JP3199339B2 - Control device for grid-connected inverter - Google Patents

Control device for grid-connected inverter

Info

Publication number
JP3199339B2
JP3199339B2 JP26284493A JP26284493A JP3199339B2 JP 3199339 B2 JP3199339 B2 JP 3199339B2 JP 26284493 A JP26284493 A JP 26284493A JP 26284493 A JP26284493 A JP 26284493A JP 3199339 B2 JP3199339 B2 JP 3199339B2
Authority
JP
Japan
Prior art keywords
voltage
inverter
frequency
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26284493A
Other languages
Japanese (ja)
Other versions
JPH07123727A (en
Inventor
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26284493A priority Critical patent/JP3199339B2/en
Publication of JPH07123727A publication Critical patent/JPH07123727A/en
Application granted granted Critical
Publication of JP3199339B2 publication Critical patent/JP3199339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、インバータにより直流
電圧を交流電圧に変換して負荷に供給すると共に、交流
電力系統に連系して運転するインバータの制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an inverter which converts a DC voltage into an AC voltage by an inverter and supplies the AC voltage to a load, and operates in connection with an AC power system.

【0002】[0002]

【従来の技術】従来の系統連系太陽光インバータの制御
装置の1例を図5に示し説明する。直流電源1からイン
バータブリッジ2により直流から交流に変換しリアクト
ル3とコンデンサ4によるフィルタ作用によりPWMに
伴う高調波成分を除去して波形率の良い電力を系統へ注
入する。電流検出器5はインバータ電流検出用である。
系統電源8とインバータ間にはインダクタンス分6(送
電線の)が存在し、遮断器7を経由してつながってい
る。
2. Description of the Related Art One example of a conventional control device for a grid-connected solar inverter will be described with reference to FIG. The DC power supply 1 is converted from DC to AC by the inverter bridge 2, and a high frequency component with PWM is removed by the filter action of the reactor 3 and the capacitor 4, and power with a good waveform ratio is injected into the system. The current detector 5 is for detecting inverter current.
An inductance 6 (of a transmission line) exists between the system power supply 8 and the inverter, and is connected via the circuit breaker 7.

【0003】負荷9が配電線に接続されその電圧は電圧
検出器10で検出する。インバータの制御回路は、直流電
圧基準V* と直流電源電圧Vを比較し増幅器11で増幅器
してVc を電流基準回路12に入力して、正弦波発生回路
16から出力される一定振幅の正弦波信号とVc の積から
交流電流基準I* を作り電流検出器5の出力と比較し増
幅器12で増幅してPWM回路14にてPWM信号を作り駆
動回路部15によりインバータブリッジ2のパワー素子を
PWM制御する。この制御ループにより負荷電流によっ
て変化する直流電源電圧Vが一定になるような電流をイ
ンバータから系統に出力することになる。このことによ
り直流電源が太陽電池の場合、直流電圧を選定すること
によりほぼ最大電力を取り出すことができる。
A load 9 is connected to a distribution line and its voltage is detected by a voltage detector 10. The control circuit of the inverter compares the DC voltage reference V * with the DC power supply voltage V, amplifies it with the amplifier 11, inputs Vc to the current reference circuit 12, and generates a sine wave generation circuit.
An AC current reference I * is made from the product of the sine wave signal of a constant amplitude outputted from 16 and Vc, compared with the output of the current detector 5, amplified by the amplifier 12, and made into a PWM signal by the PWM circuit 14 to form a driving circuit section. 15 controls the power of the inverter bridge 2 by PWM. With this control loop, a current is output from the inverter to the system so that the DC power supply voltage V that changes according to the load current becomes constant. Thus, when the DC power supply is a solar cell, almost the maximum power can be obtained by selecting the DC voltage.

【0004】系統連系インバータは常時は交流電圧と同
相の電流を流し力率1で運転するため、電圧検出器10の
出力からPLL回路18により交流系統の電圧に同期した
信号を取り出し位相検出回路19で位相信号とし位相シフ
ト回路17の位相基準としている。
Since the grid-connected inverter always operates at a power factor of 1 by passing a current in phase with the AC voltage, a signal synchronized with the voltage of the AC system is taken out of the output of the voltage detector 10 by the PLL circuit 18 to obtain a phase detection circuit. At 19, a phase signal is used as a phase reference of the phase shift circuit 17.

