JPH09247863A - Reactive power compensator for protecting system interconnection - Google Patents

Reactive power compensator for protecting system interconnection

Info

Publication number
JPH09247863A
JPH09247863A JP8054300A JP5430096A JPH09247863A JP H09247863 A JPH09247863 A JP H09247863A JP 8054300 A JP8054300 A JP 8054300A JP 5430096 A JP5430096 A JP 5430096A JP H09247863 A JPH09247863 A JP H09247863A
Authority
JP
Japan
Prior art keywords
reactive power
frequency
grid
power compensator
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8054300A
Other languages
Japanese (ja)
Other versions
JP3302875B2 (en
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba FA Systems Engineering Corp
Original Assignee
Toshiba Corp
Toshiba FA Systems Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba FA Systems Engineering Corp filed Critical Toshiba Corp
Priority to JP05430096A priority Critical patent/JP3302875B2/en
Publication of JPH09247863A publication Critical patent/JPH09247863A/en
Application granted granted Critical
Publication of JP3302875B2 publication Critical patent/JP3302875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to surely defect an islanding state without selecting a variation frequency for the reactive power unit or using an expensive transmission breaking device and realize reliable protective function without a decrease in detective sensitivity caused by mutual interference of a reactive power unit. SOLUTION: When an islanding state takes place, a change in frequency at linkage points is detected by control units 45 to 49, and a reactive power reference value is adjusted under control in such a way as to increase the frequency change. A reactive power compensating unit 40 generates reactive power to cause a hunting state, in which frequency at the linkage point fluctuates in a given frequency cycle near to a rated frequency. Under these conditions, protective operation can be carried out by opening breakers 6 and 63 between the linkage point and a non-utility generator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、系統と連系する自
家用発電設備に用いられる無効電力補償装置に係り、特
に系統側からの給電が停止したとき、自家用発電設備側
の遮断機を開放して保護動作を行わせる系統連系保護用
無効電力補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactive power compensator used in a private power generation facility connected to a grid, and particularly when a power supply from the grid side is stopped, a breaker on the private power generation facility side is opened. The present invention relates to a system interconnection protection reactive power compensator for performing a protection operation.

【0002】[0002]

【従来の技術】ゴミ発電システム、コージェネレーショ
ン、燃料電池、太陽光発電等の自家用発電設備を系統と
連系して運転する場合がある。一般需要家がこの種の自
家用発電設備を使用するとき、図7に示すような系統連
系保護システムが用いられる。
2. Description of the Related Art There is a case where a private power generation facility such as a garbage power generation system, a cogeneration system, a fuel cell, or a solar power generation system is operated in an interconnected manner. When a general consumer uses this type of private power generation equipment, a grid interconnection protection system as shown in FIG. 7 is used.

【0003】この従来装置はタービンによる自家用発電
設備の例を示したもので、調速機11により一定の速度
(同期速度)で駆動されるタービン10に結合され電力
を発生する交流発電機7を備え、この交流発電機7の出
力が遮断器6を介して変電所39の一般需要家に対する
給電系統に連系される。変電所39は、系統1の交流電
圧を変圧器2を介して降圧し、遮断器3を介して一般需
要家に対する給電系統に給電している。
This conventional device shows an example of a private power generation facility using a turbine. An AC generator 7 is connected to a turbine 10 driven by a speed governor 11 at a constant speed (synchronous speed) to generate electric power. The output of the AC generator 7 is connected to the power supply system for the general consumers of the substation 39 via the circuit breaker 6. The substation 39 steps down the AC voltage of the grid 1 via the transformer 2 and feeds it to the power supply grid for general consumers via the circuit breaker 3.

【0004】調速機11は、交流発電機7から出力され
る交流電圧の周波数が系統1の交流電圧の周波数と同期
するようにタービン11の出力を制御し、自動電圧調整
器(AVR)9は、所望の出力電圧となるように交流発
電機7の界磁巻線8に供給する励磁電流を制御してい
る。異常検出回路13は、交流発電機7の出力電圧及び
変流器12を介して検出される交流発電機7の出力電流
との関係から発電機の異常を検出したとき、故障トリッ
プ回路20を介して遮断器6を開放する。
The governor 11 controls the output of the turbine 11 so that the frequency of the AC voltage output from the AC generator 7 is synchronized with the frequency of the AC voltage of the grid 1, and an automatic voltage regulator (AVR) 9 Controls the exciting current supplied to the field winding 8 of the AC generator 7 so as to obtain a desired output voltage. When the abnormality detection circuit 13 detects an abnormality in the generator from the relationship between the output voltage of the AC generator 7 and the output current of the AC generator 7 detected via the current transformer 12, the abnormality detection circuit 13 outputs the abnormality trip circuit 20. To open the circuit breaker 6.

【0005】この他に、遮断器6の出力側(変電所側)
の過電流を検出する変流器14、過電流継電器(OC)
19、周波数の異常を検出する周波数低下継電器(U
F)15、周波数上昇継電器(OF)16、電圧の異常
を検出する過電圧継電器(OV)17、不足電圧継電器
(UV)18等の保護手段を備え、系統の異常時、例え
ば遮断器3が開放された時、交流発電機7から出力され
る周波数や電圧が異常となることを検出し、これらの検
出信号により故障トリップ回路20を介して遮断器6を
開放し、負荷5を保護し、遮断器3の再閉路を可能な状
態にする保護動作が行われる。
In addition to this, the output side of the circuit breaker 6 (substation side)
Current transformer 14, overcurrent relay (OC) for detecting overcurrent of
19, frequency lowering relay (U
F) 15, frequency rising relay (OF) 16, protective means such as overvoltage relay (OV) 17 for detecting voltage abnormality, undervoltage relay (UV) 18, etc., and when the system is abnormal, for example, the circuit breaker 3 is opened. When this occurs, it detects that the frequency or voltage output from the AC generator 7 becomes abnormal, and opens the circuit breaker 6 through the fault trip circuit 20 by these detection signals to protect the load 5 and shut it off. A protective action is made to enable reclosing of the device 3.

【0006】交流発電機7の出力電力と負荷5の消費電
力が有効電力及び無効電力共にほぼ等しいとき、変電所
側の遮断器3が開放されると、周波数も電圧も殆ど変化
しない場合があり、継電器15〜19のいずれも動作せ
ず、自家用発電設備が単独で運転を継続する、いわゆる
アイランディングの現象が発生し、遮断器3の再閉路を
妨げるような状態となる場合がある。このようなアイラ
ンディングを防止するため、変電所側の遮断器3が開放
されたとき、変電所側から自家用発電設備側へ専用線を
介して遮断信号を送り遮断器6を開放する転送遮断装置
38を設ける方法が採用されたものがある。しかし、上
述した転送遮断装置38は、変電所が遠い場合や需要家
が多い場合には有効な場合もあるが、数百KW程度の出
力である中小容量の自家発電設備にとっては、コストが
高く、系統連系による実用上のメリットが少ない。
When the output power of the AC generator 7 and the power consumption of the load 5 are substantially equal to each other in active power and reactive power, when the circuit breaker 3 on the substation side is opened, the frequency and the voltage may hardly change. In some cases, none of the relays 15 to 19 operate, and the power generation equipment for private use continues to operate independently, so-called a phenomenon of islanding occurs, and the circuit breaker 3 is prevented from reclosing. In order to prevent such an islanding, when the circuit breaker 3 on the substation side is opened, a transfer circuit breaker that sends a cutoff signal from the substation side to the private power generation equipment side via a dedicated line to open the circuit breaker 6 In some cases, the method of providing 38 is adopted. However, the transfer blocking device 38 described above may be effective when the substation is distant or when there are many customers, but the cost is high for a small-to-medium-capacity private power generation facility with an output of several hundred KW. , There are few practical advantages due to grid interconnection.

