOPX) defined by
Is calculated. These parameters are represented as follows: AOP = (PT-PB) / (PT + PB) AOX = (PTX-PBX) / (PTX + PBX) AOI = (PTI-PBI) / (PTI + PBI) DAOIX = AOI-AOX DAOPX = AOP-AOX Next, the parameter (DAOIX) A locus with the parameter (DAOPX) on the X axis is displayed on the Y axis, and xenon oscillation is controlled based on the information on the locus.
【0007】[0007]
【実施例】先ず、本発明が基礎とする概念と、この概念
を用いたキセノン振動制御方法の原理とについて説明す
る。キセノン振動は、炉心内の中性子束分布により定ま
るキセノン及びその先行核であるよう素の平衡濃度分布
と、現実のキセノン及びよう素の濃度分布とが異なるこ
とにより発生する。逆に言えば、キセノン振動を制御す
ることは、中性子束分布、キセノン分布及びよう素分布
の間の矛盾を解消することに等しい。First, the concept on which the present invention is based and the principle of a xenon oscillation control method using this concept will be described. The xenon oscillation is caused by a difference between the equilibrium concentration distribution of xenon and iodine which is the preceding nucleus determined by the neutron flux distribution in the core, and the actual concentration distribution of xenon and iodine. Conversely, controlling xenon oscillation is equivalent to resolving inconsistencies among neutron flux distribution, xenon distribution and iodine distribution.
【0008】加圧水形原子炉(PWR)では、軸方向キ
セノン振動の制御が主であることから、以下においては
軸方向振動に限って議論を進める。加圧水形原子炉の軸
方向出力分布は、軸方向出力分布偏差(AO)=(炉心
上半分出力−炉心下半分出力)/(炉心上半分出力+炉
心下半分出力)で代表的に表現できることが知られてい
る。この事実から、従来、キセノン振動の制御は、軸方
向出力分布偏差の制御に置き換えて実施されている。こ
の軸方向出力分布偏差の制御に関する概念をキセノン分
布、よう素分布にも取り込み、上記キセノン振動制御の
原理を換言すると次のようになる。In the pressurized water reactor (PWR), the control of the xenon oscillation in the axial direction is mainly performed. Therefore, the discussion will be limited to the axial oscillation in the following. The axial power distribution of a pressurized water reactor can be represented by the axial power distribution deviation (AO) = (upper half power of core-lower half power of core) / (upper half power of core + lower half power of core). Are known. From this fact, the control of the xenon oscillation is conventionally performed by replacing the control of the axial output distribution deviation. The concept of the control of the axial output distribution deviation is taken into the xenon distribution and the iodine distribution, and the principle of the xenon oscillation control is rewritten as follows.
【0009】現在の過渡キセノン濃度がその状態で平衡
状態として実現するのに対応する軸方向出力分布の偏差
をAOX、同様に現在の過渡よう素濃度がその状態で平
衡状態として実現するのに対応する軸方向出力分布の偏
差をAOI、その時の軸方向出力分布偏差をAOPとす
ると、キセノン振動はAOX=AOI=AOPと言う条
件の元で抑制される。The deviation of the axial power distribution corresponding to the current transient xenon concentration being realized as an equilibrium state in that state is equivalent to AOX, and similarly the current transient iodine concentration is being realized in that state as an equilibrium state. Assuming that the deviation of the axial output distribution is AOI and the deviation of the axial output distribution at that time is AOP, xenon oscillation is suppressed under the condition of AOX = AOI = AOP.