【0005】低圧連系要件ガイドラインが1993年3月制
定され、系統連系するインバータには次の保護機能が必
要になった。即ち単独運転防止のため電圧リレー22、周
波数リレー23の出力で異常検出回路24を動作させ駆動部
15をロックしてインバータを停止させる。その他に受動
的方式(例えば高調波検出や位相ジャンプ検出)による
異常検出保護と、能動的方式(例えば周波数バイアスや
電力変動)により単独運転をより信頼性良く保護しなけ
ればならない。能動的方式は周波数バイアス方式でPL
L回路の発振器にバイアスをかけ単独運転時に周波数を
下げる方向にシフトする。
[0005] The low voltage interconnection requirement guideline was enacted in March 1993, and the following protection functions were required for inverters to be interconnected. That is, in order to prevent the isolated operation, the abnormality detecting circuit 24 is operated by the output of the voltage relay 22 and the frequency relay 23 to drive the drive unit.
Lock 15 and stop the inverter. In addition, anomaly detection protection by a passive method (for example, harmonic detection or phase jump detection) and an independent method must be more reliably protected by an active method (for example, frequency bias or power fluctuation). Active method is frequency bias method and PL
A bias is applied to the oscillator of the L circuit so that the frequency shifts in the direction of decreasing the frequency during the single operation.

【0006】また、系統連系中のインバータは交流電圧
が一定値以上になった場合は電圧差検出回路20でこれを
検出し増幅器21を介して位相シフト回路17に入力して電
流位相を進めることにより系統電源8からは遅れ電流が
増加し、インダクタンス分6により負荷端の電圧が低下
する電圧制御機能も一定容量以上のインバータでは必要
とされている。
When the AC voltage exceeds a certain value, the inverter in the system interconnection detects this by a voltage difference detection circuit 20 and inputs it to a phase shift circuit 17 via an amplifier 21 to advance the current phase. As a result, a delay current increases from the system power supply 8, and a voltage control function of reducing the voltage at the load end due to the inductance 6 is also required for an inverter having a certain capacity or more.

【0007】[0007]

【発明が解決しようとする課題】ところが上記の電圧制
御機能は単独運転防止保護と深い関係にあり電圧制御機
能は特に単独運転中の周波数や位相のシフトを妨げる方
向に作用する場合が多く、両方を満足させることが不可
能に近かった。
However, the above-mentioned voltage control function is closely related to the protection against islanding operation, and the voltage control function often acts in a direction that hinders the shift of the frequency or phase particularly during the islanding operation. Was nearly impossible to satisfy.

【0008】特に従来の単独運転防止保護時間はインバ
ータと負荷の電力が有効分、無効分共にバランスし、負
荷に誘導電動機が存在する場合10秒から1分程度も保護
するまで時間が必要な場合があり、この間に電圧制御機
能を動作させると最悪な場合保護できないことも発生す
る。
[0008] In particular, the conventional protection time for islanding prevention is that the power of the inverter and the load are balanced for both the effective and reactive powers, and when an induction motor is present in the load, it takes 10 seconds to 1 minute to protect the load. If the voltage control function is operated during this time, protection may not be possible in the worst case.

【0009】最近の家庭用の負荷には定電力負荷が増加
している。例えばインバータエアコン、インバータ蛍光
灯、IH電気ガマ、TV、OA機器など定電圧電源回路
を有しているものが多い。
[0009] Recently, constant power loads have been increasing in household loads. For example, many of them have a constant voltage power supply circuit, such as an inverter air conditioner, an inverter fluorescent lamp, an IH electric gama, a TV, and an OA device.

【0010】夏場などで系統の発電能力に近い負荷が加
わると、電圧低下→電流増加(定電力負荷のため)→電
圧低下→電流増の正帰還となり系統の全停につながる。
このため最近ではSVC(static var compensatin)シ
ステムを設置し電圧低下時系統から進み電流を流して電
圧を上昇させ系統を安定化させる方法も採用されてい
る。
When a load close to the power generation capacity of the system is applied in summer or the like, the voltage is reduced, the current is increased (because of a constant power load), the voltage is reduced, and the current is increased.
For this reason, recently, a method has been adopted in which an SVC (static var compensatin) system is installed and a current is advanced from the system at the time of voltage drop to flow a current to increase the voltage and stabilize the system.

