JP3197015U - Two-dimensional connection structure of seismic isolation bearing for base isolation floor - Google Patents

Two-dimensional connection structure of seismic isolation bearing for base isolation floor Download PDF

Info

Publication number
JP3197015U
JP3197015U JP2015000424U JP2015000424U JP3197015U JP 3197015 U JP3197015 U JP 3197015U JP 2015000424 U JP2015000424 U JP 2015000424U JP 2015000424 U JP2015000424 U JP 2015000424U JP 3197015 U JP3197015 U JP 3197015U
Authority
JP
Japan
Prior art keywords
seismic isolation
base
piece
bearings
space portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015000424U
Other languages
Japanese (ja)
Inventor
舟木 崇
崇 舟木
直人 武内
直人 武内
Original Assignee
ヤクモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤクモ株式会社 filed Critical ヤクモ株式会社
Priority to JP2015000424U priority Critical patent/JP3197015U/en
Application granted granted Critical
Publication of JP3197015U publication Critical patent/JP3197015U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Floor Finish (AREA)

Abstract

【課題】複数の免震支承を高精度に二次元配列して免震床を構成し、高性能の免震性能を発揮でき、免震支承の増設も簡略である免震床用免震支承の二次元連結構造を提供する。【解決手段】下架台2と、下架台と同寸法の上架台4と、下架台、上架台間に配置した免震要素とを具備する4つの免震支承1A〜1Dを、一方向と、これに直交する他方向とに各々隣り合わせて免震支承間に5つの空間部を有し、分離、かつ二次元配列で連結し、上面に免震床領域を形成する免震床用免震支承の二次元連結構造であって、免震支承相互の間隔の誤差を解消して正確に設置するために、所要数の下フレーム21、下ジョイント31により各下架台を高精度に位置決めし、所要数の下ブリッジ41と上ブリッジにより各上架台内部の各側片3と5をそれぞれ連結し、所要数の上スカートにより上架台の各側片5の端面間を連結し、更に、各上架台間の空間部の各隅部に位置する上カバー板受片を介して、空間部に上カバー板を装着して、上面全体が平坦な免震床を構成する。【選択図】図14An object of the present invention is to provide a base-isolated floor by arranging a plurality of base-isolated bearings with high accuracy in a two-dimensional manner, exhibiting high-performance base-isolating performance, and simplifying the addition of base-isolated bearings. The two-dimensional connection structure is provided. SOLUTION: Four seismic isolation bearings 1A to 1D each including a lower base 2, an upper base 4 having the same dimensions as the lower base, and a base base and a base isolation element disposed between the upper base, A seismic isolation bearing for seismic isolation floor that has 5 spaces between seismic isolation bearings adjacent to each other perpendicular to this, and is separated and connected in a two-dimensional array to form a seismic isolation floor area on the upper surface. In order to eliminate the error in the distance between the seismic isolation bearings and to install them accurately, the lower frames 21 and the lower joints 31 are used to position each of the lower bases with high accuracy. Each side piece 3 and 5 inside each upper frame is connected by the lower bridge 41 and the upper bridge, and the end faces of each side piece 5 of the upper frame are connected by a required number of upper skirts. The upper cover plate is placed in the space portion through the upper cover plate receiving piece located at each corner of the space portion. And wear, the entire upper surface constitutes a flat MenShinyuka. [Selection] Figure 14

Description

本考案は、免震床用免震支承の二次元連結構造に関し、詳しくは、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置するための構造、すなわち、免震床を構成する複数の免震支承を高精度に位置決めしつつ、所望の面積の免震床を容易に実現することができる免震床用免震支承の二次元連結構造に関するものである。   The present invention relates to a two-dimensional connection structure of base-isolated bearings for base-isolated floors, and more specifically, eliminates an error in mutual spacing (interval gaps) in a plurality of base-isolated bearings constituting the base-isolated floor. A structure for accurately installing seismic isolation bearings, that is, seismic isolation that can easily realize a seismic isolation floor of a desired area while positioning multiple seismic isolation bearings constituting the seismic isolation floor with high precision This is related to the two-dimensional connection structure of seismic isolation bearings for floors.

コンピュータや関連機器を設置するOAフロアーや、各種精密機器等を設置するフロアー等においては、そのフロアーに免震床を配置し、コンピュータや各種精密機器等のような免震対象物に対する地震災害を防ぐことが強く要請される。   On OA floors where computers and related equipment are installed, and floors where various precision devices are installed, seismic isolation floors are placed on those floors to prevent seismic disasters for seismic isolation objects such as computers and various precision devices. There is a strong demand for prevention.

このような免震床としては、通常複数の免震支承を前後左右に二次元配列し、複数の免震支承を連動させて免震性能を発揮させるようにしている。   As such a seismic isolation floor, usually, a plurality of seismic isolation bearings are two-dimensionally arranged in the front, rear, left, and right directions, and the plurality of seismic isolation bearings are linked so as to exhibit seismic isolation performance.

特許文献1には、本考案に関連する技術として、X軸離間空間を各々に間に挟んでM列に並べられてY軸離間空間を各々に間に挟んでN列に並べられるM×N個の免震本体と、前記X軸離間空間に各々に配されるX軸上架台連結部材と、前記Y軸離間空間に各々に配されるY軸上架台連結部材と、を備え、免震本体が下架台と台車と上架台とを有し、前記X軸上架台連結部材がX軸方向に延びるX軸上架台長尺部材と該X軸上架台長尺部材の1対の端部を前記X軸離間空間を挟む1対の前記免震本体の前記上架台に結合させる1対のX軸上架台結合部材とを有し、前記Y軸上架台連結部材がY軸方向に延びるY軸上架台長尺部材と該Y軸上架台長尺部材の1対の端部を前記Y軸離間空間を挟む1対の前記免震本体の前記上架台に各々に結合させる1対のY軸上架台結合部材とを有する構成の免震床構造が開示されている。   In Patent Document 1, as a technique related to the present invention, M × N is arranged in M rows with an X-axis separation space interposed therebetween and arranged in N rows with a Y-axis separation space interposed therebetween. A seismic isolation body, an X-axis gantry coupling member disposed in each of the X-axis separation spaces, and a Y-axis gantry coupling member disposed in each of the Y-axis separation spaces. The main body has a lower base, a carriage, and an upper base, and the X-axis upper base connecting member extends in the X-axis direction, and a pair of ends of the X-axis upper base long member A pair of X-axis upper frame coupling members coupled to the upper frame of the pair of seismic isolation main bodies sandwiching the X-axis separation space, and the Y-axis upper frame coupling member extending in the Y-axis direction. A pair of ends of the upper frame long member and the Y-axis upper frame long member are coupled to the upper frame of the pair of seismic isolation bodies sandwiching the Y-axis separation space, respectively. MenShinyuka structure arrangement is disclosed having a pair of Y on the axis gantry coupling member that.

しかし、特許文献1に開示された免震床構造の場合、X軸離間空間を挟む各免震本体の上架台、Y軸離間空間を挟む各免震本体の上架台を、各々1対のX軸上架台結合部材、1対のY軸上架台結合部材を用いて結合させる構成でありであり、かかる特許文献1の免震床構造においては、各免震本体の微細、微小な誤差の累積を解消することができず、各免震本体相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して各免震本体を高精度に位置決めしつつ連結することは困難であるものと推定される。   However, in the case of the base-isolated floor structure disclosed in Patent Document 1, each base-isolated main body base that sandwiches the X-axis separated space and each base-isolated main body base that sandwiches the Y-axis spaced space each have a pair of X It is the structure which couple | bonds using an on-axis mount coupling member, and a pair of Y-axis mount mounting member, In the seismic isolation floor structure of this patent document 1, accumulation of the minute and minute error of each seismic isolation main body It is not possible to eliminate the error, and the error (interval gap) between each seismic isolation main body is eliminated, and each seismic isolation main body is positioned accurately and connected with high accuracy. It is estimated that it is difficult to do.

特開2010−275799号公報JP 2010-275799 A

本考案が解決しようとする問題点は、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床を容易に実現し得るような免震床用免震支承の二次元連結構造が従来存在しない点である。   The problem to be solved by the present invention is that two or more seismic isolation bearings are separated and arranged two-dimensionally with high precision positioning in the front and rear and left and right directions to form a seismic isolation floor. Eliminates the error in the mutual spacing (separation of the gap) in the seismic bearings, accurately installs each seismic isolation bearing and demonstrates the high performance seismic isolation performance by linking multiple seismic isolation bearings reliably. The top surface of the seismic isolation floor can be completely flat, eliminating the restrictions on the placement of seismic isolation objects. In addition, the number of seismic isolation bearings can be increased and the seismic isolation with the desired floor area. There is no conventional two-dimensional connection structure for base-isolated bearings that can easily realize the floor.

本考案は、下架台と、この下架台と同寸法の上架台と、前記下架台、上架台間に配置した免震要素とを具備し、略立方体状とするとともに、前記下架台、上架台を前記免震要素の免震機能に応じて特定方向に相対移動し得るように構成した複数の免震支承を、一方向と、これに直交する他方向とに各々隣り合う免震支承間に空間部を有しつつ分離配列、かつ、二次元配列で連結し、上面に免震床領域を形成する免震床用免震支承の二次元連結構造であって、前記各免震支承のうちの外側端面を形成する各免震支承における前記空間部を隔て隣り合う下架台同士の各側片間を所定の寸法となるように高精度に位置決めして連結する所要数の下架台位置決め連結体、及びこの下架台位置決め連結体の外側端面と前記下架台同士の外側端面に臨む各側片間を仮止めする所要数の仮止片とを備える下架台位置決め連結機構と、前記各免震支承の内側領域で、下架台同士が一方向で空間部を隔て隣り合い、前記各下架台の他方向に沿った側片同士が対向する一対ずつの両免震支承における前記各下架台の一方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を一方向に貫いて、かつ、内部重合空間部毎に2個並列配置する態様で連結する所要数の下架台内部連結体を備える下架台内部連結機構と、前記各免震支承の内側領域で、上架台同士が他方向で空間部を隔て隣り合い、各上架台の一方向に沿った側片同士が対向する一対ずつの両免震支承における前記各上架台の他方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を他方向に貫いて、かつ、内部重合空間部毎に他方向で2個並列配置する態様で連結するするとともに、前記内部重合空間部の四隅に上カバー板用の4個の受部を、両側に免震支承を有する空間部における前記内部重合空間部の隣位置の両隅部に上カバー板用の2個の受部を同一高さで形成する上架台内部連結体を備える上架台内部連結機構と、前記各免震支承のうちの外側端面を形成する各免震支承における空間部を隔て隣り合う各外側端面側の側片同士を前記空間部の外側端面を覆うようにして連結するとともに、前記下架台側の前記各架台位置決め連結体の上方に位置して、前記空間部の外側端面側の両隅に上カバー板用の2個の受部を形成し、前記上架台内部連結体が形成する2個の受部と併せて同一高さで4個構成とする上架台端面連結体を備える上架台端面連結機構と、前記各上架台間の各空間部、内部重合空間部に形成される4個ずつの受部に、各上架台の上面と面一な平坦面を呈するように装着し上面に上架台上面とともに平坦な免震床領域を形成する所要数の上カバー板と、前記仮止片を除去した後の下架台位置決め連結体の外端面側を覆うようにしてこの下架台位置決め連結体に取り付ける下架台間覆い体と、を有することを最も主要な特徴とする。   The present invention comprises a lower base, an upper base having the same dimensions as the lower base, the lower base, and a seismic isolation element disposed between the upper base and a substantially cubic shape, and the lower base and the upper base. A plurality of seismic isolation bearings configured to be able to move relative to each other in a specific direction according to the seismic isolation function of the seismic isolation element, between the seismic isolation bearings adjacent to each other in one direction and the other direction orthogonal thereto. A two-dimensional connection structure for a base-isolated bearing for a base-isolated floor that has a space portion and is connected in a separate array and a two-dimensional array to form a base-isolated floor region on the top surface, The required number of undercarriage positioning connecting bodies for positioning and connecting the respective side pieces of the adjoining undercarriages with a predetermined dimension with high precision so as to have a predetermined dimension in each seismic isolation bearing forming the outer end face of , And each facing the outer end surface of the lower platform positioning connector and the outer end surfaces of the lower platforms. In the inner region of each of the seismic isolation bearings, the lower bases are adjacent to each other with a space in one direction, and each of the lower bases In the pair of both seismic isolation bearings in which the side pieces along the other direction face each other, the side pieces along one direction of each of the undercarriage are overlapped with each other in one direction and the other direction. A lower base internal connection mechanism having a required number of base internal connections to be connected in a manner in which two are arranged in parallel for each internal superposition space, and an inner region of each seismic isolation bearing The side pieces along the other direction of each of the upper bases in a pair of both seismic isolation bearings in which the upper bases are adjacent to each other across the space in the other direction and the side pieces along the one direction of each upper base are opposed to each other. The internal polymerization space part where each space part in one direction and the other direction overlaps each other in the other direction It is connected in such a manner that two inner overlapping space portions are arranged in parallel in the other direction, and four receiving portions for the upper cover plate are provided at the four corners of the inner overlapping space portion. An upper frame internal coupling mechanism comprising an upper frame internal coupling body that forms two receiving portions for the upper cover plate at the same height at both corners adjacent to the internal overlapping space in the space having a support; The side pieces on each outer end face side adjacent to each other with the space portion in each seismic isolation bearing forming the outer end face of each of the seismic isolation bearings connected so as to cover the outer end face of the space portion, and the lower Two receiving portions for the upper cover plate are formed at both corners on the outer end face side of the space portion, and are located above the respective base positioning connecting bodies on the base side, and the upper base internal connection body is formed. The upper frame end surface coupling body which consists of four at the same height with two receiving parts. Equipped with an end surface coupling mechanism of the upper platform, and each receiving portion formed in each space portion between each upper platform and the internal overlapping space portion so as to present a flat surface flush with the upper surface of each upper platform. A required number of upper cover plates that form a flat base-isolated floor region on the upper surface together with the upper surface of the upper table, and the lower table so as to cover the outer end surface side of the lower table positioning coupling body after the temporary fixing pieces are removed. The main feature is to have an undercarriage covering body attached to the positioning connecting body.