【0010】従って、キセノン振動を抑制するには、各
偏差AOX、AOI及びAOPを監視しそれ等を一致さ
せればよい。一致させるAO値は運転上の要求に基づい
て定められる値とすればよい。上記の原理は、偏差AO
I、AOXが偏差AOP及び出力に対し線形であれば必
要十分条件である。しかし、出力変動がある場合や、偏
差AOPが極端に大きくなるような場合は、偏差AOX
の偏差AOP及び出力に対する線形性が失われる。この
ような場合には、上記の原理は必要条件を与えるのみ
で、十分条件であるとは保証できない。しかし、通常、
定格出力時においては熱的制限から極端な出力分布が発
生しないように制御されていること、また、出力変動が
あってもその変動巾や継続時間が限られていることか
ら、線形近似の範囲からの逸脱も限られたものと言え
る。このため、上記原理の適用には実用上問題がないと
言える。Therefore, in order to suppress the xenon oscillation, the deviations AOX, AOI and AOP may be monitored and matched. The AO value to be matched may be a value determined based on driving requirements. The above principle is based on the deviation AO
This is a necessary and sufficient condition if I and AOX are linear with respect to the deviation AOP and the output. However, when there is an output fluctuation or when the deviation AOP becomes extremely large, the deviation AOX
And the linearity with respect to the output is lost. In such a case, the above principle only gives necessary conditions and cannot guarantee that these conditions are sufficient. But usually,
At the rated output, it is controlled so that an extreme output distribution does not occur due to thermal limitations.Also, even if there is output fluctuation, its fluctuation range and duration are limited, so the range of linear approximation Deviations from are limited. For this reason, it can be said that there is no practical problem in applying the above principle.
【0011】夫々のAOを求めるためには、最低2つの
情報、即ち、炉心上半分の相対出力(定格出力を1.0
に規格化した際の出力)PT及び下半分の相対出力PBが
必要である。加圧水形原子炉では、この情報は炉外核計
装により得られる。以下、この情報を使用し、目的とす
る偏差AOI、AOX、AOPを算出する手順を示す。To obtain each AO, at least two pieces of information, that is, the relative power of the upper half of the core (the rated power is 1.0
Output when normalized to) P T and the lower half relative output P B are required. In pressurized water reactors, this information is obtained by out-of-core nuclear instrumentation. Hereinafter, a procedure for calculating target deviations AOI, AOX, and AOP using this information will be described.
【0012】炉心を上半分及び下半分の2領域に分けた
場合、夫々の領域でのキセノン濃度及びよう素濃度の変
化は次式から算出できる。When the core is divided into two regions, an upper half and a lower half, changes in xenon concentration and iodine concentration in each region can be calculated from the following equations.
【数1】 (Equation 1)
【数2】 (Equation 2)
【数3】 (Equation 3)
【数4】 (Equation 4)
【数5】 (Equation 5)
【数6】 (Equation 6)
【0013】炉心がPT=PT Eq、PB=PB Eqで安定状態
であるとすると、その時の平衡よう素濃度、平衡キセノ
ン濃度は次のように表せる。Assuming that the core is in a stable state with P T = P T Eq and P B = P B Eq , the equilibrium iodine concentration and the equilibrium xenon concentration at that time can be expressed as follows.
【数7】 (Equation 7)
【数8】 (Equation 8)
【数9】 (Equation 9)
【数10】 ここで、 PT:炉心上半分の出力 PB:炉心下半分の出力 PR:炉心の定格出力 PT :炉心上半分の相対出力;PT*2/PR PB :炉心下半分の相対出力;PB*2/PR P :運転中の炉心の相対出力;(運転出力)/PR PT Eq:平衡状態での炉心上半分の相対出力 PB Eq:平衡状態での炉心下半分の相対出力 yi、yx:よう素、キセノンの核分裂による発生割合 λi、λx:よう素、キセノンの崩壊定数 Σf:巨視的核分裂断面積 σa:キセノンの微視的吸収断面積 φo:定格出力時の平均中性束 IT、IB:炉心上半分、下半分の平均よう素濃度 XT、XB:炉心上半分、下半分の平均キセノン濃度(Equation 10) Here, PT: the core upper half output PB: the core lower half output PR: core of the rated output P T: the upper half of the core relative power; PT * 2 / PR P B : the core lower half relative power; PB * 2 / PR P: relative power in the reactor core during operation; (operational outputs) / PR P T Eq: the upper half of the core relative power P B Eq at equilibrium: relative output y i of the core lower half at equilibrium, y x : rate of generation of iodine and xenon by fission λ i , λ x : decay constant of iodine and xenon Σ f : macroscopic fission cross section σ a : xenon microscopic absorption cross section φ o : at rated output mean neutral beam I T of, I B: core upper half, the average iodine concentration X T of the lower half, X B: core upper half, the average xenon concentration of the lower half
【0014】一方、炉心が安定状態にない場合には、よ
う素及びキセノンの夫々の濃度を炉心の出力履歴に基づ
いて算出しておくと、それ等が平衡状態として実現する
のに対応する出力分布のAOを夫々式7)〜10)を用
いて次のように求めることができる。On the other hand, when the core is not in a stable state, if the respective concentrations of iodine and xenon are calculated based on the output history of the core, the output corresponding to realizing them as an equilibrium state is obtained. The AO of the distribution can be obtained as follows using equations 7) to 10), respectively.