【0011】本発明は、上述の問題に鑑みてなされたも
ので、分散形インバータ装置で単独運転防止機能を害す
ることなく系統の安定化及び高調波抑制を行うことの可
能な系統連系インバータの制御装置を得ることを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in consideration of the above-described problems. Accordingly, a distributed inverter device capable of stabilizing a system and suppressing harmonics without impairing an islanding prevention function is provided. The aim is to obtain a control device.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明は直流電圧を交流電圧に変換し交流系統に連
系して運転するインバータと、前記交流電圧の周波数が
定格周波数の付近で増加する方向に変化するとき、該周
波数の変化に応じて前記インバータの電流位相を進み方
向に変化させる位相調節手段を備えた装置において、前
記交流電圧の電圧変動分により前記位相調節手段を制御
し前記インバータの電流位相を該電圧変動分を抑制する
方向に制御する電圧補償手段を設ける。
In order to achieve the above object, the present invention provides an inverter which converts a DC voltage into an AC voltage and operates in connection with an AC system, and wherein the frequency of the AC voltage is close to a rated frequency. In a device provided with phase adjusting means for changing the current phase of the inverter in the leading direction in accordance with the change in the frequency when the frequency changes, the phase adjusting means is controlled by a voltage variation of the AC voltage. Voltage compensating means for controlling the current phase of the inverter in a direction to suppress the voltage fluctuation is provided.

【0013】また、前記電圧補償手段は、前記交流電圧
が所定の範囲の設定電圧を越えて変動したとき、前記電
圧変動分を抑制する動作を行うように不感帯を設ける。
また、直流電圧を交流電圧に変換し交流系統に連系して
運転するインバータと、前記交流電圧の周波数が定格周
波数の付近で増加する方向に変化するとき、該周波数の
変化に応じて前記インバータの電流位相を進み方向に変
化させる位相調節手段と、前記インバータが前記交流系
統から切り離されたとき、その状態を検出してインバー
タの運転を停止させる異常検出手段を備えた装置におい
て、前記交流電圧の電圧変動分により前記位相調節手段
を制御し前記インバータの電流位相を該電圧変動分を抑
制する方向に制御する電圧補償手段を設け、この電圧補
償手段の電圧変動を抑制する制御応答時間を前記異常検
出手段の検出応答時間より遅く設定する。
Further, the voltage compensating means is provided with a dead zone so as to perform an operation for suppressing the voltage fluctuation when the AC voltage fluctuates beyond a predetermined range of the set voltage.
Further, an inverter that converts a DC voltage to an AC voltage and operates in connection with an AC system, and when the frequency of the AC voltage changes in the direction of increasing near a rated frequency, the inverter according to the change in the frequency. A phase adjusting means for changing a current phase of the AC power in a leading direction, and an abnormality detecting means for detecting a state of the inverter when the inverter is disconnected from the AC system and stopping the operation of the inverter, wherein the AC voltage Voltage compensating means for controlling the phase adjusting means in accordance with the voltage fluctuation amount to control the current phase of the inverter in a direction for suppressing the voltage fluctuation amount, and providing a control response time for suppressing the voltage fluctuation of the voltage compensating means. Set it later than the detection response time of the abnormality detection means.

【0014】また、直流電圧を交流電圧に変換し交流系
統に連系して運転するインバータと、前記交流電圧の周
波数が定格周波数の付近で増加する方向に変化すると
き、該周波数の変化に応じて前記インバータの電流基準
の位相を進み方向に変化させる位相調節手段を備えた装
置において、前記交流電圧の電圧変動分により前記位相
調節手段を制御し前記電流基準の位相を該電圧変動分を
抑制する方向に制御する電圧補償手段と、前記交流電圧
が印加される負荷に流れる電流の高調波成分をインバー
タ側から供給するように前記電流基準を補正する高調波
補償手段を設け、高調波電流補償の制御応答を電圧変動
分抑制の制御応答より速くする。
An inverter that converts a DC voltage to an AC voltage and operates in connection with an AC system, and an inverter that operates in accordance with a change in the frequency when the frequency of the AC voltage changes in the direction of increasing near a rated frequency. A phase adjusting means for changing a phase of a current reference of the inverter in a leading direction, wherein the phase adjusting means is controlled by a voltage variation of the AC voltage to suppress the phase of the current reference to the voltage variation. Voltage compensating means for controlling the current reference in a direction in which the AC voltage is applied, and harmonic compensating means for compensating the current reference so that the harmonic component of the current flowing to the load to which the AC voltage is applied is supplied from the inverter side. Is made faster than the control response for suppressing the voltage fluctuation.