【0007】そこで、発振器41により0.2〜1HZ
程度の周期で変化する所定の無効電力を自家用発電設備
の連系点に供給する無効電力装置40を接続し、アイラ
ンディング状態となったとき、この無効電力の変化によ
り周波数を変化させ、周波数変動検出回路42で検出さ
れる周波数の変動量が所定レベルを越えたとき、レベル
検出器43でアイランディング状態を検出してトリップ
信号を出力し、故障トリップ回路20を介して遮断器6
を開放させ、転送遮断装置38を用いることなく保護動
作を行わせる方式が提案されている。
Therefore, the oscillator 41 causes 0.2 to 1 Hz.
When the reactive power device 40 that supplies a predetermined reactive power that changes in a cycle of about a degree to the interconnection point of the private power generation equipment is connected and the islanding state is reached, the frequency is changed by the change of the reactive power and the frequency fluctuation When the fluctuation amount of the frequency detected by the detection circuit 42 exceeds a predetermined level, the level detector 43 detects the islanding state, outputs a trip signal, and outputs the trip signal to the circuit breaker 6 via the fault trip circuit 20.
Has been proposed so that the protection operation is performed without using the transfer blocking device 38.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来の方式で
は、無効電力の変動周波数で検出感度が変わるので、シ
ミュレーションを行って最適な変動周波数を決定する必
要があること、更に重大なる問題は、アイランディング
状態となったとき、分離された系統に複数の自家用発電
設備が存在した場合、それぞれの無効電力装置から供給
される無効電力の変動周波数の位相によってはその効果
を打ち消すように作用することが考えられる。本発明は
このような事情に基づいてなされたもので、その目的と
するところは、高価な転送遮断装置を設けることなく、
しかも無効電力装置の変動周波数の選定が不要で、無効
電力装置の相互干渉による検出感度低下の恐れがなく確
実にアイランディング状態を検出して信頼性の高い保護
動作を行うことのできる系統連系保護用無効電力補償装
置を提供することにある。
However, in the conventional method, since the detection sensitivity changes depending on the fluctuation frequency of the reactive power, it is necessary to perform the simulation to determine the optimum fluctuation frequency. When there are multiple private power generation facilities in the separated grid when the islanding state occurs, the effect should be canceled depending on the phase of the fluctuation frequency of the reactive power supplied from each reactive power device. Can be considered. The present invention has been made based on such a circumstance, and an object of the present invention is to provide an expensive transfer interruption device,
Moreover, it is not necessary to select the fluctuating frequency of the reactive power device, and there is no risk of detection sensitivity deterioration due to mutual interference of the reactive power devices, and it is possible to reliably detect the islanding state and perform highly reliable protection operation. An object is to provide a protective reactive power compensator.

【0009】[0009]

【課題を解決するための手段】本発明の系統連系保護用
無効電力補償装置は、系統に連系する自家用発電設備の
連系点に接続され、前記自家用発電設備が系統から切り
離されたとき、前記連系点の電圧の周波数が定格周波数
の前後で所定の周期で増減するハンティング状態を発生
させるように無効電力を供給する無効電力補償装置を備
え、このハンティング状態に基づいて連系点と自家用発
電設備間の遮断器を開放する保護動作を行う。(請求項
1) 更に、連系点の周波数変化に基づいて該周波数変化を助
長させるように無効電力基準を補正し、無効電力基準に
基づいて前記無効電力を制御する制御部を備え、自家用
発電設備が系統から切り離されたとき、前記無効電力に
より周波数制御系を不安定状態とし前記ハンティング状
態を発生させる。(請求項2) 更に、前記制御部は、周波数変化率が正のときは進み無
効電力を増加させ、周波数変化率が負のときは遅れ無効
電力を増加させるように前記無効電力補償装置を制御す
る。(請求項3) 更に、前記制御部は、周波数変化率に基づいて補正信号
を出力する関数発生部を備え、この補正信号を前記無効
電力基準に加えて無効電力基準を補正する。(請求項
4) 更に、前記関数発生部は、周波数変化率に比例した補正
信号を出力する。(請求項5) 更に、前記関数発生部は、周波数変化率に比例した値
に、周波数変化率の極性に応じた極性の一定バイアスを
加えた補正信号を出力する。(請求項6) 更に、前記制御部は、周波数変化率が所定レベルを越え
るとき、保護動作を行わせるための信号を出力する第1
レベル検出部を備え、前記ハンティング状態において周
波数変化率が所定レベルを越えるように設定する。(請
求項7) 更に、前記制御部は、周波数変化率を積分し該積分値が
所定レベルを越えるとき、保護動作を行わせるための信
号を出力する第2レベル検出部を備え、前記ハンティン
グ状態において積分値が所定レベルを越えるように設定
する。(請求項8) 更に、前記制御部は、周波数変化率に基づいて補正信号
を出力する関数発生部と、前記補正信号を増幅すると共
にその最大値を制限する演算部と、連系点の電圧、周波
数の変化から自家用発電設備が系統から切り離されたこ
とを推定する判定部とを備え、前記演算部から出力され
る補正信号に基づいて前記無効電力基準を補正し、前記
判定部が自家用発電設備が系統から切り離されたと推定
したとき、前記演算部の増幅率を増大させ、或いは補正
信号の最大値を制限する値を増大させ、或いは前記演算
部の増幅率を増大させると共に補正信号の最大値を制限
する値を増大させる。(請求項9) 更に、前記制御部は、定格周波数を含む所定の周波数範
囲で高いゲイン特性を持つフィルタ介して連系点の周波
数を検出する周波数検出部を備え、定格周波数付近にお
ける検出感度を高める。(請求項10) 更に、前記フィルタは、定格周波数を含む所定の周波数
範囲で周波数の上昇につれて位相が進み、前記所定の周
波数範囲以外の範囲で周波数の上昇につれて位相が遅れ
る特性とし、前記フィルタを介して検出される電圧位相
と連系点の電圧位相との位相偏差を周波数変化率検出値
に加えて定格周波数付近における周波数変化率の検出感
度を高める。(請求項11)
The reactive power compensator for grid interconnection protection of the present invention is connected to the interconnection point of a private power generation facility that is interconnected to the grid, and when the private power generation facility is disconnected from the grid. , A reactive power compensator for supplying reactive power so as to generate a hunting state in which the frequency of the voltage at the interconnection point increases and decreases at a predetermined cycle before and after the rated frequency, and based on this hunting state, the interconnection point and Protective action to open the circuit breaker between private power generation facilities. (Claim 1) Furthermore, a reactive power standard is corrected so as to promote the frequency change based on the frequency change at the interconnection point, and a control unit for controlling the reactive power based on the reactive power standard is provided, and private power generation is provided. When the equipment is disconnected from the grid, the reactive power causes the frequency control system to be in an unstable state and causes the hunting state. (Claim 2) Further, the control unit controls the reactive power compensator so as to increase the forward reactive power when the frequency change rate is positive and increase the delayed reactive power when the frequency change rate is negative. To do. (Claim 3) Furthermore, the said control part is provided with the function generation part which outputs a correction signal based on a frequency change rate, and corrects a reactive power reference | standard by adding this correction signal to the said reactive power reference | standard. (Claim 4) Further, the function generator outputs a correction signal proportional to the frequency change rate. (Claim 5) Further, the function generating section outputs a correction signal in which a constant bias having a polarity corresponding to the polarity of the frequency change rate is added to a value proportional to the frequency change rate. (Claim 6) Furthermore, when the frequency change rate exceeds a predetermined level, the control section outputs a signal for performing a protection operation.
A level detector is provided, and the frequency change rate is set to exceed a predetermined level in the hunting state. (Claim 7) Further, the control unit includes a second level detection unit that integrates the frequency change rate and outputs a signal for performing a protection operation when the integrated value exceeds a predetermined level, and the hunting state. At, the integrated value is set to exceed a predetermined level. (Claim 8) Further, the control unit outputs a correction signal based on a frequency change rate, a function unit that amplifies the correction signal and limits the maximum value thereof, and a voltage at the interconnection point. , A determination unit that estimates that the private power generation facility is disconnected from the grid from a change in frequency, corrects the reactive power reference based on a correction signal output from the calculation unit, and the determination unit is the private power generation. When it is estimated that the equipment is disconnected from the system, the amplification factor of the arithmetic unit is increased, or the value limiting the maximum value of the correction signal is increased, or the amplification factor of the arithmetic unit is increased and the maximum correction signal is increased. Increase the value to limit the value. (Claim 9) Furthermore, the control unit includes a frequency detection unit that detects a frequency at an interconnection point through a filter having a high gain characteristic in a predetermined frequency range including a rated frequency, and detects a detection sensitivity near the rated frequency. Increase. (Claim 10) Furthermore, the filter has a characteristic that the phase advances as the frequency increases in a predetermined frequency range including the rated frequency, and the phase delays as the frequency increases in a range other than the predetermined frequency range. The phase deviation between the voltage phase detected through the voltage phase and the voltage phase at the interconnection point is added to the frequency change rate detection value to increase the frequency change rate detection sensitivity in the vicinity of the rated frequency. (Claim 11)