【数11】 [Equation 11]
【数12】 (Equation 12)
【0015】平衡状態では、これ等はその時の出力分布
の軸方向偏差AO即ち偏差AOPに等しく、AOI=A
OX=AOPであるが、キセノン振動中はそうなってい
ない。換言すれば、これ等の三つのAOが等しい時はキ
セノン振動は生じないのであるから、偏差AOI、AO
Xを連続監視(算出)しておき、偏差AOIと偏差AO
Xが一致する時点において偏差AOPをそのAO値に一
致させるように制御棒を移動させれば、その時点以降の
キセノン振動は抑制できる。この原理に従えば、制御棒
の移動すべき時点及び移動量を正確に定めることができ
る。偏差AOIと偏差AOXが一致するまでの時間Tx
及びその時のAOの値AOITは次の式で求まり、一回
前の結果と今回の結果から外挿となる。At equilibrium, these are equal to the axial deviation AO of the output distribution at that time, ie, deviation AOP, where AOI = A
OX = AOP, but not during xenon oscillation. In other words, when these three AOs are equal, xenon oscillation does not occur, so that the deviations AOI, AO
X is continuously monitored (calculated), and the deviation AOI and the deviation AO
If the control rod is moved so that the deviation AOP matches the AO value at the time when X matches, xenon oscillation after that time can be suppressed. According to this principle, the time and the amount of movement of the control rod can be accurately determined. Time T x until the deviation AOI and deviation AOX matches
And the value AOIT of AO at that time is obtained by the following equation, and is extrapolated from the previous result and the current result.
【数13】 (Equation 13)
【数14】 [Equation 14]
【0016】尚、よう素I、キセノンXの各濃度並びに
その結果としての偏差AOI及びAOXは、上述の式
3)〜6)を遂次積分することにより求められる。この
ときキセノン等の濃度変化の時定数は十分大きいため、
差分近似で解いても時間メッシュ巾は数分のオーダーで
十分である。Incidentally, the respective concentrations of iodine I and xenon X and the resulting deviations AOI and AOX can be obtained by successively integrating the above equations 3) to 6). At this time, the time constant of the concentration change of xenon and the like is sufficiently large.
Even if the solution is solved by the difference approximation, the time mesh width of several minutes is sufficient.
【0017】上述した原理に基づき次のパラメータを定
義する。 DAOXI:AOI−AOX DAOPX:AOP−AOX 図1には、キセノン振動中のこれ等のパラメータのDA
OXIがY軸に、DAOPXがX軸にプロットされてい
る。このプロットには次のような際立った特徴がある。The following parameters are defined based on the above principle. DAOXI: AOI-AOX DAOPX: AOP-AOX FIG. 1 shows DA of these parameters during xenon oscillation.
OXI is plotted on the Y axis and DAOPX is plotted on the X axis. This plot has the following salient features:
【0018】1)単純なキセノン振動中は第1象限と第
3象限内を主とし、原点を中心とした偏平な楕円にな
る。 2)軌跡の移動方向は、反時計回りであり、キセノン振
動の1周期で原点の周りを1周する。よって、この楕円
上を移動する速さは楕円の長径から離れるほど速くな
る。 3)キセノン振動が発散性の場合には楕円は大きくな
り、収束性の場合には小さくなる。 4)その楕円の長径は原点を通る。 5)長径の傾きは原子炉の運転条件により多少異なるが
約36°前後である。1) During a simple xenon oscillation, a flat ellipse is formed around the origin, mainly in the first and third quadrants. 2) The moving direction of the trajectory is counterclockwise, and the trajectory makes one round around the origin in one cycle of the xenon oscillation. Therefore, the speed of moving on the ellipse increases as the distance from the major axis of the ellipse increases. 3) When the xenon oscillation is divergent, the ellipse becomes large, and when it is convergent, it becomes small. 4) The major axis of the ellipse passes through the origin. 5) The inclination of the major axis slightly varies depending on the operating conditions of the reactor, but is about 36 °.