【0015】[0015]

【作用】上記構成において、通常、インバータは力率1
の電流を交流系統へ供給するように運転される。インバ
ータが交流系統から切り離され単独運転の状態になると
交流電圧の周波数に変化が生じ前記位相調節手段の作用
により急速に周波数が変化し単独運転状態が検出され
る。一方、インバータが交流系統に連系して運転してい
る場合、交流電圧に変動が生じると前記電圧補償手段に
よるインバータの電流位相の変化により交流系統に流れ
る無効電流が変化し交流系統側のリアクタンス電圧の作
用により交流電圧の変動分が抑制される。また、不感帯
内の電圧変動分に対して応動しないようにして通常の運
転を安定に行わせる。
In the above configuration, the inverter usually has a power factor of 1
Is operated so as to supply the electric current to the AC system. When the inverter is disconnected from the AC system and enters an isolated operation state, the frequency of the AC voltage changes, and the frequency changes rapidly due to the operation of the phase adjusting means, and the isolated operation state is detected. On the other hand, when the inverter is operated in connection with the AC system, when the AC voltage fluctuates, the reactive current flowing in the AC system changes due to the change in the current phase of the inverter by the voltage compensating means, and the reactance on the AC system side changes. The fluctuation of the AC voltage is suppressed by the action of the voltage. Further, normal operation is stably performed by not responding to the voltage fluctuation in the dead zone.

【0016】また、インバータが交流系統から切り離さ
れると、異常検出手段によりインバータの単独運転状態
が検出されインバータの運転が停止される。この場合、
電圧補償手段の制御応答を異常検出手段の検応答より遅
く設定することによりインバータの単独運転状態が確実
に検出される。また、高調波補償手段の作用により負荷
に流れる電流の高調波成分をインバータ側から供給する
ので交流系統に流れる電流の高調波成分が抑制される。
Further, when the inverter is disconnected from the AC system, the independent operation state of the inverter is detected by the abnormality detecting means, and the operation of the inverter is stopped. in this case,
By setting the control response of the voltage compensating means later than the detection response of the abnormality detecting means, the isolated operation state of the inverter is reliably detected. In addition, since the harmonic component of the current flowing to the load is supplied from the inverter side by the operation of the harmonic compensation means, the harmonic component of the current flowing to the AC system is suppressed.

【0017】[0017]

【実施例】本発明の実施例を図1に示しその構成を説明
する。図5と同一部分は同一番号を附したので説明を省
略する。交流電源を電圧検出回路10で検出し、位相特性
が図2に示すような特性となるフィルタ27を介して位相
検出器18に入力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG. The same parts as those in FIG. 5 are denoted by the same reference numerals and will not be described. The AC power supply is detected by the voltage detection circuit 10 and input to the phase detector 18 via the filter 27 having a phase characteristic as shown in FIG.

【0018】一方、電圧検出回路10の出力を電圧差検出
器20で検出し、設定値を超えた場合、増幅器21と遅れ回
路28を介して位相シフト回路17の位相を進み又は遅れ方
向にシフトする。
On the other hand, when the output of the voltage detection circuit 10 is detected by the voltage difference detector 20 and exceeds a set value, the phase of the phase shift circuit 17 is shifted in the advance or delay direction via the amplifier 21 and the delay circuit 28. I do.

【0019】遅れ回路28の出力がゼロの場合についてそ
の作用を簡単に説明する。(詳細は特願平5-96199イン
バータの系統連系保護方法およびその装置) インバータの電流位相特性を図2のインバータ(1)の
特性にした場合負荷特性が図に示すように力率1(L,
C,R負荷の場合)の場合周波数が上昇すると進み負荷
となるので右上りの特性負荷を示す。
The operation of the case where the output of the delay circuit 28 is zero will be briefly described. (For details, refer to Japanese Patent Application No. Hei 5-96199. Method for protecting system interconnection of inverter and its device) When the current phase characteristic of the inverter is the characteristic of inverter (1) in FIG. L,
In the case of C and R loads), when the frequency increases, the load becomes an advanced load, so that the upper right characteristic load is shown.