【0010】[0010]

【発明の実施の形態】本発明による系統連系保護用無効
電力補償装置の実施の形態を図1に示す。同図におい
て、無効電力検出回路45は、無効電力補償装置40の
出力側の電圧と変流器44の検出電流から無効電力装置
40の出力する無効電力Q0 を検出する。無効電力制御
部(AQR)46は、無効電力基準Q* と無効電力検出
回路45で検出された無効電力Q0 とを比較してその偏
差をゼロとするように無効電力装置40を制御して出力
の無効電力Q0 を無効電力基準Q* に対応した値に制御
する。周波数変化率検出部47は、連系点の周波数の変
化率df/dtを検出する。レベル検出部48は、検出
信号df/dtが所定値を越えたとき遮断器3を開放さ
せるためのトリップ信号を出力する。関数発生部49
は、周波数変化率df/dtに基づいて補正信号ΔQ*
を出力し、無効電力基準Q* に加えて無効電力基準をQ
* +ΔQ* に補正する。絶対値検出部50は、周波数変
化率df/dtを絶対値に変換し、積分器51は、変換
された信号を積分し、レベル検出部52は、積分された
値が所定値を越えたとき遮断器3を開放させるためのト
リップ信号を出力するように構成する。その他は従来
(図7)と同じもので構成され、同一番号を付して説明
を省力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows an embodiment of a reactive power compensator for grid interconnection protection according to the present invention. In the figure, the reactive power detection circuit 45 detects the reactive power Q0 output from the reactive power device 40 from the voltage on the output side of the reactive power compensator 40 and the detected current of the current transformer 44. A reactive power controller (AQR) 46 compares the reactive power reference Q * with the reactive power Q0 detected by the reactive power detection circuit 45 and controls and outputs the reactive power device 40 so that the deviation becomes zero. The reactive power Q0 is controlled to a value corresponding to the reactive power reference Q *. The frequency change rate detector 47 detects the frequency change rate df / dt at the interconnection point. The level detector 48 outputs a trip signal for opening the circuit breaker 3 when the detection signal df / dt exceeds a predetermined value. Function generator 49
Is the correction signal ΔQ * based on the frequency change rate df / dt.
Is output, and the reactive power reference is Q in addition to the reactive power reference Q *.
Correct to * + ΔQ *. The absolute value detection unit 50 converts the frequency change rate df / dt into an absolute value, the integrator 51 integrates the converted signal, and the level detection unit 52 detects when the integrated value exceeds a predetermined value. The trip signal for opening the circuit breaker 3 is output. Others are the same as the conventional one (FIG. 7), and the same reference numerals are given to omit the description.

【0011】上記構成において、自家用発電設備が連系
運転している場合の等価回路を図2に示す。負荷5を抵
抗R、インダクタンスL、コンデンサCの並列回路で表
し、交流発電機7から出力される有効電力をP、無効電
力をQ、無効電力補償装置40から出力される無効電力
をQ0 、負荷5に供給される有効電力をPL 、無効電力
をQL とすると、系統1へ流出する有効電力ΔP及び無
効電力ΔQはそれぞれ次のように表される。
FIG. 2 shows an equivalent circuit of the above-mentioned structure when the private power generation equipment is interconnected. The load 5 is represented by a parallel circuit of a resistor R, an inductance L and a capacitor C, active power output from the AC generator 7 is P, reactive power is Q, reactive power output from the reactive power compensator 40 is Q0, load is Assuming that the active power supplied to 5 is PL and the reactive power is QL, the active power ΔP and the reactive power ΔQ flowing out to the grid 1 are respectively expressed as follows.

【0012】[0012]

【数1】ΔP=P−PL ΔQ=Q+Q0 −QL 自家用発電設備の発電電力と負荷5に供給される電力が
バランスし、系統1へ流出する電力がほぼゼロ、すなわ
ち、ΔP=0、ΔQ=0の状態で連系運転している場合
に遮断器3が開放されると、電圧、周波数共に殆ど変化
せず、自家用発電設備のみの単独運転となり、アイラン
ディング状態となる。この状態で運転を継続させると、
系統1の電圧との同期制御が行われないので、系統1の
電圧位相に対する自家用発電設備の電圧位相に差が生
じ、徐々に位相差が拡大して変電所側の遮断器3が再投
入されたとき、系統1の電圧と自家用発電設備の電圧と
の差により過電流が発生し事故を誘発する危険な状態と
なる。本実施例ではこのような危険を防止するため、自
家用発電設備側の遮断器6を早期に開放する後述の保護
動作が行われる。自家用発電設備が単独運転の状態にな
ったとき、連系点の電圧Vと交流発電機7が出力する有
効電力Pとの関係は、負荷5の抵抗Rで定まり、
[Formula 1] ΔP = P−PL ΔQ = Q + Q0−QL The generated power of the private power generation facility and the power supplied to the load 5 are balanced, and the power flowing to the grid 1 is almost zero, that is, ΔP = 0, ΔQ = When the circuit breaker 3 is opened during the interconnected operation in the state of 0, the voltage and the frequency hardly change, and only the private power generation equipment operates independently, and the islanding state occurs. If you continue driving in this state,
Since the synchronous control with the voltage of the grid 1 is not performed, there is a difference in the voltage phase of the private power generation equipment with respect to the voltage phase of the grid 1, the phase difference gradually expands, and the circuit breaker 3 on the substation side is turned on again. In this case, an overcurrent occurs due to the difference between the voltage of the grid 1 and the voltage of the private power generation equipment, resulting in a dangerous state that causes an accident. In the present embodiment, in order to prevent such a danger, a protection operation described later is performed in which the circuit breaker 6 on the private power generation facility side is opened early. When the private power generation facility is in the independent operation state, the relationship between the voltage V at the interconnection point and the active power P output by the AC generator 7 is determined by the resistance R of the load 5.