【0019】図2及び図3に、キセノン振動時に任意に
制御棒を移動して外乱を与えた場合の炉心挙動(図2の
AOP)、DAOIX−DAOPXの軌跡(図3)の特
性を示す。これ等の特性から以下のことが分かる。 1)制御棒を挿入すると軌跡はX軸の負側へ移動する。 2)制御棒を引き抜くと軌跡はX軸の正側へ移動する。 3)制御棒の移動を停止すると、その後の軌跡の移動方
向は基本となっている楕円と同じ方向へ移動する。即
ち、楕円の長径の上にあれば左下がりに、下にあれば右
上がりに移動する。 4)この軌跡の傾きは長径とほぼ平行であり、基本とな
っている楕円と長径、中心を共通とする相似の軌跡を通
る。 上記特性の理解を明瞭にするため、キセノン振動中に制
御棒を色々な時期に移動した例について示している。A
〜Qまでの点で制御棒を移動した際のX−Y軸上の軌跡
を炉心挙動と対応させて示している。FIGS. 2 and 3 show the characteristics of the core behavior (AOP in FIG. 2) and the locus of DAOIX-DAOPX (FIG. 3) when a control rod is arbitrarily moved during xenon vibration to give a disturbance. The following can be seen from these characteristics. 1) When the control rod is inserted, the trajectory moves to the negative side of the X axis. 2) When the control rod is pulled out, the trajectory moves to the positive side of the X axis. 3) When the movement of the control rod is stopped, the moving direction of the trajectory thereafter moves in the same direction as the basic ellipse. In other words, if it is above the major axis of the ellipse, it moves to the left, and if it is below, it moves to the right. 4) The inclination of this trajectory is substantially parallel to the major axis, and passes through a similar trajectory having the same major axis and major axis as the base ellipse. To clarify the above characteristics, examples are shown in which the control rod is moved at various times during xenon oscillation. A
The trajectory on the XY axis when the control rod is moved at points Q to Q is shown in association with the core behavior.
【0020】上記特性を利用し、本発明が基礎とする上
述の概念の原理でキセノン振動を抑制することができ
る。具体的な要領は以下の通りである。キセノン振動が
発生していない状態では、上述の概念の原理から、DA
OXI=ADOPX=0、即ち軌跡は原点にある。パラ
メータDAOXI、DAOPXの平面上で軌跡を監視
し、もし原点からの逸脱が大きくなればその軌跡を原点
に導くように制御棒を操作する。その方向と量はこの軌
跡を見ながら定めることができる。具体的には次のよう
になる。By utilizing the above characteristics, xenon oscillation can be suppressed based on the principle of the above concept on which the present invention is based. The specific points are as follows. In the state where xenon oscillation does not occur, the DA
OXI = ADOPX = 0, that is, the trajectory is at the origin. The trajectory is monitored on the plane of the parameters DAOXI and DAOPX, and if the deviation from the origin increases, the control rod is operated to guide the trajectory to the origin. The direction and amount can be determined while observing this trajectory. Specifically, it is as follows.
【0021】もし現在の軌跡が原点より右にあり、長径
より下にあれば、 1)制御棒を挿入して軌跡を左に移動させる。 2)この際、長径の上で止めるか、下で止めるかにより
その後の方向が判断できる。 3)制御棒の移動タイミングや移動量は軌跡を見ながら
容易に調整でき、軌跡を原点に導くことができる。If the current trajectory is to the right of the origin and below the major axis: 1) Insert a control rod and move the trajectory to the left. 2) At this time, the subsequent direction can be determined depending on whether the stop is on the major axis or below. 3) The movement timing and movement amount of the control rod can be easily adjusted while watching the trajectory, and the trajectory can be guided to the origin.
【0022】この例を図4及び図5に示す。制御棒の移
動時の炉心挙動と軌跡をA〜Gで示している。上記の方
法に従って制御棒を移動した結果、軌跡は原点に収束
し、キセノン振動は制御されていることが確認できる。This example is shown in FIG. 4 and FIG. The core behavior and the trajectory when the control rod moves are indicated by A to G. As a result of moving the control rod according to the above method, it can be confirmed that the trajectory converges to the origin and that the xenon oscillation is controlled.