【0020】この状態で図1の遮断器7が開となり単独
運転になると周波数はf0 +Δf1,又はf0 −Δf1
のいずれかにシフトして安定になる。即ちf0 よりわず
かに上昇するとインバータは負荷が必要とする無効電力
より多い進み無効電力を供給して周波数を上昇させる。
0 よりわずかに低い場合はその逆に周波数を下げるよ
う動作するのでf0 点は不安定点である。
In this state, when the circuit breaker 7 shown in FIG. 1 is opened to operate independently, the frequency becomes f 0 + Δf 1 or f 0 −Δf 1
Shifts to either of them and becomes stable. That is, when the frequency slightly rises from f 0 , the inverter supplies more advanced reactive power than the reactive power required by the load to increase the frequency.
If it is slightly lower than f 0, the operation is performed to lower the frequency, and the f 0 point is an unstable point.

【0021】このようにインバータの電流位相又は無効
電力を抑制することにより単独運転時周波数を急速にシ
フトして周波数リレーや位相ジャンプ検出などで異常検
出を行いインバータを停止することが可能である。この
実測結果を図3に示す。負荷としてはLCR負荷とLC
R+IM(誘導電動機)負荷について有効電力がバラン
スした状態(約ΔP=0)で無効電力のアンバランス
(ΔQ)に関して単独運転時の周波数異常検出時間を測
定した。
As described above, by suppressing the current phase or the reactive power of the inverter, the frequency in the isolated operation can be rapidly shifted to detect an abnormality by a frequency relay, phase jump detection or the like, and stop the inverter. FIG. 3 shows the measurement results. The load is LCR load and LC
In the state where the active power is balanced (approximately ΔP = 0) with respect to the R + IM (induction motor) load, the frequency abnormality detection time during the independent operation was measured for the unbalance (ΔQ) of the reactive power.

【0022】いずれの場合も 0.3秒以内で検出できた。
そこでこの検出時間 0.3秒より遅い(単独運転検出に無
関係となる)速度でインバータの特性を図2のインバー
タ(2)やインバータ(3)の特性方向にずらしても単
独運転保護には支障がないことが明らかである。
In each case, detection was possible within 0.3 seconds.
Therefore, even if the characteristic of the inverter is shifted in the characteristic direction of the inverter (2) or the inverter (3) in FIG. It is clear that.

【0023】このため負荷電圧が設定値より高くなる
と、電圧差検出器20でこれを検出し増幅器21で増幅し、
遅れ回路28により上記 0.3秒より遅い応答(又はサンプ
リング)で位相シフト回路17により図2のインバータ位
相特性をインバータ(1)からインバータ(2)の方向
に(電流が進む方向)に平行に移動すると系統から遅れ
電流が増加しインダクタンス分6の作用で電圧が低下す
る機能を持たせることができる。
For this reason, when the load voltage becomes higher than the set value, this is detected by the voltage difference detector 20 and amplified by the amplifier 21.
When the phase shift circuit 17 shifts the inverter phase characteristic of FIG. 2 in the direction from the inverter (1) to the inverter (2) (in the direction in which the current advances) in a response (or sampling) slower than 0.3 seconds by the delay circuit 28. A function of increasing the delay current from the system and reducing the voltage by the action of the inductance 6 can be provided.

【0024】また、電圧が設定値より低下した場合は位
相シフト回路によりインバータ電流位相をインバータ
(1)からインバータ(3)の方向に送らせることによ
り系統から進み電流が流れ電圧を上昇させる系統安定化
機能を持たせることにより大停電の発生確率を下げるこ
とができる。
When the voltage falls below the set value, the phase shift circuit causes the inverter current phase to be sent from the inverter (1) to the inverter (3), so that the current flows from the system and the voltage rises, thereby stabilizing the system. The probability of occurrence of a major power outage can be reduced by providing the function of making a power failure.

【0025】以上説明したように本実施例によれば単独
運転時の周波数シフト動作速度より遅いループで電圧安
定化制御を行うことで低圧連系技術要件ガイドラインを
満足させる保護と電圧上昇を防ぐ機能を同時に達成し、
さらに電力消費増加時の電圧低下の正帰還作用を防いで
停電の確率を下げることが可能となる。
As described above, according to the present embodiment, the voltage stabilization control is performed in a loop that is slower than the frequency shift operation speed at the time of the isolated operation, so that the protection that satisfies the low-voltage interconnection technical requirement guideline and the function that prevents the voltage rise can be achieved. At the same time,
Furthermore, it is possible to prevent the positive feedback effect of the voltage drop when the power consumption increases, thereby reducing the probability of a power failure.