請求項1記載の考案によれば、所要数の下架台位置決め連結体、仮止片からなる下架台位置決め連結機構、所要数の下架台内部連結体からなる下架台内部連結機構、所要数の上架台内部連結体からなる上架台内部連結機構、所要数の上架台端面連結体からなる上架台端面連結機構、所要数の上カバー板、及び所要数の下架台覆い体を用いる構成の基に、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床を容易に実現し得る免震床用免震支承の二次元連結構造を実現し、提供することができる。   According to the first aspect of the present invention, the required number of undercarriage positioning connecting bodies, the undercarriage positioning connecting mechanism composed of temporary fixing pieces, the lower base internal coupling mechanism consisting of the required number of undercarriage internal coupling bodies, and the required number of overhead mountings Based on the structure using the upper base internal connection mechanism consisting of the base internal connection body, the upper base end face connection mechanism consisting of the required number of upper base end face connection bodies, the required number of upper cover plates, and the required number of lower base cover bodies, Two or more seismic isolation bearings are separated and arranged with high accuracy in the front, rear, left, and right directions to form a seismic isolation floor. Displacement) can be eliminated and multiple seismic isolation bearings can be installed correctly, and multiple seismic isolation bearings can be linked together to achieve high performance seismic isolation performance. As a flat surface, you can eliminate the restriction of seismic isolation objects, Shin expansion of the number of installed bearing is also simplified, to achieve a two-dimensional connection structure of MenShinyuka for seismic isolation bearings which can easily realize MenShinyuka having a desired floor space, it can be provided.

請求項2記載の考案によれば、所要数の下フレーム、下ジョイントからなる下架台位置決め連結機構、所要数の下ブリッジからなる下架台内部連結機構、所要数の上ブリッジからなる上架台内部連結機構、所要数の上スカートからなる上架台端面連結機構、所要数の上カバー板、及び所要数の下スカートを用いる構成の基に、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床を容易に実現し得る免震床用免震支承の二次元連結構造を実現し、提供することができる。   According to the second aspect of the present invention, a required number of lower frames, a lower base positioning and connecting mechanism including a lower joint, a lower base internal connecting mechanism including a required number of lower bridges, and an upper base internal connection including a required number of upper bridges. Based on a mechanism, a structure that uses the required number of upper skirts, an upper platform end face coupling mechanism, a required number of upper cover plates, and a required number of lower skirts, multiple seismic isolation bearings can be separated from each other with high accuracy in the front, rear, left, and right directions. The base isolation floor is configured by positioning in two dimensions while positioning, and the error of the mutual spacing (interval gap) in multiple base isolation bearings that make up the base isolation floor is eliminated to accurately identify each base isolation bearing. It can be installed to reliably link multiple seismic isolation bearings to achieve high performance seismic isolation performance, and the top surface of the base isolation floor can be completely flat to eliminate the restriction of seismic isolation object placement. And more installations of seismic isolation bearings It is a simplified, to achieve a two-dimensional connection structure of MenShinyuka for seismic isolation bearings which can easily realize MenShinyuka having a desired floor space, can be provided.

図1は本考案の実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結終了状態の平面図である。FIG. 1 is a plan view of four seismic isolation bearings in a two-dimensional connection end state in a two-dimensional connection structure of a seismic isolation bearing for a seismic isolation floor according to an embodiment of the present invention. 図2は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結終了状態の正面図である。FIG. 2 is a front view showing a state where the two-dimensional connection ends of the four seismic isolation bearings in the two-dimensional connection structure of the seismic isolation bearings for the base isolation floor according to the present embodiment. 図3は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結前の配置説明図である。FIG. 3 is an explanatory view of the arrangement of the four seismic isolation bearings before the two-dimensional connection in the two-dimensional connection structure of the base isolation base for the base isolation floor according to the present embodiment. 図4は本実施例に係る免震床用免震支承の二次元連結構造における一台の免震支承の平面及び正面を示す図である。FIG. 4 is a diagram showing a plan view and a front view of one seismic isolation bearing in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図5は本実施例に係る免震床用免震支承の二次元連結構造における下ジョイントを取り付けた下フレームの平面、正面及び側面を示す図である。FIG. 5 is a diagram showing a plane, a front surface, and a side surface of the lower frame to which the lower joint is attached in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図6は本実施例に係る免震床用免震支承の二次元連結構造における下ジョイントの正面図である。FIG. 6 is a front view of the lower joint in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図7は本実施例に係る免震床用免震支承の二次元連結構造における下ブリッジの平面、正面及び側面を示す図である。FIG. 7 is a diagram showing a plane, a front surface, and a side surface of the lower bridge in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図8は本実施例に係る免震床用免震支承の二次元連結構造における下スカートの平面、正面及び側面を示す図である。FIG. 8 is a diagram showing a plane, a front surface, and a side surface of the lower skirt in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図9は本実施例に係る免震床用免震支承の二次元連結構造における上ブリッジの平面、正面及び側面を示す図である。FIG. 9 is a diagram showing a plane, a front surface, and a side surface of the upper bridge in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図10は本実施例に係る免震床用免震支承の二次元連結構造におけるピローの平面、正面及び側面を示す図である。FIG. 10 is a diagram illustrating a plane, a front surface, and a side surface of a pillow in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図11は本実施例に係る免震床用免震支承の二次元連結構造における上スカートの平面、正面及び側面を示す図である。FIG. 11 is a view showing a plane, a front surface, and a side surface of the upper skirt in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図12は本実施例に係る免震床用免震支承の二次元連結構造における上カバー板を示す平面図である。FIG. 12 is a plan view showing the upper cover plate in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図13は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結前の状態を示す平面図である。FIG. 13: is a top view which shows the state before the two-dimensional connection of the four seismic isolation bearings in the two-dimensional connection structure of the base-isolation support for base isolation floors concerning a present Example. 図14は本実施例に係る免震床用免震支承の二次元連結構造における免震支承に対する下フレーム、下ジョイント及び下ブリッジの取り付け状態を示す部分拡大説明図である。FIG. 14 is a partially enlarged explanatory view showing a mounting state of the lower frame, the lower joint, and the lower bridge with respect to the seismic isolation bearing in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図15は本実施例に係る免震床用免震支承の二次元連結構造における免震支承4台に対する下フレーム、下ジョイント及び下ブリッジの取り付け状態を示す拡大平面図である。FIG. 15 is an enlarged plan view showing a state in which the lower frame, the lower joint, and the lower bridge are attached to the four seismic isolation bearings in the two-dimensional connection structure of the seismic isolation floor support base according to the present embodiment. 図16は本実施例に係る免震床用免震支承の二次元連結構造において各下架台を連結した後各免震支承の上架台に対してピロー及び上ジョイントを付加した状態を示す部分拡大説明図であるFIG. 16 is a partially enlarged view showing a state in which a pillow and an upper joint are added to the base of each base isolation support after connecting the bases in the two-dimensional connection structure of the base isolation base for base isolation floor according to the present embodiment. It is explanatory drawing 図17は本実施例に係る免震床用免震支承の二次元連結構造における免震支承4台の各上架台に対してピロー及び上ジョイントを付加した状態を示す拡大平面図である。FIG. 17 is an enlarged plan view showing a state in which pillows and upper joints are added to each of the four bases of the base isolation bearings in the two-dimensional connection structure of the base isolation base for base isolation floors according to the present embodiment. 図18は本実施例に係る免震床用免震支承の二次元連結構造における免震支承の上架台に対して上スカートを、下架台に対して下スカートを付加した状態を示す部分拡大説明図であるFIG. 18 is a partially enlarged explanation showing a state in which an upper skirt is added to the upper base of the base isolation bearing and a lower skirt is added to the lower base in the two-dimensional connection structure of the base isolation base for the base isolation floor according to the present embodiment. It is a figure 図19は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の上架台に対して上スカートを、下架台に対して下スカートを付加した状態を示す拡大平面図である。FIG. 19 shows a state in which an upper skirt is added to the upper base of the four seismic isolation bearings and a lower skirt is added to the lower base in the two-dimensional connection structure of the base isolation base for the base isolation floor according to this embodiment. It is an enlarged plan view. 図20は本実施例に係る免震床用免震支承の二次元連結構造において4台の免震支承の間の各上架台の間及び中央部に5枚の上カバー板を設置して二次元連結終了状態とし免震床とした状態を示す拡大平面図である。FIG. 20 shows a two-dimensional connection structure for base-isolated bearings for base-isolated floors according to the present embodiment, in which five upper cover plates are installed between four upper bases and at the center between four base-isolated supports. It is an enlarged plan view which shows the state used as the seismic isolation floor as a dimension connection completion state. 図21は本実施例に係る免震床用免震支承の二次元連結構造において、前後方向にN台、左右方向にM台の免震支承を連結し、かつ、各免震支承の間に各々上カバー板を設置して広面積の免震床とした拡張例を示す平面図である。FIG. 21 shows a two-dimensional connection structure for a base-isolated bearing for a base-isolated floor according to the present embodiment, in which N base-isolated bearings are connected in the front-rear direction and M base-isolated bearings are connected in the left-right direction. It is a top view which shows the example of an expansion which installed each upper cover board and made it the seismic isolation floor of a large area.