【0013】[0013]

【数2】P=V2 /R となる。また、連系点の電圧Vと交流発電機7及び無効
電力補償装置40が出力する無効電力Q+Q0 との関係
は、負荷5のインダクタンスLとコンデンサC及び周波
数fで定まり、
## EQU2 ## P = V 2 / R. The relationship between the voltage V at the interconnection point and the reactive power Q + Q0 output by the AC generator 7 and the reactive power compensator 40 is determined by the inductance L of the load 5, the capacitor C, and the frequency f.

【0014】[0014]

【数3】Q+Q0 =(V2 ωC)−(V2 /ωL) 但し ω=2πf となる。[Number 3] Q + Q0 = (V 2 ωC ) - the (V 2 / ωL) However ω = 2πf.

【0015】自家用発電設備の単独運転により周波数f
が僅かに変化し始めると、周波数変化率検出部47から
周波数変化率df/dtが出力され、この検出信号df
/dtに基づいて関数発生部49から補正信号ΔQ* が
出力される。例えば、関数発生部49は検出信号df/
dtに比例した補正信号ΔQ* を出力し、これにより無
効電力補償装置40から出力される無効電力Q0 はΔQ
* だけ変化する。この場合、関数発生部49は周波数f
が上昇する方向に変化すると正の補正信号を出力し、無
効電力補償装置40から出力される無効電力Q0 を進み
無効電力ΔQ*だけ増加させ、逆に周波数fが下降する
方向に変化すると、負の補正信号を出力し、無効電力Q
0 を遅れ無効電力ΔQ* だけ増加させる。
The frequency f is generated by the independent operation of the private power generation equipment.
When the frequency change rate begins to change slightly, the frequency change rate detection section 47 outputs the frequency change rate df / dt.
The correction signal ΔQ * is output from the function generator 49 based on / dt. For example, the function generating section 49 uses the detection signal df /
A correction signal .DELTA.Q * proportional to dt is output, whereby the reactive power Q0 output from the reactive power compensator 40 is .DELTA.Q.
* Only changes. In this case, the function generator 49 determines the frequency f
When it changes in the increasing direction, a positive correction signal is output, and the reactive power Q0 output from the reactive power compensating device 40 advances and increases by the reactive power ΔQ *. Conversely, when the frequency f changes in the decreasing direction, it becomes negative. Output the correction signal of the reactive power Q
0 is increased by delayed reactive power ΔQ *.

【0016】今、周波数fが僅かに上昇したとすると、
無効電力補償装置40から出力される無効電力Q0 が進
み無効電力ΔQ* だけ増加し、負荷5が吸収する無効電
力QL との間でΔQ=ΔQ* のアンバランスが生じる。
この進み無効電力ΔQ* による進み無効電流i0 は交流
発電機側へ流入し、交流発電機側のインダクタンスLg
に電圧降下を生じさせ、結果的に連系点の電圧Vを低下
させ、交流発電機7から供給される電流ig の位相を遅
れ方向にシフトさせ、交流発電機7から供給される無効
電力Qを遅れ無効電力ΔQ* だけ増加させ、流入した進
み無効電流i0を相殺するように作用する。この電圧V
の低下により、負荷5の消費する有効電力P(=V2
R)が減少し、その分だけ交流発電機7の負荷が減少
し、タービン10の負荷が軽くなって回転速度が上昇す
る方向に変化し、周波数fの上昇方向の変化率を増大さ
せ、更に進みの無効電力を増加させる正帰還として作用
し、周波数fの上昇を助長するように作用する。
Now, if the frequency f rises slightly,
The reactive power Q0 output from the reactive power compensator 40 advances and increases by the reactive power ΔQ *, resulting in an imbalance of ΔQ = ΔQ * with the reactive power QL absorbed by the load 5.
The lead reactive current i0 due to this lead reactive power ΔQ * flows into the AC generator side, and the inductance Lg of the AC generator side
Causes a voltage drop, and consequently lowers the voltage V at the interconnection point, shifts the phase of the current ig supplied from the AC generator 7 in the delay direction, and the reactive power Q supplied from the AC generator 7 is delayed. Is increased by the delayed reactive power ΔQ * to offset the inflowing advanced reactive current i0. This voltage V
Of the active power P (= V 2 /
R) decreases, the load of the AC generator 7 decreases correspondingly, the load of the turbine 10 becomes lighter, and the rotation speed changes in the direction of increasing, and the change rate of the frequency f in the increasing direction increases, and It acts as a positive feedback that increases the reactive power of the lead, and acts to promote the rise of the frequency f.

【0017】また、周波数fが僅かに下降したとする
と、無効電力補償装置40から出力される無効電力Q0
が遅れ無効電力ΔQ* だけ増加し、電圧Vを上昇させる
方向へ変化させ、周波数fの下降を助長するように作用
する。
Assuming that the frequency f drops slightly, the reactive power Q0 output from the reactive power compensator 40 is reduced.
Increases by the delay reactive power ΔQ *, changes the voltage V in the direction of increasing it, and acts to promote the decrease of the frequency f.

【0018】調速機11は交流発電機7の出力周波数が
一定となるようにタービン11の出力を制御しているの
で、その調速系の制御応答時間が経過すると、元の周波
数に戻るように制御され、周波数偏差Δfが所定値に達
すると変化率df/dtの極性が反転し、連系点の電圧
の周波数fが定格周波数の前後で所定の周期で増減(変
動)するハンティング現象が発生する。
Since the speed governor 11 controls the output of the turbine 11 so that the output frequency of the AC generator 7 is constant, it will return to the original frequency when the control response time of the speed governing system elapses. When the frequency deviation Δf reaches a predetermined value, the polarity of the change rate df / dt is reversed, and the hunting phenomenon in which the frequency f of the voltage at the interconnection point increases / decreases (fluctuates) in a predetermined cycle before and after the rated frequency. appear.

【0019】図3はこのハンティング状態を示したもの
で、補正信号(1) は、関数発生部49から出力される補
正信号ΔQ* が周波数fの変化率df/dtに比例する
場合を示したものである。
FIG. 3 shows this hunting state, and the correction signal (1) shows the case where the correction signal ΔQ * output from the function generator 49 is proportional to the rate of change df / dt of the frequency f. It is a thing.

【0020】このようなハンティング現象が生じると、
周波数変化率検出器47から出力される周波数変化率d
f/dtが所定の値を越え、レベル検出器52からトリ
ップ信号が出力され、トリップ回路20を介して遮断器
6を開放する保護動作が行われる。
When such a hunting phenomenon occurs,
Frequency change rate d output from the frequency change rate detector 47
When f / dt exceeds a predetermined value, a trip signal is output from the level detector 52, and a protection operation for opening the circuit breaker 6 via the trip circuit 20 is performed.