【0026】本発明の他の実施例を図4に示す。負荷電
流を変流器30で検出し、その高調波分を高調波検出回路
31で検出し、高調波分を打消す方向に加算器33で正弦波
(基本波)に加算することにより高調波を打消すアクテ
ィブフィルタ機能を持たせる。
FIG. 4 shows another embodiment of the present invention. Load current is detected by current transformer 30 and its harmonic component is detected by harmonic detection circuit.
An adder 33 adds an active filter function to the sine wave (fundamental wave) in the direction of detecting the harmonic component and canceling the harmonic component, thereby canceling the harmonic component.

【0027】基本波の力率を制御する目的もある場合は
無効分検出回路32で検出し、増幅器21、遅れ回路28を介
して位相シフト回路17により基本波電流位相を変えて力
率が良くなる方向に動作させる。
When there is also a purpose of controlling the power factor of the fundamental wave, it is detected by the invalid component detection circuit 32, and the phase shift circuit 17 changes the fundamental wave current phase via the amplifier 21 and the delay circuit 28 to improve the power factor. Operate in the following direction.

【0028】この場合も図1で説明したように単独運転
検出機能に支障ないよう遅れ回路28を有効に動作させ
る。なお図1ではインバータは電流制御形で説明した
が、電圧制御形インバータで系統連系する場合は一般に
P(有効電力分)を制御しQ(無効電力分)はゼロに制
御しているのでQ=VIsin θからV一定制御のため約
Isin θ=Iθを図2のように制御することで全く同様
な作用があることがわかる。
Also in this case, the delay circuit 28 is effectively operated so as not to interfere with the islanding detection function as described with reference to FIG. In FIG. 1, the inverter is described as a current control type. However, when a voltage control type inverter is connected to a system, P (active power) is generally controlled and Q (reactive power) is controlled to zero, so that Q It can be seen that the same operation is obtained by controlling about Isin θ = Iθ as shown in FIG.

【0029】また、図1の合成フィルタ27の特性はマイ
コンなどで種パターンを変えられることは説明するまで
もない。なお図1において周波数変化率(df/dt)
回路を設け、周波数変化がある場合は単独運転の可能性
が高いので無効電力や電圧制御回路の制御をホールドす
るなど変形して実施することができる。
It is needless to say that the seed pattern of the characteristics of the synthesis filter 27 shown in FIG. 1 can be changed by a microcomputer or the like. In FIG. 1, the frequency change rate (df / dt)
A circuit is provided, and if there is a frequency change, the possibility of islanding is high. Therefore, the present invention can be modified and implemented by holding the control of the reactive power or the voltage control circuit.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば定格
周波数附近で周波数上昇時に電流位相が進み、進みの無
効電力が増加する特性をインバータに持たせ、電圧の安
定制御や無効電力制御はゆるやかに制御し、高調波分制
御は高速に行うことにより、単独運転検出機能を損なう
ことなく電圧の安定度の向上やアクディブフィルタ機能
を有する連系インバータの制御装置を提供することがで
きる。
As described above, according to the present invention, the inverter has the characteristic that the current phase advances when the frequency rises near the rated frequency and the reactive power increases, and the voltage stability control and the reactive power control are performed. By performing the control gently and performing the harmonic component control at a high speed, it is possible to provide a control device for an interconnected inverter having an improved voltage stability and an active filter function without impairing the islanding detection function.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の作用を説明するための特性図FIG. 2 is a characteristic diagram for explaining the operation of the present invention.

【図3】本発明で用いる異常検出の検出特性図FIG. 3 is a detection characteristic diagram of abnormality detection used in the present invention.

【図4】本発明の他の実施例の構成図FIG. 4 is a configuration diagram of another embodiment of the present invention.