本考案は、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であって、所望の床面積を有する免震床を容易に実現し得る免震床用免震支承の二次元連結構造を実現し提供するという目的を、下架台と、この下架台と同寸法の上架台と、前記下架台、上架台間に配置した免震要素とを具備し、略立方体状とするとともに、前記下架台、上架台を前記免震要素の免震機能に応じて特定方向に相対移動し得るように構成した複数の免震支承を、一方向と、これに直交する他方向とに各々隣り合う免震支承間に空間部を有しつつ分離配列、かつ、二次元配列で連結し、上面に免震床領域を形成する免震床用免震支承の二次元連結構造であって、前記各免震支承のうちの外側端面を形成する各免震支承における前記空間部を隔て隣り合う下架台同士の各側片間を所定の寸法となるようにボルトのねじ込み調節で(免震床を構成する複数の免震支承における相互の間隔の誤差或いは間隔のズレを解消して複数の各免震支承を正確に設置するために)高精度に位置決めして連結する所要数の下フレーム、及びこの下フレームの外側端面と前記下架台同士の外側端面に臨む各側片両隅部間を一定寸法となるように仮止めする所要数の下ジョイントとを備える下架台位置決め連結機構と、前記各免震支承の内側領域で、下架台同士が一方向で空間部を隔て隣り合い、前記各下架台の他方向に沿った側片同士が対向する一対ずつの両免震支承における前記各下架台の一方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を一方向に貫いて、かつ、内部重合空間部毎に2個並列配置する態様で連結する所要数の下ブリッジを備える下架台内部連結機構と、前記各免震支承の内側領域で、上架台同士が他方向で空間部を隔て隣り合い、各上架台の一方向に沿った側片同士が対向する一対ずつの両免震支承における前記各上架台の他方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を他方向に貫いて、かつ、内部重合空間部毎に他方向で2個並列配置する態様で連結するするとともに、前記内部重合空間部の四隅に上カバー板用の4個の受部を、両側に免震支承を有する空間部における前記内部重合空間部の隣位置の両隅部に上カバー板用の2個の受部を同一高さで形成する上ブリッジを備える上架台内部連結機構と、前記各免震支承のうちの外側端面を形成する各免震支承における空間部を隔て隣り合う各外側端面側の側片同士を前記空間部の外側端面を覆うようにして連結するとともに、前記下架台側の前記各下フレームの上方に位置して、前記空間部の外側端面側の両隅に前記各外側端面側の側片に取り付けた各ピローにより支持した上カバー板用の2個の受部を形成し、前記上架台内部連結体が形成する2個の受部と併せて同一高さで4個構成とする上スカートを備える上架台端面連結機構と、前記各上架台間の各空間部、内部重合空間部に形成される4個ずつの受部に、各上架台の上面と面一な平坦面を呈するように装着し上面に上架台上面とともに平坦な免震床領域を形成する所要数の上カバー板と、前記下ブリッジを除去した後の下フレームの外面側を覆うようにしてこの下フレームに取り付ける下スカートと、を有する構成により実現した。   The present invention forms a base-isolated floor by positioning a plurality of base-isolated bearings in a separated state with high accuracy in the front-rear and left-right directions to form a base-isolated floor. By eliminating errors (interval gaps) and accurately installing multiple seismic isolation bearings, the multiple seismic isolation bearings can be reliably linked to demonstrate high-performance seismic isolation performance. The upper surface is a completely flat surface, which eliminates the restrictions on the placement of seismic isolation objects.In addition, the number of seismic isolation bearings can be increased easily, and seismic isolation floors with the desired floor area can be easily realized. The purpose of realizing and providing a two-dimensional connection structure of seismic isolation bearings for seismic isolation floors is to provide a lower frame, an upper frame of the same size as the lower frame, and a base isolation element disposed between the lower frame and the upper frame. And having a substantially cubic shape, the base frame and the base frame are used for the base isolation function of the base isolation element. A plurality of seismic isolation bearings configured to be able to move relative to each other in a specific direction, with a space portion between the seismic isolation bearings adjacent to each other in one direction and the other direction orthogonal thereto, and Each of the seismic isolation bearings forming the outer end surface of the seismic isolation bearings. By adjusting the screwing of the bolts so that each side piece between adjacent bases across the space in FIG. 2 has a predetermined size (the error or spacing between the mutual spacings of the plurality of base-isolated bearings constituting the base-isolated floor) The required number of lower frames to be positioned and connected with high accuracy, and the outer end surfaces of the lower frames and the outer end surfaces of the lower mounts (to eliminate misalignment and accurately install a plurality of seismic isolation bearings) Temporarily fix between the corners of each side so that the dimensions are constant. A number of lower joints, and a base piece positioning connection mechanism, and in the inner region of each of the seismic isolation bearings, the lower bases are adjacent to each other with a space in one direction, and side pieces along the other direction of each of the lower bases The side pieces along one direction of each of the above-mentioned undercarriages in a pair of both seismic isolation bearings facing each other in one direction, penetrating in one direction the internal overlapping space part where each space part in the other direction overlaps, and In addition, a lower base internal connection mechanism having a required number of lower bridges to be connected in a manner of being arranged in parallel for each internal superposition space portion, and an inner region of each of the seismic isolation bearings, the upper bases in the other direction The side pieces along the other direction of the upper frame in the pair of both seismic isolation bearings that are adjacent to each other and the side pieces along the one direction of the upper frame are opposed to each other. Penetrate the internal polymerization space where the parts overlap in the other direction and In a space portion having two receiving portions for the upper cover plate at the four corners of the inner overlapping space portion and seismic isolation bearings on both sides. An upper mount internal coupling mechanism having an upper bridge that forms two receiving portions for the upper cover plate at the same height at both corners adjacent to the inner overlapping space portion, and the outer side of each of the seismic isolation bearings The side pieces on the outer end face side adjacent to each other with the space portion in each seismic isolation bearing forming the end face are connected so as to cover the outer end face of the space portion, and above the lower frame on the lower frame side The two receiving portions for the upper cover plate supported by each pillow attached to the side piece on each outer end surface side are formed at both corners on the outer end surface side of the space portion, and the interior of the upper base is formed. Together with the two receiving parts formed by the coupling body, it is composed of four pieces at the same height. A flat surface that is flush with the upper surface of each upper frame is formed on the upper frame end surface coupling mechanism having upper skirts and four receiving portions formed in each space between the upper frames and in the internal overlapping space. A required number of upper cover plates that form a flat base-isolated floor region together with the upper surface of the upper base on the upper surface, and an outer surface side of the lower frame after removing the lower bridge are attached to the lower frame. This is realized by a configuration having a lower skirt to be attached.

以下、本考案の実施例に係る免震床用免震支承の二次元連結構造について、例えば、4台の免震支承を相互に等しい間隔を隔て前後、左右に配列し、全体として平面視正方形配列となるように二次元連結する場合を例にして、図面を参照して詳細に説明する。   Hereinafter, regarding the two-dimensional connection structure of the base-isolated bearing for the base-isolated floor according to the embodiment of the present invention, for example, four base-isolated bearings are arranged in front, back, left and right at equal intervals, and the plan view is square as a whole. The case of two-dimensional connection so as to form an array will be described in detail with reference to the drawings.

図1、図2は本実施例に係る免震床用免震支承の二次元連結構造において、4台、すなわち、第1乃至第4の各免震支承1A乃至1D及び5枚の上カバー板101を用いて免震床111とした状態の平面図、正面図を示すものである。   FIG. 1 and FIG. 2 show a two-dimensional connection structure of seismic isolation bearings for a seismic isolation floor according to the present embodiment, that is, four units, that is, first to fourth seismic isolation bearings 1A to 1D and five upper cover plates. The top view and the front view of the state made into the seismic isolation floor 111 using 101 are shown.

また、図3は、第1乃至第4の各免震支承1A乃至1Dの二次元連結前の配置関係を示すものであり、本実施例においては、説明の便宜上、図面上の方向を明確にするために、図3に示すように、「前」「後」「左」「右」と定義し、かつ、左右方向を一方向、前後方向を他方向と定義して以下の説明を行う。   FIG. 3 shows the arrangement relationship before the two-dimensional connection of the first to fourth seismic isolation bearings 1A to 1D. In this embodiment, the direction on the drawing is clearly shown for convenience of explanation. Therefore, as shown in FIG. 3, the following description will be given by defining “front”, “rear”, “left”, and “right”, defining the left-right direction as one direction, and the front-rear direction as the other direction.

また、本実施例においては、4台の各免震支承を第1乃至第4の各免震支承1A乃至1Dの二次元連結構造において、第1の免震支承1Aと第2の免震支承1Bとの間の空間を第1の空間部11Aと、第1の免震支承1Aと第3の免震支承1Cとの間の空間を第2の空間部11Bと、第2の免震支承1Bと第4の免震支承1Dとの間の空間を第3の空間部11Cと、第3の免震支承1Cと第4の免震支承1Dとの間の空間を第4の空間部11Dと、中央に形成される空間部を第5の空間部(内部重合空間部)11Eと定義する。   In this embodiment, each of the four seismic isolation bearings is divided into the first to fourth seismic isolation bearings 1A to 1D in a two-dimensional connection structure, and the first seismic isolation bearing 1A and the second seismic isolation bearing. The space between 1B is the first space portion 11A, the space between the first seismic isolation bearing 1A and the third seismic isolation bearing 1C is the second space portion 11B, and the second seismic isolation bearing. The space between 1B and the fourth seismic isolation bearing 1D is the third space portion 11C, and the space between the third seismic isolation bearing 1C and the fourth seismic isolation bearing 1D is the fourth space portion 11D. And the space part formed in the center is defined as the 5th space part (internal polymerization space part) 11E.

更に、前記第1の免震支承1Aは、図4に示すように、平面視でいずれも一辺が例えば500mm四方の正方形状で、全高が例えば99mmの立体形状であり、前記第1乃至第5の各空間部11A乃至11Eも各辺が、500mmで、平面視で正方形状を呈する立体空間を形成するものとして以下の説明を行う。   Further, as shown in FIG. 4, each of the first seismic isolation bearings 1A has a three-dimensional shape having a square shape with a side of, for example, 500 mm and a total height of, for example, 99 mm in plan view. The following description will be made assuming that each of the space portions 11A to 11E has a side of 500 mm and forms a three-dimensional space having a square shape in plan view.

前記第1の免震支承1Aは、図4に示すように、下架台2と、この下架台2と等寸法の上架台4と、これら下架台2、上架台4間に配置した例えばレール式の免震要素(図示せず)とを具備している。   As shown in FIG. 4, the first seismic isolation bearing 1 </ b> A includes a lower base 2, an upper base 4 having the same dimensions as the lower base 2, and a rail type disposed between the lower base 2 and the upper base 4. And a seismic isolation element (not shown).

前記第1の免震支承1Aの下架台2の前後左右の各側片3には所要のボルト螺合用のネジ孔を設け、同様に前記上架台4の前後左右の各側片5にも所要のボルト螺合用のネジ孔を設けている。   Necessary bolt screw holes are provided in the front, rear, left and right side pieces 3 of the lower base 2 of the first seismic isolation bearing 1A. Similarly, the front, rear, left and right side pieces 5 of the upper base 4 are also required. Screw holes for screwing are provided.

前記第1の免震支承1Aの上架台4は、下架台2に対して一方向(又は他方向)と45度の斜め方向(これをP方向とする)及びP方向と直交する斜め方向(これをQ方向とする)に変位して免震機能を発揮する構成としている。   The upper base 4 of the first seismic isolation bearing 1A has one direction (or other direction) with respect to the lower base 2 and an oblique direction of 45 degrees (referred to as P direction) and an oblique direction orthogonal to the P direction ( This is configured to exhibit the seismic isolation function by shifting in the Q direction).

前記第2乃至第4の免震支承1B乃至1Dについても、前記第1の免震支承1Aの場合と同様に構成している。   The second to fourth seismic isolation bearings 1B to 1D are configured in the same manner as in the case of the first seismic isolation bearing 1A.