【0021】自家用発電設備が単独運転となったとき、
周波数fが殆ど変化しない場合を考慮して、関数発生部
49の特性を次のようにすることができる。すなわち、
補正信号ΔQ* として、周波数変化率df/dtに比例
した値を出力すると共に、周波数変化率検出部47の最
小検出分解能のレベルで周波数変化率df/dtの極性
を判別し、その極性の正負に応じて所定のバイアス値±
ΔQb を加える特性にする。このような特性とすること
により、自家用発電設備が単独運転となって周波数fが
殆ど変化しない場合でも、周波数変化率検出部47の最
小検出分解能のレベルで周波数変化率df/dtの正か
負のいずれかの極性が判別され、バイアス値±ΔQb に
対応した進みか遅れかいずれかの無効電力を供給するこ
とができ、短時間でハンティング現象を生じさせること
ができる。図3の補正信号(2) はこの実施例を用いた場
合に関数発生部49から出力される補正信号ΔQ* の例
を示したものである。この実施例を用いた場合、系統と
連系運転しているとき、バイアス値±ΔQb に対応した
無効電力がΔQとして流出するが、その値を小さく設定
することにより系統側へ悪影響を及ぼさないようする。
When the private power generation facility is operated independently,
Considering the case where the frequency f hardly changes, the characteristic of the function generating section 49 can be set as follows. That is,
A value proportional to the frequency change rate df / dt is output as the correction signal ΔQ *, the polarity of the frequency change rate df / dt is discriminated at the level of the minimum detection resolution of the frequency change rate detection unit 47, and the polarity is positive or negative. Predetermined bias value ±
The characteristic is that ΔQb is added. With such a characteristic, even when the private power generation equipment is operated independently and the frequency f hardly changes, the frequency change rate df / dt is positive or negative at the level of the minimum detection resolution of the frequency change rate detection unit 47. It is possible to supply the reactive power of either the lead or the delay corresponding to the bias value ± ΔQb, and the hunting phenomenon can be caused in a short time. The correction signal (2) in FIG. 3 shows an example of the correction signal ΔQ * output from the function generator 49 when this embodiment is used. When this embodiment is used, the reactive power corresponding to the bias value ± ΔQb flows out as ΔQ when the system is connected to the grid, but by setting the value small, it will not adversely affect the system side. To do.

【0022】自家用発電設備が出力する無効電力と負荷
5に供給される無効電力がバランスし、自家用発電設備
が出力する有効電力と負荷5に供給される有効電力がア
ンバランスし、ΔQ=0、ΔP≠0の状態で運転してい
るとき、遮断器3が開放され単独運転になると、従来の
場合、図4(a) のf1 、f2 に示すようにΔPの正か負
に応じて直ちに周波数fが上昇か下降方向に変動しなが
ら安定点に接近する。本実施例の場合、このような状態
が発生すると、周波数変化率df/dtに基づいて前述
したように周波数変化率を助長するように無効電力ΔQ
が供給され、図4(b) のf1'、f2'に示すように周波数
fは安定せず、次第に周波数変動振幅が増大しハンティ
ング現象に移行する。従って、従来の保護継電器15〜
19で容易に単独運転を検出し、保護動作を行わせるこ
とができる。なお、図4(b) において、f1'はΔPが正
の場合であり、f2'はΔPが負の場合を示したものであ
る。
The reactive power output from the private power generation equipment and the reactive power supplied to the load 5 are balanced, the active power output from the private power generation equipment and the active power supplied to the load 5 are unbalanced, and ΔQ = 0, When the circuit breaker 3 is opened to operate independently when operating in the condition of ΔP ≠ 0, in the conventional case, as shown in f1 and f2 of FIG. 4 (a), the frequency immediately changes depending on whether the ΔP is positive or negative. The f approaches the stable point while f changing upward or downward. In the case of the present embodiment, when such a state occurs, the reactive power ΔQ is increased based on the frequency change rate df / dt so as to promote the frequency change rate as described above.
Is supplied, the frequency f is not stable as shown by f1 'and f2' in FIG. 4 (b), the amplitude of frequency fluctuation gradually increases, and the hunting phenomenon starts. Therefore, the conventional protective relay 15-
At 19, it is possible to easily detect the islanding operation and perform the protective operation. In FIG. 4B, f1 'shows the case where .DELTA.P is positive, and f2' shows the case where .DELTA.P is negative.

【0023】このように、自家用発電設備が単独運転に
なり、積極的にハンティングを生じさせ周波数を変動さ
せるとき、単独運転を検出するレベルの周波数変動に達
するまでに時間の経過が必要な場合があり、このような
場合でも所定時間内に単独運転を検出するため、次のよ
うな保護動作が行われる。
As described above, when the private power generation facility is in the independent operation and actively causes hunting to change the frequency, it may be necessary to elapse time until the frequency fluctuation at the level for detecting the independent operation is reached. Even in such a case, since the isolated operation is detected within the predetermined time, the following protection operation is performed.

【0024】図4(b) のf1'、f2'に示すように周波数
fが変動するとき、絶対値変換部50は、周波数変化率
検出部47で検出された周波数変化率df/dtを絶対
値A(ABS(df/dt))に変換し、積分器51で
通常の周波数変動レベルα0を越える部分(ABS(d
f/dt)−α0 )について積分を行い、この積分値B
が所定の検出レベルβを越えるときレベル検出部52か
らトリップ信号が出力される。この実施例によれば、周
波数変化率df/dtがレベル検出部48による検出レ
ベルα1 に達する時刻t2 より早い時刻t1 に検出する
ことが可能となり、短時間で単独運転を検出することが
できる。
When the frequency f fluctuates as indicated by f1 'and f2' in FIG. 4 (b), the absolute value conversion section 50 uses the frequency change rate df / dt detected by the frequency change rate detection section 47 as an absolute value. The value is converted into a value A (ABS (df / dt)), and the part (ABS (d
f / dt) -α0) is integrated, and the integrated value B
When exceeds the predetermined detection level β, the level detection unit 52 outputs a trip signal. According to this embodiment, the frequency change rate df / dt can be detected at the time t1 earlier than the time t2 when the level detection unit 48 reaches the detection level α1, and the islanding operation can be detected in a short time.

【0025】以上の説明では、自家用発電設備として、
交流発電機7のみが連系されている場合について説明し
たが、電池61から供給される電力をインバータ62で
交流電力に変換し、遮断器63を介してインバータ62
の出力を連系点に接続するように構成される場合もあ
る。インバータはP、Q一定制御又は電流位相制御を高
速に行っていて、周波数制御系に機械的な慣性が無いの
で交流発電機のみの場合より周波数変動はしやすくな
る。
In the above description, as a private power generation facility,
Although the case where only the AC generator 7 is connected has been described, the power supplied from the battery 61 is converted into AC power by the inverter 62, and the inverter 62 is connected via the breaker 63.
In some cases, the output of is connected to the interconnection point. The inverter performs constant P, Q control or current phase control at high speed, and since the frequency control system has no mechanical inertia, it is easier for the frequency to fluctuate than in the case of only the AC generator.

【0026】本実施例によれば、連系点の周波数変化率
に基づいて周波数変化を助長する方向に無効電力を制御
することにより、発電機やインバータなど種類の異なる
発電設備が連系している場合でも単独運転を確実に検出
することができる。
According to this embodiment, by controlling the reactive power in the direction of promoting the frequency change based on the frequency change rate at the interconnection point, different types of power generation equipment such as generators and inverters are interconnected. Even if there is, the islanding operation can be reliably detected.