【図5】従来装置の構成図FIG. 5 is a configuration diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1…直流電源、2…インバータブリッジ、3…リアクト
ル、4…コンデンサ、5…電流検出器、6…インダクタ
ンス分、7…遮断器、8…交流系統、9…負荷、10…電
圧検出器、11,13…増幅器、14…PWM回路、15…駆動
回路、16…正弦波回路、17…位相シフト回路、18…PL
L回路、19…位相検出回路、20…電圧差検出回路、21…
増幅器、22…電圧リレー、23…周波数リレー、24…異常
検出回路、25…受動的方式、26…能動的方式、27…合成
フィルタ、28…遅れ回路、30…変流器、31…高調波検
出、32…無効分検出回路、33…加算器
DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Inverter bridge, 3 ... Reactor, 4 ... Capacitor, 5 ... Current detector, 6 ... Inductance, 7 ... Circuit breaker, 8 ... AC system, 9 ... Load, 10 ... Voltage detector, 11 , 13 ... amplifier, 14 ... PWM circuit, 15 ... drive circuit, 16 ... sine wave circuit, 17 ... phase shift circuit, 18 ... PL
L circuit, 19: phase detection circuit, 20: voltage difference detection circuit, 21 ...
Amplifier, 22… Voltage relay, 23… Frequency relay, 24… Abnormality detection circuit, 25… Passive method, 26… Active method, 27… Synthesis filter, 28… Delay circuit, 30… Current transformer, 31… Harmonic Detection, 32: Invalid part detection circuit, 33: Adder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−311653(JP,A) 特開 平7−7857(JP,A) 特開 平3−256534(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/48 H02J 3/12 H02J 3/38 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-311653 (JP, A) JP-A-7-7857 (JP, A) JP-A-3-256534 (JP, A) (58) Field (Int.Cl. 7 , DB name) H02M 7/48 H02J 3/12 H02J 3/38

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直流電圧を交流電圧に変換し交流系統に
連系して運転するインバータと、前記交流電圧の周波数
が定格周波数の付近で増加する方向に変化するとき、該
周波数の変化に応じて前記インバータの電流位相を進み
方向に変化させる位相調節手段を備えた装置において、
前記交流電圧の電圧変動分により前記位相調節手段を制
御し前記インバータの電流位相を該電圧変動分を抑制す
る方向に制御する電圧補償手段を設けたことを特徴とす
る系統連系インバータの制御装置。
1. An inverter that converts a DC voltage into an AC voltage and operates in connection with an AC system, and an inverter that operates in accordance with a change in the frequency when the frequency of the AC voltage changes in the direction of increasing near a rated frequency. A device having phase adjusting means for changing the current phase of the inverter in the leading direction,
A control device for a grid-connected inverter, comprising: voltage compensating means for controlling the phase adjusting means based on a voltage variation of the AC voltage to control a current phase of the inverter in a direction for suppressing the voltage variation. .
【請求項2】 請求項1に記載の系統連系インバータの
制御装置において、前記電圧補償手段は、前記交流電圧
が所定の範囲の設定電圧を越えて変動したとき、前記電
圧変動分を抑制する動作を行うように不感帯を有するこ
とを特徴とする系統連系インバータの制御装置。
2. The control device for a grid-connected inverter according to claim 1, wherein the voltage compensating means suppresses the voltage fluctuation when the AC voltage fluctuates beyond a predetermined range of a set voltage. A control device for a grid-connected inverter having a dead zone so as to perform an operation.
【請求項3】 直流電圧を交流電圧に変換し交流系統に
連系して運転するインバータと、前記交流電圧の周波数
が定格周波数の付近で増加する方向に変化するとき、該
周波数の変化に応じて前記インバータの電流位相を進み
方向に変化させる位相調節手段と、前記インバータが前
記交流系統から切り離されたとき、その状態を検出して
インバータの運転を停止させる異常検出手段を備えた装
置において、前記交流電圧の電圧変動分により前記位相
調節手段を制御し前記インバータの電流位相を該電圧変
動分を抑制する方向に制御する電圧補償手段を設け、こ
の電圧補償手段の電圧変動を抑制する制御応答時間を前
記異常検出手段の検出応答時間より遅く設定することを
特徴とする系統連系インバータの制御装置。
3. An inverter which converts a DC voltage into an AC voltage and operates in connection with an AC system, and an inverter which operates in response to a change in the frequency of the AC voltage when the frequency changes in the direction of increasing near a rated frequency. A phase adjusting means for changing the current phase of the inverter in the leading direction, and an abnormality detecting means for detecting the state of the inverter and stopping the operation of the inverter when the inverter is disconnected from the AC system, Voltage compensating means for controlling the phase adjusting means in accordance with the voltage fluctuation of the AC voltage to control the current phase of the inverter in a direction for suppressing the voltage fluctuation; and a control response for suppressing the voltage fluctuation of the voltage compensating means. A system interconnection inverter control device, wherein a time is set later than a detection response time of the abnormality detection means.
【請求項4】 直流電圧を交流電圧に変換し交流系統に
連系して運転するインバータと、前記交流電圧の周波数
が定格周波数の付近で増加する方向に変化するとき、該
周波数の変化に応じて前記インバータの電流基準の位相
を進み方向に変化させる位相調節手段を備えた装置にお
いて、前記交流電圧の電圧変動分により前記位相調節手
段を制御し前記電流基準の位相を該電圧変動分を抑制す
る方向に制御する電圧補償手段と、前記交流電圧が印加
される負荷に流れる電流の高調波成分をインバータ側か
ら供給するように前記電流基準を補正する高調波補償手
段を設け、高調波電流補償の制御応答を電圧変動分抑制
の制御応答より速くすることを特徴とする系統連系イン
バータの制御装置。
4. An inverter which converts a DC voltage into an AC voltage and operates in connection with an AC system, and an inverter which operates in accordance with a change in the frequency when the frequency of the AC voltage changes in the direction of increasing near a rated frequency. A phase adjusting means for changing a phase of a current reference of the inverter in a leading direction, wherein the phase adjusting means is controlled by a voltage variation of the AC voltage to suppress the phase of the current reference to the voltage variation. Voltage compensating means for controlling the current reference in a direction in which the AC voltage is applied, and harmonic compensating means for compensating the current reference so that the harmonic component of the current flowing to the load to which the AC voltage is applied is supplied from the inverter side. A control device for a grid-connected inverter, wherein the control response of the system interconnection is made faster than the control response of suppressing the voltage fluctuation.
JP26284493A 1993-10-21 1993-10-21 Control device for grid-connected inverter Expired - Lifetime JP3199339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26284493A JP3199339B2 (en) 1993-10-21 1993-10-21 Control device for grid-connected inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26284493A JP3199339B2 (en) 1993-10-21 1993-10-21 Control device for grid-connected inverter