次に、本実施例に係る免震床用免震支承の二次元連結構造における二次元連結用の各構成要素の詳細について図5乃至図12を参照して説明する。   Next, the detail of each component for two-dimensional connection in the two-dimensional connection structure of the seismic isolation bearing for a base isolation floor according to the present embodiment will be described with reference to FIGS.

(第1乃至第4の各免震支承における各下架台連結用の構成要素)
本実施例において各下架台2の連結用の構成要素は、4個の下フレーム21からなる下架台位置決め連結体と、8個の下ジョイント31からなる仮止片と、2個の下ブリッジ41からなる下架台内部連結体と、4個の下スカート51からなる下架台間覆い片とからなり、下架台位置決め連結体と仮止片とにより下架台位置決め連結機構を構成している。
(Constituent elements for connecting each base in the first to fourth seismic isolation bearings)
In the present embodiment, the components for connecting the lower mounts 2 include a lower mount positioning connecting body including four lower frames 21, temporary fixing pieces including eight lower joints 31, and two lower bridges 41. The lower base positioning connecting mechanism is composed of the lower base positioning connecting body and the temporary fixing piece.

前記下フレーム21は、図5に示すように、長方形状の底片22と、この底片22の一方の長辺端縁から垂直に起立させた長辺側片23と、底片22の両側の短辺端縁から垂直に起立させた一対の短辺側片24と、を一体に具備し、前記底片22の他方の長辺端縁側及び前記底片22の上方を開放状態とし、一側面及び上面開放型の略直方体箱型状に形成し、全部で4個構成としている。   As shown in FIG. 5, the lower frame 21 includes a rectangular bottom piece 22, a long side piece 23 erected vertically from one long side edge of the bottom piece 22, and short sides on both sides of the bottom piece 22. And a pair of short side pieces 24 vertically raised from the end edges, the other long side edge side of the bottom piece 22 and the upper side of the bottom piece 22 are in an open state, one side and top open type Are formed in a substantially rectangular parallelepiped box shape, and have a total of four.

また、前記下フレーム21の前記長辺側片23の左右方向の外寸法及び前記一対の短辺側片24の両外面間の寸法は例えば正確に497mm、前記長辺側片23及び短辺側片24の高さ寸法は例えば30mmとしている。   Also, the outer dimension in the left-right direction of the long side piece 23 of the lower frame 21 and the dimension between the outer surfaces of the pair of short side pieces 24 are, for example, exactly 497 mm, the long side piece 23 and the short side The height dimension of the piece 24 is 30 mm, for example.

更に、前記長辺側片23の両隅部にはボルト挿通用の所要の挿通孔を所定の配置で設け、一対の短辺側片24にも各々所要の間隔をもったボルト挿通用の3個の挿通孔を設けている。   Further, required insertion holes for inserting bolts are provided in both corners of the long side piece 23 in a predetermined arrangement, and the pair of short side pieces 24 are respectively provided with a required interval 3 for inserting bolts. An insertion hole is provided.

前記下ジョイント31は、図6に示すように、両端部を丸めた平板状で、ボルト挿通用の所要の挿通孔を所定の配置で設けて例えば全長100mmに形成し、全部で8個構成としている。   As shown in FIG. 6, the lower joint 31 has a flat plate shape with both ends rounded, and a predetermined insertion hole for bolt insertion is provided in a predetermined arrangement, for example, a total length of 100 mm. Yes.

前記下ブリッジ41は、後述するように、前記第1の免震支承1A、第2の免震支承1Bの各上架台4の中央側の側片3、3同士、及び第3の免震支承1C、第4の免震支承1Dの各上架台4の中央側の側片3、3同士を各々左右方向で連結するために2個構成とし、全長を例えば870mmに形成している。   As will be described later, the lower bridge 41 includes side pieces 3, 3 on the center side of the upper base 4 of each of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B, and a third seismic isolation bearing. In order to connect the side pieces 3 and 3 on the center side of each of the upper mounts 4 of 1C and the fourth seismic isolation bearing 1D in the left-right direction, two pieces are configured, and the total length is, for example, 870 mm.

この下ブリッジ41は、図7に示すように、両隅部に一対の接合片部43、43を設けた垂直片部42と、この垂直片部42の下端から水平方向に突出させた鉤形の水平片部44と、を具備し、かつ、前記一対の接合片部43、43に各々ボルト挿通用の所要の挿通孔を所定の配置で設けている。   As shown in FIG. 7, the lower bridge 41 includes a vertical piece 42 having a pair of joining pieces 43, 43 at both corners, and a saddle shape projecting horizontally from the lower end of the vertical piece 42. And a pair of joining piece portions 43, 43 each having a predetermined insertion hole for inserting a bolt in a predetermined arrangement.

前記下スカート51は、図8に示すように、下スカート垂直片部52と、この下スカート垂直片部52の下端から水平方向に突出した小寸法の下スカート水平片部53とを具備する略L型状で、かつ、全長を例えば498mmに形成し、全部で4個構成としている。   As shown in FIG. 8, the lower skirt 51 includes a lower skirt vertical piece 52 and a small skirt horizontal piece 53 protruding in a horizontal direction from the lower end of the lower skirt vertical piece 52. It is L-shaped and has a total length of, for example, 498 mm, for a total of four.

また、前記下スカート垂直片部52には、ボルト挿通用の所要の挿通孔を所定の配置で設け、前記下ジョイント31を除去した後の前記下フレーム21の長辺側片23の外側を覆う態様でこの下フレーム21にボルト止めにて連結固定するように構成している。   The lower skirt vertical piece 52 is provided with a predetermined insertion hole for inserting a bolt in a predetermined arrangement to cover the outside of the long side piece 23 of the lower frame 21 after the lower joint 31 is removed. In this embodiment, the lower frame 21 is connected and fixed with bolts.

(第1乃至第4の各免震支承における各上架台連結用の構成要素)
本実施例において各上架台連結用の構成要素は、2個の上ブリッジ61からなる上架台内部連結体と、8個のピロー81と、4個の上スカート91からなる上架台端面連結体と、5枚の上カバー板101と、を有し、2個の上ブリッジ61と2個の下ブリッジ41により上架台内部連結機構を構成し、前記8個のピロー81と、4個の上スカート91とにより、上架台端面連結機構を構成している。
(Constituent elements for connecting each base in the first to fourth seismic isolation bearings)
In this embodiment, each of the components for connecting the upper base includes an upper base internal connection body including two upper bridges 61, an eight pillow 81, and an upper base end surface connection body including four upper skirts 91. 5 upper cover plates 101, and two upper bridges 61 and two lower bridges 41 form an upper mount internal connection mechanism, and the eight pillows 81 and four upper skirts 91 constitutes an upper frame end face coupling mechanism.

前記上ブリッジ61は、第1の免震支承1A、第3の免震支承1Cの各上架台4、4の中央側の側片5、5同士及び第2の免震支承1B、第4の免震支承1Dの各上架台4、4の中央側の側片5、5同士を各々前後方向配置で連結するために2個構成とし、全長を例えば920mmに形成している。   The upper bridge 61 includes side pieces 5 and 5 on the center side of the upper bases 4 and 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C, and the second seismic isolation bearing 1B and the fourth In order to connect the side pieces 5 and 5 on the center side of the upper bases 4 and 4 of the seismic isolation bearing 1D in the front-rear direction arrangement, two pieces are formed, and the total length is, for example, 920 mm.

前記上ブリッジ61は、図9に示すように、全長を例えば920mmとした第1垂直片部63と、この第1垂直片部63の下端から水平方向に、かつ、全長に渡って水平方向に突出した第1水平片部64と、この第1水平片部64から下方に突出した垂下片65と、前記第1水平片部64の上面に所定の間隔で設けた四角形状で合計4個の上カバー板受片66とを具備するL型の上ブリッジ接合片62と、全長を前記第1垂直片部63の略半分の長さとした第2垂直片部68と、この第2垂直片部68の下端から水平方向に、かつ、全長に渡って水平方向に突出した第2水平片部69と、この第2水平片部69から下方に突出した垂下片70と、前記第2水平片部69の上面に所定の間隔で設けた四角形状で合計2個の上カバー板受片71とを具備するL型の上ブリッジ接合補助片67とを、前記第1垂直片部63、第2垂直片部68が背中合わせとなるようにして、かつ、両者の長さ方向中心が合致するようにしてネジ止等により一体連結することにより構成している。   As shown in FIG. 9, the upper bridge 61 includes a first vertical piece 63 having a total length of, for example, 920 mm, and a horizontal direction from the lower end of the first vertical piece 63, and in a horizontal direction over the entire length. The projecting first horizontal piece 64, the hanging piece 65 projecting downward from the first horizontal piece 64, and a total of four rectangular shapes provided at predetermined intervals on the upper surface of the first horizontal piece 64. An L-shaped upper bridge joining piece 62 having an upper cover plate receiving piece 66, a second vertical piece 68 having an overall length substantially half the length of the first vertical piece 63, and the second vertical piece A second horizontal piece 69 projecting horizontally from the lower end of 68 in a horizontal direction over the entire length, a hanging piece 70 projecting downward from the second horizontal piece 69, and the second horizontal piece A total of two upper cover plate receiving pieces 71 in a rectangular shape provided at predetermined intervals on the upper surface of 69; The L-shaped upper bridge joining auxiliary piece 67 is provided so that the first vertical piece 63 and the second vertical piece 68 are back-to-back, and the lengthwise centers of both coincide with each other. It is configured by being integrally connected by screwing or the like.

前記上ブリッジ接合片62における中央に近い側の隣り合う2個の上カバー板受片66、66の間隔は、2個の上ブリッジ61、61のうちの一方の上ブリッジ61を、詳細は後述するが、例えば前記第1の免震支承1A、第3の免震支承1Cの各上架台4、4の中央側(右側)の側片5、5間に連結したとき、これら2個の上カバー板受片66、66が前記第5の空間部11Eの左側の両隅部(前側、後側)に収まる間隔としている。   The distance between two adjacent upper cover plate receiving pieces 66, 66 on the side close to the center of the upper bridge joining piece 62 is such that the upper bridge 61 of one of the two upper bridges 61, 61 will be described in detail later. However, for example, when connected between the side pieces 5 and 5 on the center side (right side) of the upper bases 4 and 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C, The cover plate receiving pieces 66 and 66 are set to have an interval within the left corners (front side and rear side) of the fifth space portion 11E.

また、このとき、前記2個の上カバー板受片66、66の外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの左側で、かつ、中央側の隅部と、前記第4の空間部11Dの左側で、かつ、中央側の隅部に収まるように設定している。   At this time, the two upper cover plate receiving pieces 66, 66 outside the two upper cover plate receiving pieces 66, 66 are respectively located on the left side of the first space portion 11A and on the central side. It is set so as to fit in the corner and the corner on the left side of the fourth space portion 11D and on the center side.

更に、前記上ブリッジ接合補助片67の2個の上カバー板受片71、71の間隔は、前記上ブリッジ接合片62における中央に近い側の隣り合う2個の上カバー板受片66、66と同一間隔とし、これにより、上ブリッジ接合補助片67の2個の上カバー板受片71、71は、各々前記第2の空間部11Bにおける中央側の両隅部(前側、後側)に収まるようにしている。   Further, the distance between the two upper cover plate receiving pieces 71, 71 of the upper bridge joining auxiliary piece 67 is such that two upper cover plate receiving pieces 66, 66 adjacent to each other on the side close to the center of the upper bridge joining piece 62. Thus, the two upper cover plate receiving pieces 71, 71 of the upper bridge joining auxiliary piece 67 are respectively located at the central corners (front side, rear side) of the second space portion 11B. I try to fit.