【0023】図6に本発明のキセノン振動制御方法を実
現する装置の概念図を示す。1は原子炉圧力容器、2は
原子炉の炉心、3、4は上、下部炉外中性子束検出器で
あり、それぞれ、炉心2の上半分での出力PT、下半分
での出力PBの値に比例した信号を発生する。この信号
は、中性子束計測装置5において炉心上半分の相対出力
PT、下半分の相対出力PBを表す信号に変換され、この
情報が解析装置6に入力され、同解析装置6において前
記の各種パラメータを算出し、表示装置7に表示し、運
転操作上の情報を提供する。FIG. 6 shows a conceptual diagram of an apparatus for realizing the xenon oscillation control method of the present invention. Reference numeral 1 denotes a reactor pressure vessel, 2 denotes a reactor core, and 3 and 4 denote upper and lower out-of-reactor neutron flux detectors. The values of the output PT in the upper half of the core 2 and the output PB in the lower half, respectively. Generates a signal proportional to. This signal is converted by the neutron flux measuring device 5 into a signal representing the relative power P T of the upper half of the core and the relative power P B of the lower half, and this information is input to the analyzing device 6, and the above-described information is input to the analyzing device 6. Various parameters are calculated and displayed on the display device 7 to provide information on driving operation.
【0024】[0024]
【発明の効果】本発明に係るキセノン振動制御方法は、
上述した通り、必要とされる情報は炉心上下半分の出力
に関するもののみであり、非常に簡単な計算で構成され
ているが、その効果は従来見られないほど大きい。即
ち、本発明により、キセノン振動を制御するための効果
的な方法を非常に簡単な装置で実現できる。The method for controlling xenon vibration according to the present invention comprises:
As described above, the required information is only related to the power in the upper and lower halves of the core, and is constituted by a very simple calculation, but the effect is so large as not seen in the past. That is, according to the present invention, an effective method for controlling xenon oscillation can be realized with a very simple device.
【図1】 キセノン振動中のパラメータDAOIXをY
軸に、DAOPXをX軸にプロットして示す図。FIG. 1 shows the parameter DAOIX during xenon oscillation as Y
FIG. 7 is a diagram showing DAOPX plotted on the X axis on the axis.
【図2】 キセノン振動中に任意に制御棒を移動して外
乱を与えた場合の炉心挙動(AOP)を示す図。FIG. 2 is a diagram showing core behavior (AOP) when a control rod is arbitrarily moved during xenon vibration to give a disturbance.
【図3】 キセノン振動中に任意に制御棒を移動して外
乱を与えた場合のDAOIX−DAOPXの軌跡を示す
図。FIG. 3 is a diagram illustrating a locus of DAOIX-DAOPX when a disturbance is given by arbitrarily moving a control rod during xenon vibration.
【図4】 本発明に従ってキセノン振動の制御を行った
場合の炉心挙動(AOP)を示す図。FIG. 4 is a diagram showing core behavior (AOP) when controlling xenon oscillation according to the present invention.
【図5】 本発明に従ってキセノン振動の制御を行った
場合のDAOIX−DAOPXの軌跡を示す図。FIG. 5 is a diagram illustrating a locus of DAOIX-DAOPX when controlling xenon oscillation according to the present invention.
【図6】 本発明によるキセノン振動制御方法を実現す
る装置の概念図。FIG. 6 is a conceptual diagram of an apparatus for realizing a xenon vibration control method according to the present invention.