Publications (2)

Publication Number Publication Date
JPH07123727A JPH07123727A (en) 1995-05-12
JP3199339B2 true JP3199339B2 (en) 2001-08-20

Family

ID=17381408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26284493A Expired - Lifetime JP3199339B2 (en) 1993-10-21 1993-10-21 Control device for grid-connected inverter

Country Status (1)

Country Link
JP (1) JP3199339B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269212B2 (en) * 2014-03-18 2018-01-31 オムロン株式会社 Control device, power conversion device, power supply system, program, and control method
JP6248729B2 (en) * 2014-03-18 2017-12-20 オムロン株式会社 Control device, power conversion device, power supply system, program, and control method
JP7055998B2 (en) * 2017-03-03 2022-04-19 富士電機株式会社 Static VAR compensator and control method of the device
CN108347055B (en) * 2018-04-09 2023-06-27 宁夏银利电气股份有限公司 Grid-connected filter inductor parameter evaluation circuit and control method thereof

Also Published As

Publication number Publication date
JPH07123727A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US5493485A (en) Protection device for stopping operation of an inverter
US6107784A (en) System interconnection protective device for non-utility generation equipment
KR100240905B1 (en) Npc inverter control system
KR890004588B1 (en) Power supply system and controlling method
US6304468B2 (en) Phase synchronization system for connecting a power converter to a power distribution system
US4604530A (en) Power supply equipment backup system for interruption of service
KR102159959B1 (en) Control system of photovoltaic inverter for lvrt
JP3199339B2 (en) Control device for grid-connected inverter
JP2796035B2 (en) Inverter system interconnection protection method and device
JP3302875B2 (en) Reactive power compensator for grid connection protection
JP3311114B2 (en) System interconnection protection method and device for power conversion device
JP2000041338A (en) System interlinkage device
JPH11206021A (en) Distributed power generation system
JP4777914B2 (en) Three-phase voltage type AC / DC converter
JP3180991B2 (en) Grid connection protection device
JPH06141470A (en) Protective device of system-interconnection inverter
JP2790403B2 (en) Reverse charging protection device for grid-connected inverter
JP3315298B2 (en) Power grid connection protection device
JP3312178B2 (en) Control device for self-excited inverter
JP3494677B2 (en) Voltage type inverter device
JPH04273504A (en) Instantaneous reactive power compensator
JP3397608B2 (en) Power grid connection protection device
JP2962967B2 (en) Method of detecting islanding operation of interconnection inverter
JPH077857A (en) System interconnection protection equipment for inverter
JP3125354B2 (en) Active filter control device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term