上述した場合とは逆に2個の上ブリッジ61、61のうちの他方の上ブリッジ61を例えば第2の免震支承1B、第4の免震支承1Dの各上架台4、4の中央側の側片5、5間に連結したときには、他方の上ブリッジ61における上ブリッジ接合片62における中央に近い側の隣り合う2個の上カバー板受片66、66は、前記第5の空間部11Eの右側の両隅部(前側、後側)に収まり、前記2個の上カバー板受片66、66の外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの右側で、かつ、中央側の隅部と、前記第4の空間部11Dの右側で、かつ、中央側の隅部に収まるようになっている。   Contrary to the case described above, the other upper bridge 61 of the two upper bridges 61, 61 is, for example, the center side of the upper bases 4, 4 of the second seismic isolation bearing 1B and the fourth seismic isolation bearing 1D. When connected between the side pieces 5 and 5, the two upper cover plate receiving pieces 66 and 66 adjacent to each other on the side close to the center of the upper bridge joining piece 62 of the other upper bridge 61 are connected to the fifth space portion. 11E, the two upper cover plate receiving pieces 66, 66 outside the two upper cover plate receiving pieces 66, 66 are placed in the right corners (front side, rear side) of the 11E. It is arranged on the right side of the portion 11A and on the corner on the center side, and on the right side of the fourth space portion 11D and on the corner on the center side.

更に、このとき、前記上ブリッジ接合補助片67の2個の上カバー板受片71、71は、各々前記第3の空間部11Bにおける中央側の両隅部(前側、後側)に収まるようになっている。   Furthermore, at this time, the two upper cover plate receiving pieces 71, 71 of the upper bridge joining auxiliary piece 67 are respectively accommodated in the central corners (front side, rear side) of the third space portion 11B. It has become.

前記ピロー81は、図10に示すように、垂直片部82と、この垂直片部82の下端から水平方向に突出させた鉤形の水平片部83と、を具備している。   As shown in FIG. 10, the pillow 81 includes a vertical piece 82 and a bowl-shaped horizontal piece 83 that protrudes in the horizontal direction from the lower end of the vertical piece 82.

前記水平片部83の突出端に前記水平片部83よりも高位置となるように段違いに上スカート受片部84を水平配置に形成し、全長を例えば90mmに設定するとともに、前記垂直片部82にボルト又はネジを挿通するための所要の挿通孔を設け、全部で8個構成としている。   The upper skirt receiving piece 84 is formed in a horizontal arrangement at a protruding end of the horizontal piece 83 so as to be higher than the horizontal piece 83, the total length is set to 90 mm, for example, and the vertical piece The required insertion holes for inserting bolts or screws are provided in 82, and a total of eight holes are formed.

前記上スカート91は、図11に示すように、全長を例えば998mmとした外側垂直片部93と、この外側垂直片部93の下端から水平方向に、かつ、全長に渡って水平方向に突出した外側水平片部94と、を具備する外側スカート片92と、前記外側垂直片部93と同一の長さで、かつ、略半分の高さ寸法とした内側垂直片部96と、この内側垂直片部96の下端中央部から水平方向に、かつ、前記外側水平片部94とは反対方向に突出させた長さ略500mmの内側水平片部97と、この内側水平片部97の下面から下方に突出させた垂下片98と、前記内側水平片部97の上面両隅部に設けた上カバー板受片99、99と、を具備する内側スカート片95と、を具備している。   As shown in FIG. 11, the upper skirt 91 protrudes in the horizontal direction from the lower end of the outer vertical piece 93 having a total length of, for example, 998 mm, and from the lower end of the outer vertical piece 93 in the horizontal direction. An outer skirt piece 92 having an outer horizontal piece portion 94, an inner vertical piece portion 96 having the same length as the outer vertical piece portion 93 and substantially half the height, and the inner vertical piece piece. An inner horizontal piece 97 having a length of approximately 500 mm that protrudes in the horizontal direction from the center of the lower end of the portion 96 and in the direction opposite to the outer horizontal piece 94, and downward from the lower surface of the inner horizontal piece 97 An inner skirt piece 95 having a projecting hanging piece 98 and upper cover plate receiving pieces 99 and 99 provided at both upper corners of the inner horizontal piece 97 is provided.

そして、前記外側スカート片92と、内側スカート片95とを外側垂直片部93、内側垂直片部96の上端縁が一致するようにして、これら両者をボルト又はネジを用いて一体化するように構成している。   Then, the outer skirt piece 92 and the inner skirt piece 95 are aligned so that the upper end edges of the outer vertical piece 93 and the inner vertical piece 96 coincide with each other, and these two are integrated using bolts or screws. It is composed.

これにより、前記内側水平片部97は、内側垂直片部96の長さ方向中心からその両側に等寸法延在し、前記上カバー板受片99、99は、内側垂直片部96の長さ方向中心に関して対象配置となるように構成している。   Accordingly, the inner horizontal piece 97 extends from the center in the length direction of the inner vertical piece 96 to both sides thereof, and the upper cover plate receiving pieces 99 and 99 have the length of the inner vertical piece 96. It is configured to be a target arrangement with respect to the direction center.

前記内側スカート片95の一対の上カバー板受片99、99は、後述するように前記ピロー81の上スカート受片84上に設置される。   The pair of upper cover plate receiving pieces 99, 99 of the inner skirt piece 95 is installed on the upper skirt receiving piece 84 of the pillow 81 as will be described later.

前記上カバー板101は、図12に示すように、前記第1乃至第5の各空間部11A乃至11Eの平面寸法と略等しい一辺が略500mmの正方形状を呈する例えば金属平板等により形成され、全部で5枚構成としている。   As shown in FIG. 12, the upper cover plate 101 is formed of, for example, a metal flat plate or the like having a square shape with a side substantially equal to the planar dimensions of the first to fifth space portions 11A to 11E. There are 5 sheets in total.

次に、上述した各構成要素を用いた本実施例に係る免震床用免震支承の二次元連結構造において、免震支承4台連結の場合の二次元連結構造及び二次元連結工程について、図13乃至図20を参照して詳細に説明する。   Next, in the two-dimensional connection structure of the base isolation base for the base isolation floor according to the present embodiment using each of the above-described components, the two-dimensional connection structure and the two-dimensional connection step in the case of connecting the four base isolation bearings, This will be described in detail with reference to FIGS.

(第1乃至第4の各免震支承1A乃至1Dの各下架台2に対する下フレーム21、下ジョイント31、及び下スカート51による連結)
まず、図13に示すように、第1乃至第4の各免震支承1A乃至1Dを用意し、次に図14、図15に示すように、第1乃至第4の各免震支承1A乃至1Dの下架台2を4個の下フレーム21により連結する。
(Connection by the lower frame 21, the lower joint 31, and the lower skirt 51 with respect to the lower mounts 2 of the first to fourth seismic isolation bearings 1A to 1D)
First, as shown in FIG. 13, first to fourth seismic isolation bearings 1A to 1D are prepared. Next, as shown in FIGS. 14 and 15, the first to fourth seismic isolation bearings 1A to 1D are prepared. The 1D undercarriage 2 is connected by four lower frames 21.

なお、図14は、前記第1の空間部11Aにおいて、第1の免震支承1Aにおける右側の側片3、第2の免震支承1Bの左側の側片3を、前記下フレーム21を用いて連結する態様を一部拡大して示すものである。   In FIG. 14, in the first space portion 11A, the right side piece 3 of the first seismic isolation bearing 1A and the left side piece 3 of the second seismic isolation bearing 1B are used using the lower frame 21. A partly enlarged manner of connection is shown.

図14に示すように、前記第1の空間部11Aの前面側において、前記下フレーム21を第1の免震支承1Aの下架台2の右側の側片3、第2の免震支承1Bの左側の側片3の間に配置し、これらの間に、下フレーム21の底片22及び一対の短辺側片24を挿入し、下フレーム21の長辺側片23の前面が第1の免震支承1A、第2の免震支承1Bの両下架台2の各前面の側片3と面一となる状態とする。   As shown in FIG. 14, on the front surface side of the first space portion 11A, the lower frame 21 is connected to the right side piece 3 of the undercarriage 2 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B. The bottom piece 22 of the lower frame 21 and a pair of short side pieces 24 are inserted between the left side pieces 3 and the front side of the long side piece 23 of the lower frame 21 is the first relief. It is set as the state which becomes flush with the side piece 3 of each front surface of the both base 2 of the seismic support 1A and the 2nd seismic isolation support 1B.

そして、2個の下ジョイント31により、前記第1の免震支承1A、第2の免震支承1Bの各下架台2の前面の側片3の端部と、下フレーム21の長辺側片23の前面の両端部とを各々ボルトとナットとを用いて仮止態様で連結固定する。なお、ナットについては図示省略する。   Then, by two lower joints 31, the end of the side piece 3 on the front surface of each lower base 2 of the first seismic isolation bearing 1 </ b> A and the second seismic isolation bearing 1 </ b> B and the long side piece of the lower frame 21 The both ends of the front surface of 23 are connected and fixed in a temporarily fixed manner using bolts and nuts, respectively. The illustration of the nut is omitted.

このとき、前記下フレーム21における長辺側片23の左右方向の外寸法は497mmに設定されており、この下フレーム21の連結領域(前側端面領域)において、前記第1の免震支承1Aの下架台2の右側の側片3と、前記下フレーム21の左側の短辺側片24との間、及び前記第2の免震支承1Bの下架台2の左側の側片3と、前記下フレーム21の右側の短辺側片24との間に、各々1.5mmの隙間Gが形成され、かつ、前記第1の免震支承1A、第2の免震支承1Bの前記第1の空間部11Aにおいて対向する下架台2の両側片3の間隔が正確に500mmとなるように前記各下架台2の各側片3のネジ孔、前記下フレーム21、下ジョイント31の各挿通孔の位置を予め設定している。   At this time, the outer dimension in the left-right direction of the long side piece 23 in the lower frame 21 is set to 497 mm. In the connection region (front end surface region) of the lower frame 21, the first seismic isolation bearing 1A Between the right side piece 3 of the lower frame 2 and the short side piece 24 on the left side of the lower frame 21, and the left side piece 3 of the lower frame 2 of the second seismic isolation bearing 1B, A gap G of 1.5 mm is formed between each short side piece 24 on the right side of the frame 21 and the first space of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B. The positions of the screw holes of the side pieces 3 of the lower mounts 2 and the insertion holes of the lower frame 21 and the lower joint 31 so that the distance between the opposite side pieces 3 of the lower mount 2 facing each other in the portion 11A is accurately 500 mm. Is set in advance.

次に、前記第1の免震支承1Aの下架台2の右側の側片3と、下フレーム21の左側の短辺側片24との間、及び前記第2の免震支承1Bの下架台2の左側の側片3と、下フレーム21の右側の短辺側片24との間の各隙間Gを正確に1.5mmになるようにして調整して、前記第1の免震支承1A、前記第2の免震支承1Bを高精度に位置決めする。   Next, between the right side piece 3 of the cradle 2 of the first seismic isolation bearing 1A and the short side piece 24 on the left side of the lower frame 21, and the cradle base of the second seismic isolation bearing 1B The first seismic isolation bearing 1A is adjusted such that each gap G between the left side piece 3 of 2 and the short side piece 24 on the right side of the lower frame 21 is exactly 1.5 mm. The second seismic isolation bearing 1B is positioned with high accuracy.