【0027】本発明の他の実施例を図5に示す。図5に
おいて、フィルタ53は定格周波数f0 前後で高いゲイ
ンを持つバンドパスフィルタとして動作し、周波数検出
回路54はフィルタ53を介して連系点の周波数fを検
出する。判定部57は、周波数検出回路54で検出され
る連系点の周波数f、周波数変化率検出部47で検出さ
れる周波数変化率df/dt、電圧検出回路55で検出
される連系点の電圧V、電圧変化率検出部56で検出さ
れる電圧変化率dV/dtなどの値が通常の値と異なる
ことから、アイランディング状態を上述した保護動作の
検出レベルより高い感度で判定(推定)し、制御パラメ
ータを変更する信号M1 、M2 を出力する。増幅部58
は信号M1 に応じて増幅率が変化し、信号制限部59は
信号M1に応じて補正信号の最大値を制限する値が変化
する。
Another embodiment of the present invention is shown in FIG. In FIG. 5, the filter 53 operates as a bandpass filter having a high gain around the rated frequency f0, and the frequency detection circuit 54 detects the frequency f at the interconnection point via the filter 53. The determination unit 57 determines the frequency f of the interconnection point detected by the frequency detection circuit 54, the frequency change rate df / dt detected by the frequency change rate detection unit 47, and the voltage of the interconnection point detected by the voltage detection circuit 55. Since the values of V, the voltage change rate dV / dt, etc. detected by the voltage change rate detecting unit 56 are different from the normal values, the eyelanding state is determined (estimated) with a sensitivity higher than the detection level of the protection operation described above. , And outputs signals M1 and M2 for changing the control parameters. Amplifier 58
Changes the amplification factor according to the signal M1, and the signal limiter 59 changes the value for limiting the maximum value of the correction signal according to the signal M1.

【0028】この実施例で用いるフィルタ53の特性
は、図6に示すように、定格周波数f0 の前後の周波数
f2 〜f1 の範囲では周波数fの上昇につれて位相が進
む、周波数の変化を強調する特性とし、f2 より低い範
囲或いはf1 より高い範囲では周波数fの上昇につれて
位相が遅れ、周波数の変化を抑制する特性としている。
このような特性とすることにより、定格周波数f0 付近
では周波数変動を大きく検出し、周波数がf2 〜f1 の
範囲以外の範囲では周波数変動を小さく検出する。
The characteristic of the filter 53 used in this embodiment is, as shown in FIG. 6, a characteristic in which the phase advances as the frequency f increases in the range of frequencies f2 to f1 before and after the rated frequency f0, and a characteristic of emphasizing a change in frequency. In the range lower than f2 or in the range higher than f1, the phase is delayed as the frequency f rises, and the characteristic is to suppress the frequency change.
With such a characteristic, a large frequency fluctuation is detected near the rated frequency f0, and a small frequency fluctuation is detected outside the range of f2 to f1.

【0029】この実施例では、アイランディング状態に
なると、先ず判定部57が周波数f、周波数変化率df
/dt、電圧V、電圧変化率dV/dtなどの変化から
系統から切り離されたことを判定(推定)し、信号M1
を出力して増幅器58のゲインを増大させ、同時に信号
M2 を出力して信号制限部59の補正信号ΔQ* の制限
値を大きく切換えて無効電力の変動幅を大きくすること
により確実にハンティング状態を発生させるようにして
いる。
In this embodiment, when the eye landing state is reached, the determining unit 57 first determines the frequency f and the frequency change rate df.
/ Dt, voltage V, voltage change rate dV / dt, etc., determine (estimate) disconnection from the system, and signal M1
Is output to increase the gain of the amplifier 58, and at the same time, the signal M2 is output to switch the limit value of the correction signal ΔQ * of the signal limiter 59 to a large value to increase the fluctuation range of the reactive power, thereby ensuring the hunting state. I am trying to raise it.

【0030】この実施例によれば、通常の連系運転時に
系統に流出する無効電力を小さく抑えることができ、ア
イランディング状態になったとき、確実にハンティング
状態を発生させ保護動作を行わせることができる。
According to this embodiment, the reactive power flowing to the grid during normal interconnection operation can be suppressed to a small level, and when the landing state is reached, the hunting state is surely generated and the protection operation is performed. You can

【0031】なお、この実施例は、増幅器58のゲイン
を増大させるか、信号制限部59の補正信号ΔQ* の制
限値を大きく切換えるか、信号M1 、M2 のいずれか一
方のみとすることもできる。また、この実施例で用いる
フィルタ53と周波数検出部54は図1の実施例にも適
用することができ、また、フィルタ53を介して検出さ
れる電圧位相と連系点の電圧位相との位相偏差を周波数
変化率df/dtに加えて定格周波数付近における周波
数変化率の検出感度を高めることができる。
In this embodiment, the gain of the amplifier 58 may be increased, the limit value of the correction signal ΔQ * of the signal limiter 59 may be switched to a large value, or only one of the signals M1 and M2 may be used. . The filter 53 and the frequency detector 54 used in this embodiment can also be applied to the embodiment of FIG. 1, and the phase between the voltage phase detected through the filter 53 and the voltage phase at the interconnection point. The deviation can be added to the frequency change rate df / dt to increase the frequency change rate detection sensitivity in the vicinity of the rated frequency.

【0032】[0032]

【発明の効果】本発明によれば、自家用発電設備が系統
から切り離され単独運転の状態になったとき、所定の周
波数変動範囲で周波数が増減するハンティング状態を発
生させるように無効電力を供給し、自家用発電設備の出
力電力と負荷の消費電力等しい状態で運転しているとき
でも転送遮断装置を用いることなく確実にアイランディ
ング状態を短時間に検出して保護動作を行わせることが
でき、信頼性、経済性を向上した系統連系保護用無効電
力補償装置を提供することができる。
According to the present invention, when the private power generation facility is disconnected from the grid and is in an independent operation state, reactive power is supplied so as to generate a hunting state in which the frequency increases and decreases within a predetermined frequency fluctuation range. It is possible to reliably detect the islanding state in a short time without using a transfer interruption device and perform a protective operation even when operating in a state where the output power of the private power generation equipment is equal to the power consumption of the load, which is reliable. It is possible to provide a reactive power compensator for system interconnection protection, which has improved efficiency and economy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の系統連系保護用無効電力補償装置の実
施例の構成図
FIG. 1 is a configuration diagram of an embodiment of a reactive power compensator for grid interconnection protection of the present invention.

【図2】上記実施例の作用を説明するための等価回路図FIG. 2 is an equivalent circuit diagram for explaining the operation of the above embodiment.

【図3】上記実施例の作用を説明するための波形図FIG. 3 is a waveform diagram for explaining the operation of the above embodiment.

【図4】(a) は従来装置の動作を説明するための波形
図、(b) は上記実施例の作用を説明するための波形図
FIG. 4A is a waveform diagram for explaining the operation of the conventional device, and FIG. 4B is a waveform diagram for explaining the operation of the above embodiment.

【図5】本発明の系統連系保護用無効電力補償装置の別
の実施例の構成図
FIG. 5 is a configuration diagram of another embodiment of the reactive power compensator for grid interconnection protection of the present invention.

【図6】上記実施例に示すフィルタ53の特性図FIG. 6 is a characteristic diagram of the filter 53 shown in the above embodiment.