2…炉心、3…中性子束検出器、4…中性子束検出器、
5…中性子束計測装置、6…解析装置、7…表示装置。2 core, 3 neutron flux detector, 4 neutron flux detector,
5 neutron flux measurement device, 6 analysis device, 7 display device.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G21C 17/00 - 17/14 G21C 7/08 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) G21C 17/00-17/14 G21C 7/08
Claims (1)
T)、同原子炉の炉心下半分での出力を(PB)とし、
該炉心の前記炉心上半分及び前記炉心下半分の領域にお
けるそれぞれのキセノン濃度及びよう素濃度を前記炉心
上半分での出力(PT)、前記炉心下半分での出力(P
B)の情報に基づき算出し、時々刻々算出される前記キ
セノン濃度及び前記よう素濃度を平衡状態の濃度として
出現させる炉心上半分の出力及び炉心下半分の出力即
ち、キセノン濃度に基づく炉心上半分の出力(PTX)
及び炉心下半分の出力(PBX)並びによう素濃度に基
づく炉心上半分の出力(PTI)及び炉心下半分の出力
(PBI)を求め、次いで前記各出力(PT、PB、P
TX、PBX、PTI、PBI)の値から、次の各パラ
メータ、即ち、現在の過渡キセノン濃度がその状態で平
衡状態として実現するのに対応する軸方向出力分布の偏
差(AOX)、現在の過渡よう素濃度がその状態で平衡
状態として実現するのに対応する軸方向出力分布の偏差
(AOI)、その時の前記炉心の軸方向出力分布偏差
(AOP)、前記偏差(AOX、AOI、AOP)によ
り定義されるパラメータ(DAOIX、DAOPX)、 AOP=(PT−PB)/(PT+PB) AOX=(PTX−PBX)/(PTX+PBX) AOI=(PTI−PBI)/(PTI+PBI) DAOIX=AOI−AOX DAOPX=AOP−AOX を算出し、前記パラメータ(DAOIX)をY軸に、前
記パラメータ(DAOPX)をX軸にした軌跡を表示
し、該軌跡の情報に基づきキセノン振動を制御する、原
子炉のキセノン振動制御方法。1. The power in the upper half of the reactor core is (P
T), the power in the lower half of the reactor core is (PB),
The xenon concentration and the iodine concentration in the upper half and lower half regions of the core, respectively, are defined as the power in the upper half of the core (PT) and the power in the lower half of the core (P).
B) The output of the upper half of the core and the output of the lower half of the core, wherein the xenon concentration and the iodine concentration calculated from time to time appear as equilibrium concentrations, that is, the upper half of the core based on the xenon concentration. Output (PTX)
And the power of the lower half of the core (PBX) and the power of the upper half of the core (PTI) and the power of the lower half of the core (PBI) based on the iodine concentration, and then the respective outputs (PT, PB, P
TX, PBX, PTI, PBI), the following parameters, namely the deviation of the axial output distribution (AOX) corresponding to the current transient xenon concentration realizing as an equilibrium state in that state, the current transient The deviation of the axial power distribution (AOI) corresponding to the iodine concentration realizing as an equilibrium state in that state, the axial power distribution deviation (AOP) of the core at that time, and the deviation (AOX, AOI, AOP) Defined parameters (DAOIX, DAOPX), AOP = (PT-PB) / (PT + PB) AOX = (PTX-PBX) / (PTX + PBX) AOI = (PTI-PBI) / (PTI + PBI) DAOIX = AOI-AOX DAOPX = AOP-AOX is calculated, and the parameter (DAOIX) is set on the Y axis, and the parameter (DAOPX) is set on the X axis. Trajectory display, and controls the xenon oscillation based on the information of the locus, xenon oscillation control method of the reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22724993A JP3202430B2 (en) | 1993-09-13 | 1993-09-13 | Xenon vibration control method for nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22724993A JP3202430B2 (en) | 1993-09-13 | 1993-09-13 | Xenon vibration control method for nuclear reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07104092A JPH07104092A (en) | 1995-04-21 |
JP3202430B2 true JP3202430B2 (en) | 2001-08-27 |
Family
ID=16857861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22724993A Expired - Lifetime JP3202430B2 (en) | 1993-09-13 | 1993-09-13 | Xenon vibration control method for nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3202430B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008139933A1 (en) | 2007-05-10 | 2008-11-20 | Mitsubishi Heavy Industries, Ltd. | Method for predicting xenon vibration and computer program for predicting xenon vibration |
WO2009025260A1 (en) | 2007-08-21 | 2009-02-26 | Mitsubishi Heavy Industries, Ltd. | Axial direction output distribution control method, axial direction output distribution control system and axial direction output distribution control program |
WO2010095696A1 (en) | 2009-02-20 | 2010-08-26 | 三菱重工業株式会社 | Axial output distribution control method and axial output distribution control auxiliary device |
WO2010095695A1 (en) | 2009-02-20 | 2010-08-26 | 三菱重工業株式会社 | Axial output distribution prediction method and axial output distribution prediction device |