すなわち、図14に示すように、前記下フレーム21の左側の短辺側片24に設けた3個の挿通孔から第1の免震支承1Aの下架台2の右側の側片3に所定の間隔をもって3本のボルト25a、25b、25aをねじ込み、同様に、前記下フレーム21の右側の短辺側片24に設けた3個の挿通孔から第2の免震支承1Bの下架台2の右側の側片3に所定の間隔をもって3本のボルト25a、25b、25aをねじ込む。   That is, as shown in FIG. 14, a predetermined amount is provided from the three insertion holes provided in the left side piece 24 on the left side of the lower frame 21 to the right side piece 3 of the cradle 2 of the first seismic isolation bearing 1A. Three bolts 25a, 25b, 25a are screwed in at intervals, and similarly, the base 2 of the second seismic isolation bearing 1B from the three insertion holes provided in the short side piece 24 on the right side of the lower frame 21. Three bolts 25a, 25b, and 25a are screwed into the right side piece 3 with a predetermined interval.

このとき、左右の短辺側片24の長さ方向略中央位置に各々ボルト25bを配置し、このボルト25bの両側(下ジョイント31側、第5の空間部11E側)に各々ボルト25a、25aを配置するものとする。   At this time, the bolts 25b are respectively arranged at substantially the center positions in the length direction of the left and right short side pieces 24, and the bolts 25a and 25a are respectively provided on both sides (the lower joint 31 side and the fifth space portion 11E side) of the bolt 25b. Shall be placed.

また、前記ボルト25aは、そのボルト頭部の短辺側片24の外面に接触する部分が平坦状であり、前記ボルト25bは、そのボルト頭部の短辺側片24の外面に接触する部分が略円錐状に設定されているものとする。   The bolt 25a has a flat portion in contact with the outer surface of the short side piece 24 of the bolt head, and the bolt 25b has a portion in contact with the outer surface of the short side piece 24 of the bolt head. Is set to be substantially conical.

このような3本のボルト25a、25b、25aを用いて、前記下フレーム21の左側の短辺側片24に設けた3個の挿通孔から第1の免震支承1Aの下架台2の右側の側片3にこれらをねじ込み、ねじ込み状態を調節することにより、前記ボルト25bの締め付け力により前記短辺側片24が第1の免震支承1Aの下架台2の右側の側片3側に押圧されるように作用し、他方、他の2本のボルト25a、25aの締め付け力により第1の免震支承1Aの下架台2の右側の側片3が第1の空間部11A側に引き込まれるように作用する。   Using such three bolts 25a, 25b, 25a, the right side of the undercarriage 2 of the first seismic isolation bearing 1A from the three insertion holes provided in the short side piece 24 on the left side of the lower frame 21. By screwing these into the side piece 3 and adjusting the screwed state, the short side piece 24 is moved to the right side piece 3 side of the undercarriage 2 of the first seismic isolation bearing 1A by the tightening force of the bolt 25b. On the other hand, the right side piece 3 of the undercarriage 2 of the first seismic isolation bearing 1A is pulled into the first space portion 11A side by the tightening force of the other two bolts 25a and 25a. Act to be

この結果、前記下フレーム21の左側の短辺側片24と前記第1の免震支承1Aの下架台2の右側の側片3とは正確に平行配置となる。   As a result, the short side piece 24 on the left side of the lower frame 21 and the right side piece 3 of the gantry 2 of the first seismic isolation bearing 1A are accurately arranged in parallel.

前記下フレーム21の右側の短辺側片24に設けた3個の挿通孔から第2の免震支承1Bの下架台2の右側の側片3に3本のボルト25a、25b、25aをねじ込み、ねじ込み状態を調節した場合も上述した場合と同様である。   Three bolts 25a, 25b, and 25a are screwed into the right side piece 3 of the undercarriage 2 of the second seismic isolation bearing 1B from the three insertion holes provided in the right side short piece 24 of the lower frame 21. The case where the screwed state is adjusted is the same as that described above.

そして、前記下フレーム21の一対の短辺側片24の両外面間の寸法は正確に497mmに設定されていることから、前記下フレーム21の左側の短辺側片24と前記第1の免震支承1Aの下架台2の右側の側片3との間に正確に1.5mmの隙間Gが形成され、同様に前記下フレーム21右側の短辺側片24と前記第2の免震支承1Bの下架台2の左側の側片3との間にも正確に1.5mmの隙間Gが形成されて、これにより、前記第1の免震支承1Aの下架台2と、前記第2の免震支承1Bの下架台2とは、間隔500mmを有し、かつ、完全に平行配置に位置決めされる。   Since the dimension between the outer surfaces of the pair of short side pieces 24 of the lower frame 21 is accurately set to 497 mm, the short side piece 24 on the left side of the lower frame 21 and the first relief A gap G of exactly 1.5 mm is formed between the right side piece 3 of the base 2 of the seismic support 1A, and similarly the short side piece 24 on the right side of the lower frame 21 and the second seismic isolation support. A gap G of exactly 1.5 mm is also formed between the left side piece 3 of the lower base 2 of 1B, and thereby the lower base 2 of the first seismic isolation bearing 1A and the second The base 2 of the seismic isolation bearing 1B has an interval of 500 mm and is positioned in a completely parallel arrangement.

第1の免震支承1Aの下架台2と第3の免震支承1Cの下架台2との間、第2の免震支承1Bの下架台2と第4の免震支承1Dの下架台2との間、及び第3の免震支承1Cの下架台2と第4の免震支承1Dの下架台2との間に関しても、上述したような前記下フレーム21、下ジョイント31を用いた連結構造を採用することにより、各々相互に間隔500mmを有し、かつ、完全に平行配置に位置決めされる。   Between the base 2 of the first seismic isolation bearing 1A and the base 2 of the third base isolation 1C, the base 2 of the second base isolation 1B and the base 2 of the fourth base isolation 1D And the connection between the lower base 2 of the third seismic isolation bearing 1C and the lower base 2 of the fourth seismic isolation support 1D using the lower frame 21 and the lower joint 31 as described above. By adopting the structure, each is spaced 500 mm from each other and is positioned in a completely parallel arrangement.

次に、前記2個の下ブリッジ41により、前記第1の免震支承1A、第2の免震支承1Bの各下架台2の中央側(第2の空間部11B側)の側片3、3同士及び第3の免震支承1C、第4の免震支承1Dの各下架台2の中央側(第3の空間部11C側)の側片3、3同士を各々左右方向で連結する。   Next, by the two lower bridges 41, the side pieces 3 on the center side (second space portion 11B side) of the respective bases 2 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B, The side pieces 3, 3 on the center side (the third space portion 11C side) of each of the undercarriages 2 of the third and third seismic isolation bearings 1C and 4D are connected in the left-right direction.

すなわち、一方の下ブリッジ41の垂直片部42に設けた一対の接合片部43、43を各々前記第1の免震支承1A、第2の免震支承1Bの各下架台2、2の中央側の側片3の外面に等分に接合し、ボルトを用いてこれら接合片部43、43を前記各下架台2の中央側の側片3の外面に連結固定し、また、他方の下ブリッジ41の垂直片部42に設けた一対の接合片部43、43を前記第3の免震支承1C、第4の免震支承1Dの各下架台2、2の中央側の側片3の外面に等分に接合し、ボルトを用いてこれら接合片部43、43を前記各下架台2の中央側の側片3の外面に連結固定する。   That is, the pair of joint pieces 43 and 43 provided on the vertical piece portion 42 of one lower bridge 41 are respectively connected to the center of the lower bases 2 and 2 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B. The joint pieces 43 and 43 are joined equally to the outer surface of the side piece 3 on the side, and the joint pieces 43 and 43 are connected and fixed to the outer surface of the side piece 3 on the center side of each of the lower pedestals 2 by using bolts. A pair of joint pieces 43, 43 provided on the vertical piece 42 of the bridge 41 are connected to the side pieces 3 on the center side of the lower bases 2, 2 of the third seismic isolation bearing 1 </ b> C and the fourth seismic isolation bearing 1 </ b> D. It joins equally to an outer surface, and these joining piece parts 43 and 43 are connected and fixed to the outer surface of the side piece 3 of the center side of each said mount frame 2 using a volt | bolt.

このようにして、4個の下フレーム21、8個の下ジョイント31、2個の下ブリッジ41により第1乃至第4の各免震支承1A乃至1Dの各下架台2を連結した状態を図15に示す。   In this way, the state in which the lower bases 2 of the first to fourth seismic isolation bearings 1A to 1D are connected by the four lower frames 21, the eight lower joints 31, and the two lower bridges 41 is illustrated. As shown in FIG.

この状態では、前記第1乃至第4の各免震支承1A乃至1Dにおける各下架台2の各側片3は、第1乃至第4の各空間部11A乃至11Dを挟んで対向するもの同士が正確に500mmの間隔を有するように高精度に位置決めされる   In this state, the side pieces 3 of the undercarriage 2 in the first to fourth seismic isolation bearings 1A to 1D are opposed to each other across the first to fourth space portions 11A to 11D. Positioned with high accuracy so as to have an interval of exactly 500mm

前記第1乃至第4の各免震支承1A乃至1Dの各下架台2の上方に位置する各上架台4についても、上述した各下架台2の場合と同様、第1乃至第4の各空間部11A乃至11Dを挟んで対向するもの同士が正確に500mmの間隔を有するように高精度に位置決めされる。   The first to fourth spaces of the upper bases 4 positioned above the lower bases 2 of the first to fourth seismic isolation bearings 1A to 1D are also the same as those of the lower bases 2 described above. Positioning with high accuracy so that the parts facing each other across the portions 11A to 11D have an accurate spacing of 500 mm.

更に、前記第1乃至第4の各免震支承1A乃至1Dにより囲まれる中央領域には、平面視一辺500mmの正方形状を呈する立体空間である第5の空間部(内部重合空間部)11Eが高精度に形成される。   Further, in the central region surrounded by the first to fourth seismic isolation bearings 1A to 1D, there is a fifth space portion (inner overlapping space portion) 11E that is a three-dimensional space having a square shape with a side of 500 mm in plan view. Formed with high accuracy.

(第1乃至第4の各免震支承1A乃至1Dの各上架台4に対する上ブリッジ61、ピロー81、上スカート91及び上カバー板101による連結)
次に、第1乃至第4の各免震支承1A乃至1Dの各上架台4に関しての二次元連結構造及び連結工程について、図16乃至図20を参照して説明する。
(Connection by the upper bridge 61, the pillow 81, the upper skirt 91, and the upper cover plate 101 to each of the upper mounts 4 of the first to fourth seismic isolation bearings 1A to 1D)
Next, a two-dimensional connection structure and a connection process for the upper mounts 4 of the first to fourth seismic isolation bearings 1A to 1D will be described with reference to FIGS.

まず、図16に示すように、2個の上ブリッジ61のうちの一方の上ブリッジ61により、第1の免震支承1A、第3の免震支承1Cの各上架台4、4の中央側(第1の空間部11A側、第4の空間部11D側)の側片5、5同士を前後方向配置で連結する。   First, as shown in FIG. 16, the upper bridge 61 of one of the two upper bridges 61 has a central side of each of the upper bases 4 and 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C. The side pieces 5, 5 on the first space portion 11 </ b> A side and the fourth space portion 11 </ b> D side are connected in the front-rear direction arrangement.

また、他方の上ブリッジ61により、第2の免震支承1B、第4の免震支承1Dの各上架台4、4の中央側(第1の空間部11A側、第4の空間部11D側)の側片5、5同士を各々前後方向配置で連結する。   Further, the other upper bridge 61 allows the central side (first space portion 11A side, fourth space portion 11D side) of the upper bases 4 and 4 of the second seismic isolation bearing 1B and the fourth seismic isolation bearing 1D. ) Side pieces 5 and 5 are connected in a front-rear direction arrangement.

具体的には、図16、図18に示すように、前記一方の上ブリッジ61を前後方向配置で、かつ、上ブリッジ接合片62の第1垂直片部63が右側となる配置として、この第1垂直片部63の前側端部側を、前記第1の免震支承1Aの上架台4の右側の側片5に接合してボルトを用いて前記側片5に連結する。   Specifically, as shown in FIGS. 16 and 18, the first upper bridge 61 is arranged in the front-rear direction, and the first vertical piece 63 of the upper bridge joining piece 62 is on the right side. The front end portion of one vertical piece 63 is joined to the right side piece 5 of the upper base 4 of the first seismic isolation bearing 1A and connected to the side piece 5 using a bolt.