【図7】従来の系統連系保護システムの構成図[Fig. 7] Configuration diagram of a conventional system interconnection protection system

【符号の説明】[Explanation of symbols]

1…系統電源 2…変圧器 3、6、63…遮断機 5…負荷 7…交流発電機 8…界磁巻線 9…自動電圧調整器(AVR) 10…タービンエ
ンジン 11…調速機 12、14…変
流器 13…異常検出回路 15…周波数低
下継電器(UF) 16…周波数上昇継電器(OF) 17…過電圧継
電器(OV) 18…不足電圧継電器(UV) 19…過電流継
電器(OC) 20…故障トリップ回路 39…上位変電所 40…無効電力
補償装置 41…発信器 42…周波数変
動検出回路 43、48、52…レベル検出部 44…変流器 45…無効電力検出回路 46…無効電力
制御部(AQR) 47…周波数変化率検出部 49…関数発生
部 50…絶対値変換部 51…積分器 53…フィルタ 54…周波数検
出部 55…電圧検出回路 56…電圧変化
率検出部 57…判定部 58…増幅部 59…信号制限部 61…電池 62…インバー
1 ... System power supply 2 ... Transformer 3, 6, 63 ... Circuit breaker 5 ... Load 7 ... AC generator 8 ... Field winding 9 ... Automatic voltage regulator (AVR) 10 ... Turbine engine 11 ... Governor 12, 14 ... Current transformer 13 ... Abnormality detection circuit 15 ... Frequency lowering relay (UF) 16 ... Frequency rising relay (OF) 17 ... Overvoltage relay (OV) 18 ... Undervoltage relay (UV) 19 ... Overcurrent relay (OC) 20 ... Fault trip circuit 39 ... High-order substation 40 ... Reactive power compensator 41 ... Transmitter 42 ... Frequency fluctuation detection circuit 43, 48, 52 ... Level detection unit 44 ... Current transformer 45 ... Reactive power detection circuit 46 ... Reactive power control Unit (AQR) 47 ... Frequency change rate detection unit 49 ... Function generation unit 50 ... Absolute value conversion unit 51 ... Integrator 53 ... Filter 54 ... Frequency detection unit 55 ... Voltage detection circuit 56 ... Voltage change rate detection 57 ... judging unit 58 ... amplifier section 59 ... signal limiting unit 61 ... battery 62 ... Inverter

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】系統に連系する自家用発電設備の連系点に
接続され、前記自家用発電設備が系統から切り離された
とき、前記連系点の電圧の周波数が定格周波数の前後で
所定の周期で増減するハンティング状態を発生させるよ
うに無効電力を供給する無効電力補償装置を備え、この
ハンティング状態に基づいて連系点と自家用発電設備間
の遮断器を開放することを特徴とする系統連系保護用無
効電力補償装置。
1. When the private power generation equipment connected to the grid is connected to the grid and the private power generation equipment is disconnected from the grid, the frequency of the voltage at the grid is a predetermined cycle before and after the rated frequency. A grid interconnection system characterized by having a reactive power compensator that supplies reactive power so as to generate a hunting state that increases and decreases with, and opens the circuit breaker between the interconnection point and private power generation equipment based on this hunting state. Protective reactive power compensator.
【請求項2】請求項1に記載の系統連系保護用無効電力
補償装置は、連系点の周波数変化に基づいて該周波数変
化を助長させるように無効電力基準を補正し、無効電力
基準に基づいて前記無効電力を制御する制御部を備え、
自家用発電設備が系統から切り離されたとき、前記無効
電力により周波数制御系を不安定状態とし前記ハンティ
ング状態を発生させることを特徴とする系統連系保護用
無効電力補償装置。
2. The reactive power compensator for grid interconnection protection according to claim 1, wherein the reactive power reference is corrected so as to promote the frequency change based on the frequency change at the interconnection point, and the reactive power reference is set. A control unit that controls the reactive power based on
A reactive power compensator for grid interconnection protection, characterized in that, when the private power generation facility is disconnected from the grid, the reactive power causes the frequency control system to be in an unstable state and the hunting state to occur.
【請求項3】請求項2に記載の系統連系保護用無効電力
補償装置において、前記制御部は、周波数変化率が正の
ときは進み無効電力を増加させ、周波数変化率が負のと
きは遅れ無効電力を増加させるように前記無効電力補償
装置を制御することを特徴とする系統連系保護用無効電
力補償装置。
3. The reactive power compensator for grid interconnection protection according to claim 2, wherein the control unit advances the reactive power when the frequency change rate is positive and increases the reactive power when the frequency change rate is negative. A reactive power compensator for grid interconnection protection, characterized in that the reactive power compensator is controlled so as to increase delayed reactive power.
【請求項4】請求項2に記載の系統連系保護用無効電力
補償装置において、前記制御部は、周波数変化率に基づ
いて補正信号を出力する関数発生部を備え、この補正信
号を前記無効電力基準に加えて無効電力基準を補正する
ことを特徴とする系統連系保護用無効電力補償装置。
4. The reactive power compensator for grid interconnection protection according to claim 2, wherein the control unit includes a function generation unit that outputs a correction signal based on a frequency change rate, and the correction signal is used as the invalid signal. A reactive power compensator for grid interconnection protection characterized by correcting a reactive power standard in addition to a power standard.
【請求項5】請求項4に記載の系統連系保護用無効電力
補償装置において、前記関数発生部は、周波数変化率に
比例した補正信号を出力することを特徴とする系統連系
保護用無効電力補償装置。
5. The reactive power compensator for grid interconnection protection according to claim 4, wherein the function generator outputs a correction signal proportional to the frequency change rate. Power compensator.
【請求項6】請求項4に記載の系統連系保護用無効電力
補償装置において、前記関数発生部は、周波数変化率に
比例した値に、周波数変化率の極性に応じた極性の所定
のバイアスを加えた補正信号を出力することを特徴とす
る系統連系保護用無効電力補償装置。
6. The reactive power compensator for grid interconnection protection according to claim 4, wherein the function generating unit has a value proportional to the frequency change rate and a predetermined bias having a polarity corresponding to the polarity of the frequency change rate. A reactive power compensator for grid interconnection protection, which is characterized by outputting a correction signal to which is added.
【請求項7】請求項2に記載の系統連系保護用無効電力
補償装置において、前記制御部は、周波数変化率が所定
レベルを越えるとき、保護動作を行わせるための信号を
出力する第1レベル検出部を備え、前記ハンティング状
態において周波数変化率が所定レベルを越えるように設
定することを特徴とする系統連系保護用無効電力補償装
置。
7. The reactive power compensator for grid interconnection protection according to claim 2, wherein the control section outputs a signal for performing a protection operation when the frequency change rate exceeds a predetermined level. A reactive power compensator for grid interconnection protection, comprising: a level detector, wherein the frequency change rate is set to exceed a predetermined level in the hunting state.
【請求項8】請求項2に記載の系統連系保護用無効電力
補償装置において、前記制御部は、周波数変化率を積分
し該積分値が所定レベルを越えるとき、保護動作を行わ
せるための信号を出力する第2レベル検出部を備え、前
記ハンティング状態において積分値が所定レベルを越え
るように設定することを特徴とする系統連系保護用無効
電力補償装置。
8. The reactive power compensator for grid interconnection protection according to claim 2, wherein the control unit integrates the frequency change rate and performs a protection operation when the integrated value exceeds a predetermined level. A reactive power compensator for grid interconnection protection, comprising: a second level detecting section for outputting a signal, wherein the integrated value is set to exceed a predetermined level in the hunting state.
【請求項9】請求項2に記載の系統連系保護用無効電力
補償装置において、前記制御部は、周波数変化率に基づ
いて補正信号を出力する関数発生部と、前記補正信号を
増幅すると共にその最大値を制限する演算部と、連系点
の電圧、周波数の変化から自家用発電設備が系統から切
り離されたことを推定する判定部とを備え、前記演算部
から出力される補正信号に基づいて前記無効電力基準を
補正し、前記判定部が自家用発電設備が系統から切り離
されたと推定したとき、前記演算部の増幅率を増大さ
せ、或いは補正信号の最大値を制限する値を増大させ、
或いは前記演算部の増幅率を増大させると共に補正信号
の最大値を制限する値を増大させることを特徴とする系
統連系保護用無効電力補償装置。
9. The reactive power compensator for grid interconnection protection according to claim 2, wherein the control unit amplifies the correction signal with a function generation unit that outputs a correction signal based on a frequency change rate. A calculation unit that limits the maximum value and a determination unit that estimates that the private power generation equipment has been disconnected from the grid based on the voltage at the interconnection point and the change in frequency are provided, and based on the correction signal output from the calculation unit. Correct the reactive power standard, when the determination unit estimates that the private power generation equipment is disconnected from the grid, increase the amplification factor of the arithmetic unit, or increase the value limiting the maximum value of the correction signal,
Alternatively, the reactive power compensator for grid interconnection protection is characterized in that the amplification factor of the arithmetic unit is increased and the maximum value of the correction signal is increased.
【請求項10】請求項2又は請求項9に記載の系統連系
保護用無効電力補償装置において、前記制御部は、定格
周波数を含む所定の周波数範囲で高いゲイン特性を持つ
フィルタ介して連系点の周波数を検出する周波数検出部
を備え、定格周波数付近における検出感度を高めること
を特徴とする系統連系保護用無効電力補償装置。
10. The reactive power compensator for grid interconnection protection according to claim 2 or claim 9, wherein the control unit is interconnected via a filter having a high gain characteristic in a predetermined frequency range including a rated frequency. A reactive power compensator for system interconnection protection, comprising a frequency detection unit for detecting a frequency at a point, and enhancing detection sensitivity in the vicinity of a rated frequency.
【請求項11】請求項10に記載の系統連系保護用無効
電力補償装置において、前記フィルタは、定格周波数を
含む所定の周波数範囲では周波数の上昇につれて位相が
進み方向に変化し、前記所定の周波数範囲以外の周波数
範囲では周波数の上昇につれて位相が遅れ方向に変化す
る特性とし、前記フィルタを介して検出される電圧位相
と連系点の電圧位相との位相偏差を周波数変化率検出値
に加えて定格周波数付近における周波数変化率の検出感
度を高めることを特徴とする系統連系保護用無効電力補
償装置。
11. The reactive power compensator for grid interconnection protection according to claim 10, wherein the filter has a phase that changes in an advance direction as the frequency rises in a predetermined frequency range including a rated frequency, and In a frequency range other than the frequency range, the characteristic is such that the phase changes in the delay direction as the frequency rises, and the phase deviation between the voltage phase detected through the filter and the voltage phase at the interconnection point is added to the frequency change rate detection value. A reactive power compensator for system interconnection protection, which is characterized by increasing the detection sensitivity of the frequency change rate near the rated frequency.
JP05430096A 1996-03-12 1996-03-12 Reactive power compensator for grid connection protection Expired - Lifetime JP3302875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05430096A JP3302875B2 (en) 1996-03-12 1996-03-12 Reactive power compensator for grid connection protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05430096A JP3302875B2 (en) 1996-03-12 1996-03-12 Reactive power compensator for grid connection protection