-
1993
- 1993-09-13 JP JP22724993A patent/JP3202430B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
島津洋一郎、金川孝、"軸方向出力分布偏差のオンラインデータ処理に基づくPWRの軸方向キセノン振動の最適制御方法"、日本原子力学会誌、1991年、第33巻、第3号、P.280−285 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008139933A1 (en) | 2007-05-10 | 2008-11-20 | Mitsubishi Heavy Industries, Ltd. | Method for predicting xenon vibration and computer program for predicting xenon vibration |
US8792604B2 (en) | 2007-05-10 | 2014-07-29 | Mitsubishi Heavy Industries, Ltd. | Xenon oscillation prediction method and computer program for xenon oscillation prediction |
WO2009025260A1 (en) | 2007-08-21 | 2009-02-26 | Mitsubishi Heavy Industries, Ltd. | Axial direction output distribution control method, axial direction output distribution control system and axial direction output distribution control program |
US9020090B2 (en) | 2007-08-21 | 2015-04-28 | Mitsubishi Heavy Industries, Ltd. | Axial power distribution control method, axial power distribution control system and axial power distribution control program |
WO2010095696A1 (en) | 2009-02-20 | 2010-08-26 | 三菱重工業株式会社 | Axial output distribution control method and axial output distribution control auxiliary device |
WO2010095695A1 (en) | 2009-02-20 | 2010-08-26 | 三菱重工業株式会社 | Axial output distribution prediction method and axial output distribution prediction device |
US8995601B2 (en) | 2009-02-20 | 2015-03-31 | Mitsubishi Heavy Industries, Ltd. | Axial power distribution prediction method and axial power distribution prediction device |
Also Published As
Publication number | Publication date |
---|---|
JPH07104092A (en) | 1995-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2192592B1 (en) | Axial direction output distribution control method and axial direction output distribution control system | |
Chao et al. | Dynamic rod worth measurement | |
US20200395138A1 (en) | Covariance data creation apparatus, reactor core analysis apparatus, covariance data creation method, macroscopic covariance adjustment method, reactor core characteristic evaluation method, covariance data creation program, macroscopic covariance adjustment program, and reactor core characteristic evaluation program | |
JP3202430B2 (en) | Xenon vibration control method for nuclear reactor | |
EP2157582B1 (en) | Method for predicting xenon oscillation and computer program for predicting xenon oscillation | |
Turso et al. | Hybrid simulation of boiling water reactor dynamics using a university research reactor | |
JP2001133580A (en) | Reactor core performance computing method and apparatus for reactor | |
Vanier et al. | Superphénix reactivity and feedback coefficients | |
JP2000121779A (en) | Power distribution control method for reactor core | |
JP2696049B2 (en) | Reactor core characteristics simulation device | |
Park et al. | Estimation of neutron flux and xenon distributions via observer-based control theory | |
Tiwari et al. | Control of xenon induced spatial oscillations in a large PHWR | |
Garcia et al. | Analysis of the feedback coefficients of the Superphénix start-up core with APOLLO3 | |
JP2975654B2 (en) | Core monitoring device | |
JPH06186380A (en) | Performance calculator for reactor core | |
Xie et al. | Designing of neutron cross section processing program for nuclear power plant full-scope simulator | |
WO2001039207A1 (en) | A method for operating a nuclear plant | |
JPH04115193A (en) | Measuring apparatus for average burnup of nuclear fuel assembly | |
Cameron et al. | Examples of analog computer applications in nuclear processes | |
JPH0743437B2 (en) | Method for determining subcriticality of nuclear fuel specimens | |
JP2000162365A (en) | Device for calculating reactor core performance of reactor | |
JPH0580182A (en) | Calculating method for fuel rod output characteristic of nuclear reactor | |
Zalesky et al. | SCORPIO-VVER core surveillance system | |
Graves | Experience with xenon oscillations | |
Bernard et al. | Experiments illustrating the importance of automated reasoning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010515 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130622 Year of fee payment: 12 |