また、前記一方の上ブリッジ61の上ブリッジ接合片62の第1垂直片部63の後側端部側を、前記第3の免震支承1Cの上架台4の右側の側片5に接合してボルトを用いて前記側片5に連結する。   Further, the rear end portion side of the first vertical piece 63 of the upper bridge joining piece 62 of the one upper bridge 61 is joined to the right side piece 5 of the gantry 4 of the third seismic isolation bearing 1C. Then, it is connected to the side piece 5 using a bolt.

同様にして、他方の上ブリッジ61を前後方向配置で、かつ、上ブリッジ接合片62の第1垂直片部63が左側となる配置として、この第1垂直片部63の前側端部側を、前記第2の免震支承1Bの上架台4の左側の側片5に接合してボルトを用いて前記側片5に連結する。   Similarly, the other upper bridge 61 is arranged in the front-rear direction and the first vertical piece 63 of the upper bridge joining piece 62 is on the left side, and the front end side of the first vertical piece 63 is The second seismic isolation bearing 1B is joined to the left side piece 5 of the gantry 4 and connected to the side piece 5 using bolts.

また、前記他方の上ブリッジ61の上ブリッジ接合片62の第1垂直片部63の後側端部側を、前記第4の免震支承1Dの上架台4の左側の側片5に接合してボルトを用いて前記側片5に連結する。   Further, the rear end portion side of the first vertical piece portion 63 of the upper bridge joint piece 62 of the other upper bridge 61 is joined to the left side piece 5 of the gantry 4 of the fourth seismic isolation bearing 1D. Then, it is connected to the side piece 5 using a bolt.

これにより、既述したように、一方の上ブリッジ61における上ブリッジ接合片62の中央に近い2個の上カバー板受片66、66は、前記第5の空間部11Eにおける左側の両隅部(前側、後側)に収まり、その外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの左側で、かつ、中央側の隅部と、前記第4の空間部11Dの左側で、かつ、中央側の隅部に収まる。   As a result, as described above, the two upper cover plate receiving pieces 66, 66 near the center of the upper bridge joining piece 62 in one upper bridge 61 are formed at the left corners of the fifth space portion 11E. (The front side and the rear side), and the two upper cover plate receiving pieces 66, 66 on the outer side are respectively the left side of the first space portion 11A and the corner on the center side, and the fourth side It fits on the left side of the space 11D and in the corner on the center side.

更に、一方の上ブリッジ61における上ブリッジ接合補助片67に設けた2個の上カバー板受片71、71は、前記第2の空間部11Bの中央側で前側、後側の各隅部に各々収まる。   Further, the two upper cover plate receiving pieces 71, 71 provided on the upper bridge joining auxiliary piece 67 in one upper bridge 61 are provided at the front and rear corners on the center side of the second space portion 11 </ b> B. Each fits.

同様に、他方の上ブリッジ61における中央に近い2個の上カバー板受片66、66は、前記第5の空間部11Eの右側の両隅部(前側、後側)に収まり、その外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの右側で、かつ、中央側の隅部と、前記第4の空間部11Dの右側で、かつ、中央側の隅部に収まり、他方の上ブリッジ61における上ブリッジ接合補助片67に設けた2個の上カバー板受片71,71は、前記第3の空間部11Cの中央側で前側、後側の各隅部に各々収まる。   Similarly, the two upper cover plate receiving pieces 66, 66 near the center of the other upper bridge 61 are accommodated in the right corners (front side, rear side) of the fifth space portion 11E, The two upper cover plate receiving pieces 66, 66 are respectively located on the right side of the first space portion 11A, on the central corner, on the right side of the fourth space portion 11D, and on the center side. The two upper cover plate receiving pieces 71 and 71 which are placed in the corner portion and provided on the upper bridge joining auxiliary piece 67 in the other upper bridge 61 are front side and rear side at the center side of the third space portion 11C. Fits in each corner.

次に、図16に示すように、2個のピロー81、81を用意し、第1の空間部11Aに配置した前記下フレーム21の上方となる配置で、一方のピロー81の垂直片部82をボルトにより第1の免震支承1Aの上架台4の右側の側片5に密接状態で連結して、上スカート受片部84が第2の免震支承1Bの上架台4側に向けて突出する状態とする。   Next, as shown in FIG. 16, two pillows 81, 81 are prepared and arranged above the lower frame 21 arranged in the first space portion 11 </ b> A, and the vertical piece 82 of one pillow 81 is provided. Are connected in close contact with the right side piece 5 of the upper base 4 of the first seismic isolation bearing 1A, and the upper skirt receiving piece 84 faces the upper base 4 side of the second seismic isolation bearing 1B. Protruding state.

同様に、前記下フレーム21の上方となる配置で、他方のピロー81の垂直片部82をボルトにより第2の免震支承1Bの上架台4の左側の側片5に密接状態で連結して、上スカート受片部84が第1の免震支承1Aの上架台4側に向けて突出する状態とする。   Similarly, in the arrangement above the lower frame 21, the vertical piece 82 of the other pillow 81 is closely connected to the left side piece 5 of the upper base 4 of the second seismic isolation bearing 1B by bolts. The upper skirt receiving piece 84 is in a state of protruding toward the gantry 4 side of the first seismic isolation bearing 1A.

すなわち、2個のピロー81の各上スカート受片部84、84を、前記下フレーム21の上方で対向する配置とする。   That is, the upper skirt receiving pieces 84 and 84 of the two pillows 81 are arranged to face each other above the lower frame 21.

前記第2の空間部11B、第3の空間部11C、第4の空間部11Dに各々配置した各前記下フレーム21の上方においても、上述した場合と同様にして各々2個のピロー81、81を配置する。   In the same manner as described above, two pillows 81, 81 are also provided above the lower frames 21 arranged in the second space portion 11B, the third space portion 11C, and the fourth space portion 11D, respectively. Place.

上述したような第1乃至第4の各免震支承1A乃至1Dの各上架台4に対して、2個の上ブリッジ61、61を配置することによって、図17に示すように、前記第5の空間部11Eの四隅には、各々上カバー板受片66が各上架台4の上面よりも低位置となる状態で正方形配置に、かつ、水平方向に関して面一となる態様で存在することになる。   By arranging two upper bridges 61 and 61 for each upper base 4 of each of the first to fourth seismic isolation bearings 1A to 1D as described above, as shown in FIG. In each of the four corners of the space portion 11E, the upper cover plate receiving pieces 66 are in a square arrangement in a state where the upper cover plate receiving pieces 66 are positioned lower than the upper surfaces of the upper mounts 4 and in a manner that is flush with the horizontal direction. Become.

また、前記第1の空間部11A、第4の空間部11Dの各中央側両隅部にも、2個ずつ合計4個の上カバー板受片66が前記第5の空間部11Eの場合と同様、各上架台4の上面よりも低位置となる状態で、かつ、水平方向に関して面一となる態様で存在することになる。   Further, a total of four upper cover plate receiving pieces 66 at the center side corners of each of the first space portion 11A and the fourth space portion 11D are provided for the fifth space portion 11E. Similarly, it exists in the state which becomes a position lower than the upper surface of each upper stand 4 and is flush with the horizontal direction.

更に、前記第2の空間部11Bの中央側両隅部には、前記上カバー板受片71,71が各々各上架台4の上面よりも低位置となる状態で、かつ、水平方向に関して面一となる態様で存在し、前記第3の空間部11Cの中央側両隅部にも、前記上カバー板受片71,71が各々各上架台4の上面よりも低位置となる状態で、かつ、水平方向に関して面一となる態様で存在することになる。   Further, the upper cover plate receiving pieces 71 and 71 are respectively positioned at both lower corners of the second space portion 11B at a position lower than the upper surface of each upper pedestal 4 and in the horizontal direction. The upper cover plate receiving pieces 71 and 71 are located at lower positions than the upper surfaces of the upper mounts 4 at both corners on the center side of the third space portion 11C. And it exists in the aspect which becomes flush | planar about a horizontal direction.

このようにして、第1乃至第4の各免震支承1A乃至1Dの各上架台4に対して、2個の上ブリッジ61、61、8個のピロー81を配置した状態を図17に示す。   FIG. 17 shows a state in which two upper bridges 61, 61 and eight pillows 81 are arranged in this way on each of the upper bases 4 of the first to fourth seismic isolation bearings 1A to 1D. .

次に、第1乃至第4の各免震支承1A乃至1Dを図17に示す状態に連結した後、4個の上スカート91をこれら第1乃至第4の各免震支承1A乃至1Dに連結する。   Next, after connecting the first to fourth seismic isolation bearings 1A to 1D in the state shown in FIG. 17, the four upper skirts 91 are connected to the first to fourth seismic isolation bearings 1A to 1D. To do.

図18(図18下欄)は、第1の免震支承1A、第2の免震支承1Bの各上架台4の前側端面に上スカート91を連結した状態を示すものである。   FIG. 18 (bottom of FIG. 18) shows a state in which the upper skirt 91 is connected to the front end face of each upper base 4 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B.

具体的には、前記上スカート91における外側スカート片92を前側、内側スカート片95を第1の空間部11A側とし、かつ、前記内側水平片部97が第1の空間部11A内に挿入される状態として前記外側垂直片部93、内側水平片部97の両隅側を第1の免震支承1A、第2の免震支承1Bの各上架台4の各側片5の前側端面に接合し、ボルトを用いてこれらを各上架台4に連結する。   Specifically, the outer skirt piece 92 of the upper skirt 91 is the front side, the inner skirt piece 95 is the first space portion 11A side, and the inner horizontal piece portion 97 is inserted into the first space portion 11A. As a state, both corners of the outer vertical piece 93 and the inner horizontal piece 97 are joined to the front end face of each side piece 5 of each upper base 4 of the first seismic isolation bearing 1A and second seismic isolation bearing 1B. Then, these are connected to each upper mount 4 using bolts.

これにより、前記上スカート91における内側水平片部97の両隅下面は、前記2個のピロー81の各上スカート受片部84上に接触して支持されるとともに、内側水平片部97の両隅に設けた一対の上カバー板受片99、99は、前記第1の免震支承1A、第2の免震支承1Bの各上架台4の各側片5の右側、左側に位置して、かつ、前記第1の空間部11Aの前側両隅に既述した前記上カバー板受片66と同一の高さとなる状態で存在することになる。   As a result, the lower surfaces of both corners of the inner horizontal piece 97 in the upper skirt 91 are supported in contact with the upper skirt receiving pieces 84 of the two pillows 81, and both the inner horizontal pieces 97 are also supported. A pair of upper cover plate receiving pieces 99, 99 provided at the corners are located on the right side and the left side of each side piece 5 of each upper base 4 of the first seismic isolation bearing 1A and second seismic isolation bearing 1B. And it exists in the state which becomes the same height as the above-mentioned upper cover board receiving piece 66 in the front side both corners of said 1st space part 11A.

第1の免震支承1A、第3の免震支承1Cの各上架台4の左側端面間及び第2の空間部11B、第2の免震支承1B、第4の免震支承1Dの各上架台4の右側端面間及び第3の空間部11B、並びに、第3の免震支承1C、第4の免震支承1Dの各上架台4の後側端面間及び第4の空間部11Dに関しても、上述した場合と同様にして各々上スカート91が連結される。   Between the left side end surfaces of the upper bases 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C and the second space 11B, the second seismic isolation bearing 1B, and the fourth seismic isolation bearing 1D Also between the right end surface of the base 4 and the third space portion 11B, and between the rear side end surfaces of the upper bases 4 of the third seismic isolation bearing 1C and the fourth seismic isolation bearing 1D and the fourth space portion 11D. The upper skirts 91 are connected in the same manner as described above.