Publications (2)

Publication Number Publication Date
JPH09247863A true JPH09247863A (en) 1997-09-19
JP3302875B2 JP3302875B2 (en) 2002-07-15

Family

ID=12966728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05430096A Expired - Lifetime JP3302875B2 (en) 1996-03-12 1996-03-12 Reactive power compensator for grid connection protection

Country Status (1)

Country Link
JP (1) JP3302875B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107784A (en) * 1996-12-26 2000-08-22 Kabushiki Kaisha Toshiba System interconnection protective device for non-utility generation equipment
US6456056B1 (en) 2000-03-23 2002-09-24 Kabushiki Kaisha Toshiba Interconnection protective device for generator set
US7045913B2 (en) 2002-06-18 2006-05-16 Ingersoll Rand Energy Systems Microturbine engine system
US7161257B2 (en) 2004-03-08 2007-01-09 Ingersoll-Rand Energy Systems, Inc. Active anti-islanding system and method
JP2012120285A (en) * 2010-11-30 2012-06-21 Toshiba It & Control Systems Corp Isolated operation detection device and isolated operation detection method
JP2012231635A (en) * 2011-04-27 2012-11-22 Sanyo Electric Co Ltd Electric power conversion device, electric power supply system, and charging and discharging device
CN105576652A (en) * 2015-12-30 2016-05-11 中国南方电网有限责任公司 Voltage control method and system for high-voltage direct-current power transmission end
JP2017147875A (en) * 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
WO2018034467A1 (en) * 2016-08-16 2018-02-22 디아이케이(주) Islanding detection system and islanding detection method
WO2022163697A1 (en) * 2021-01-29 2022-08-04 東芝三菱電機産業システム株式会社 Flicker suppression device and flicker suppression control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107784A (en) * 1996-12-26 2000-08-22 Kabushiki Kaisha Toshiba System interconnection protective device for non-utility generation equipment
US6456056B1 (en) 2000-03-23 2002-09-24 Kabushiki Kaisha Toshiba Interconnection protective device for generator set
US7045913B2 (en) 2002-06-18 2006-05-16 Ingersoll Rand Energy Systems Microturbine engine system
US7078825B2 (en) 2002-06-18 2006-07-18 Ingersoll-Rand Energy Systems Corp. Microturbine engine system having stand-alone and grid-parallel operating modes
US7161257B2 (en) 2004-03-08 2007-01-09 Ingersoll-Rand Energy Systems, Inc. Active anti-islanding system and method
US7365444B2 (en) 2004-03-08 2008-04-29 Southern California Gas Company Active anti-islanding system and method
JP2012120285A (en) * 2010-11-30 2012-06-21 Toshiba It & Control Systems Corp Isolated operation detection device and isolated operation detection method
JP2012231635A (en) * 2011-04-27 2012-11-22 Sanyo Electric Co Ltd Electric power conversion device, electric power supply system, and charging and discharging device
CN105576652A (en) * 2015-12-30 2016-05-11 中国南方电网有限责任公司 Voltage control method and system for high-voltage direct-current power transmission end
JP2017147875A (en) * 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
WO2018034467A1 (en) * 2016-08-16 2018-02-22 디아이케이(주) Islanding detection system and islanding detection method
WO2022163697A1 (en) * 2021-01-29 2022-08-04 東芝三菱電機産業システム株式会社 Flicker suppression device and flicker suppression control method

Also Published As

Publication number Publication date
JP3302875B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
KR100299260B1 (en) System linkage protection device of self-generating equipment
JP4053890B2 (en) Wind turbine operating method
WO2015130543A1 (en) System and method for controlling a power generation system based on a detected islanding event
JP3420162B2 (en) Power grid connection protection device
JP3302875B2 (en) Reactive power compensator for grid connection protection
JP3315298B2 (en) Power grid connection protection device
JP3302898B2 (en) Power grid connection protection device
JP3751829B2 (en) System interconnection protection device for power generation facilities
JP3944057B2 (en) System interconnection protection device for power generation facilities
JP3967483B2 (en) System interconnection protection device for power generation facilities
JP3634645B2 (en) System linkage protection device for power generation facilities
JP2002281673A (en) System interconnection protecting device for power generating facility
JP3397608B2 (en) Power grid connection protection device
JP2002101562A (en) System interconnection protection device of power generating installation
JP4341028B2 (en) Grid connection protection device for regular power generator
JP4202954B2 (en) Grid connection protection device for regular power generator
JP3689004B2 (en) System interconnection protection device for power generation facilities
JPH06245388A (en) Reverse charge protecting device for system linkage inverter
JP3629324B2 (en) Synchronous generator isolated operation detection method
JP3990324B2 (en) Grid connection protection device
JP4387620B2 (en) System interconnection protection device for power generation facilities
JP2002281674A (en) System interconnection protection device for power generating facility
JP4631762B2 (en) Single operation detector for synchronous generator
JPS5939809Y2 (en) Power system stabilizer
JPH03118799A (en) Secondary exciter for alternating current excited synchronous motor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term