この結果、前記第1の空間部11Aにおける前記第1の免震支承1Aの上架台4の右側で、かつ、前側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片66が配置され、前記第2の免震支承1Bの上架台4の左側で前側隅部、中央側隅部にも前記上カバー板受片99、上カバー板受片66が配置され、かつ、これら4個の上カバー板受片99、99、上カバー板受片66、66は、各上架台4の上面よりも低位置において同一高さの状態となる。   As a result, the upper cover plate receiving piece 99 and the upper cover are provided on the right side of the upper base 4 of the first seismic isolation bearing 1A in the first space portion 11A, and at the front corner and the central corner. A plate receiving piece 66 is arranged, and the upper cover plate receiving piece 99 and the upper cover plate receiving piece 66 are also arranged at the front corner and the central corner on the left side of the gantry 4 of the second seismic isolation bearing 1B. The four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 66 and 66 are in the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第1の空間部11Aの四隅には、左右両側の上架台4の隣に位置して、合計4個の上カバー板受片99、99、上カバー板受片66、66が配置される。   That is, a total of four upper cover plate receiving pieces 99 and 99 and upper cover plate receiving pieces 66 and 66 are arranged at the four corners of the first space portion 11A, next to the left and right upper mounts 4. Is done.

前記第2の空間部11Aにおける前記第1の免震支承1Aの上架台4の中央側で、かつ、左側隅部、中央隅部には、前記前記上カバー板受片99、上カバー板受片71が配置され、前記第3の免震支承1Cの上架台4の中央側で、かつ、左側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片71が配置され、これら4個の上カバー板受片99、99、上カバー板受片71、71は、各上架台4の上面よりも低位置において同一高さの状態となる。   In the second space 11A, on the center side of the upper base 4 of the first seismic isolation bearing 1A, and on the left corner and the central corner are the upper cover plate receiving piece 99, the upper cover plate holder. A piece 71 is disposed, and the upper cover plate receiving piece 99 and the upper cover plate receiving piece 71 are provided at the center side of the upper base 4 of the third seismic isolation bearing 1C and at the left corner and the central corner. The four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 71 and 71 are at the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第2の空間部11Bの四隅には、前後両側の上架台4の隣に位置して、合計4個の上カバー板受片99、99、上カバー板受片71、71が配置される。   That is, a total of four upper cover plate receiving pieces 99, 99 and upper cover plate receiving pieces 71, 71 are arranged at the four corners of the second space portion 11B, next to the upper and lower gantry 4 on both sides. Is done.

前記第3の空間部11Cにおける前記第2の免震支承1Bの上架台4の中央側で、かつ、右側隅部、中央側隅部には、前記前記上カバー板受片99、上カバー板受片71が配置され、前記第3の免震支承1Cの上架台4の中央側で、かつ、左側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片71が配置され、これら4個の上カバー板受片99、99、上カバー板受片71、71は、各上架台4の上面よりも低位置において同一高さの状態となる。   The upper cover plate receiving piece 99, the upper cover plate are provided at the center side of the upper base 4 of the second seismic isolation bearing 1B in the third space portion 11C, and at the right corner and the central corner. A receiving piece 71 is disposed, and the upper cover plate receiving piece 99 and the upper cover plate receiving piece are provided at the center side of the upper base 4 of the third seismic isolation bearing 1C and at the left corner and the central corner. 71 is arranged, and the four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 71 and 71 are in the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第3の空間部11Cの四隅には、前後両側の上架台4の隣に位置して合計4個の上カバー板受片99、99、上カバー板受片71、71が配置される。   That is, a total of four upper cover plate receiving pieces 99 and 99, and upper cover plate receiving pieces 71 and 71 are arranged at the four corners of the third space portion 11C next to the upper and lower gantry 4 respectively. The

前記第4の空間部11Dにおける前記第3の免震支承1Cの上架台4の中央側で、かつ、後側隅部、中央側隅部には、前記前記上カバー板受片99、上カバー板受片66が配置され、前記第4の免震支承1Dの上架台4の中央側で、かつ、後側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片66が配置され、これら4個の上カバー板受片99、99、上カバー板受片66、66は、各上架台4の上面よりも低位置において同一高さの状態となる。   In the fourth space 11D, on the center side of the upper base 4 of the third seismic isolation bearing 1C, and on the rear corner and the center corner, the upper cover plate receiving piece 99, the upper cover A plate receiving piece 66 is disposed on the center side of the upper base 4 of the fourth seismic isolation bearing 1D, and at the rear corner and the central corner, the upper cover plate receiving piece 99, the upper cover plate The receiving pieces 66 are arranged, and the four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 66 and 66 are in the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第4の空間部11Dの四隅には、左右両側の上架台4の隣に位置して、合計4個の上カバー板受片99、99、上カバー板受片66、66が配置される。
更に、前記第5の空間部11Eの四隅には、合計4個の上カバー板受片66が配置される。
That is, a total of four upper cover plate receiving pieces 99 and 99 and upper cover plate receiving pieces 66 and 66 are arranged at the four corners of the fourth space portion 11D, next to the left and right upper mounts 4. Is done.
Further, a total of four upper cover plate receiving pieces 66 are disposed at the four corners of the fifth space portion 11E.

このようにして、第1乃至第4の各免震支承1A乃至1Dにおける各上架台4の前後左右の各外面に対して、4個の上スカート91を連結した状態を図18右欄、図19に示す。   In this way, the four upper skirts 91 are connected to the front, rear, left, and right outer surfaces of each upper base 4 in each of the first to fourth seismic isolation bearings 1A to 1D. 19 shows.

図19から明らかなように、前記第1乃至第5の空間部11A乃至11Dには、各々各上架台4の隣に位置して平面視正方形状で、一辺が500mmの上カバー板101用の5箇所の装着領域が形成される。   As is clear from FIG. 19, the first to fifth space portions 11A to 11D are respectively located next to the upper mounts 4 and have a square shape in plan view, and one side for the upper cover plate 101 having a side of 500 mm. Five mounting areas are formed.

そして、前記第1乃至第5の空間部11A乃至11Dに形成される各装着領域に対して合計5枚の上カバー板101を装着することで、図20に示すように、4台の免震支承1A乃至1Dと、5枚の上カバー板101とを前後左右に、かつ、高精度に位置決めされた状態で二次元連結し、上面を平坦とした免震床111を得ることができる。   Then, by attaching a total of five upper cover plates 101 to each mounting region formed in the first to fifth space portions 11A to 11D, as shown in FIG. The bases 1 </ b> A to 1 </ b> D and the five upper cover plates 101 can be two-dimensionally connected to each other in the front-rear, left-right, and highly accurate positions to obtain the seismic isolation floor 111 having a flat upper surface.

最後に、前記各下架台2側の4個の下ジョイント31を除去した後、4個の下スカート51を前記下フレーム21の長辺側片23の外側端面を覆う態様でこの下フレーム21にボルト止めにて連結固定し、フレーム21の長辺側片23の外側端面の外観体裁を良好なものとすることで、免震床111が完成し、一連の連結工程が終了する。   Finally, after removing the four lower joints 31 on each of the lower frame 2 side, the four lower skirts 51 are attached to the lower frame 21 so as to cover the outer end face of the long side piece 23 of the lower frame 21. By connecting and fixing by bolting and making the appearance of the outer end face of the long side piece 23 of the frame 21 good, the seismic isolation floor 111 is completed, and a series of connecting steps is completed.

このようにして完成した免震床111を固定床112上に配置した状態の平面及び正面を図1、図2に示す。   FIGS. 1 and 2 show a plan view and a front view of the seismic isolation floor 111 thus completed arranged on the fixed floor 112. FIG.

以上説明した本実施例によれば、所要数の下フレーム21、下ジョイント31からなる下架台位置決め連結機構、所要数の下ブリッジ41と上ブリッジ61からなる上架台内部連結機構、所要数の上スカート91からなる上架台端面連結機構、所要数の上カバー板101、及び所要数の下スカート51を用いる構成の基に、免震床を構成する第1乃至第4の各免震支承1A乃至1Dにおける相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置するための構造、すなわち、第1乃至第4の各免震支承1A乃至1Dを分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床111を構成し、第1の乃至第4の免震支承1A乃至1Dを確実に連動させて高性能の免震性能を発揮し得るとともに、免震床111の上面を完全な平坦面として免震対象物113の配置制限を無くすことができ、しかも、使用する免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床111を簡略、容易に実現し得る免震床用免震支承の二次元連結構造を実現することができる。   According to the present embodiment described above, the required number of lower frames 21 and the lower base positioning and connecting mechanism including the lower joint 31, the required number of upper base internal connection mechanisms including the lower bridge 41 and the upper bridge 61, and the required number of upper frames. Each of the first to fourth seismic isolation bearings 1A to 1A constituting the seismic isolation floor based on the configuration using the upper frame end face coupling mechanism including the skirt 91, the required number of upper cover plates 101, and the required number of lower skirts 51. A structure for accurately installing each of the plurality of base-isolated bearings by eliminating the error (interval gap) between each other in 1D, that is, the first to fourth base-isolated bearings 1A to 1D are separated. The seismic isolation floor 111 is configured by two-dimensionally arranging it with high precision positioning in the front and rear, left and right, and the first to fourth seismic isolation bearings 1A to 1D are reliably linked to demonstrate high performance seismic isolation performance. Of the seismic isolation floor 111 The placement of the base isolation object 113 can be eliminated by making the surface completely flat, and the number of seismic isolation bearings to be used can be increased, simplifying the base isolation floor 111 having the desired floor area. Thus, it is possible to realize a two-dimensional connection structure of seismic isolation bearings for seismic isolation floors that can be easily realized.

前記第1の免震支承1A(第2乃至第4の免震支承1B乃至1Dも同様)、免震床111の具体的構成の一例について言及すると、例えば、第1の免震支承1Aのサイズは、500×500×99(mm)、最大変位量±390mm、搭載許容荷重5000(500)N(kgf)/1基、質量23kgであり、免震要素としては、ロータリーフリクションダンパーを採用した減衰機構、レール方式の支承機構を採用した例を挙げることができる。   When mentioning an example of a specific configuration of the first seismic isolation bearing 1A (the second to fourth seismic isolation bearings 1B to 1D) and the seismic isolation floor 111, for example, the size of the first seismic isolation bearing 1A Is 500 × 500 × 99 (mm), maximum displacement ± 390 mm, allowable load of mounting 5000 (500) N (kgf) / 1 unit, mass 23 kg, damping using a rotary friction damper as a seismic isolation element An example that employs a mechanism and a rail-type support mechanism can be given.

前記第1乃至第4の各免震支承1A乃至1Dとしては、これに限らず公知の構造の各種免震支承を用いることができることはいうまでもない。   Needless to say, the first to fourth seismic isolation bearings 1A to 1D are not limited to this, and various seismic isolation bearings having a known structure can be used.

また、前記免震床111の面積は最低1平方メートルで無制限とすることができ、免震床111の高さ125〜600mmに設定可能である。   Further, the area of the seismic isolation floor 111 is at least 1 square meter and can be unlimited, and the height of the base isolation floor 111 can be set to 125 to 600 mm.

本実施例における免震床111の特徴としては、
(a)エキスパンション(緩衝板)のない超薄型(125mm)で、しかも、最大変位量±390[mm]の免震床111を構成できる。
(b)免震性能は、レール機構の採用により、搭載荷重が変わっても安定で、揺れを1/6に低減することができ、また、減衰性能は粘性ダンパーとは違い、搭載荷重に比例した減衰力を発揮するロータリーフリクションダンパーの採用により水平変位を抑制し、長周期地震波にも対応できる。
(c)復元機能で余震に対するリスクを回避する(事故の発生しやすい復元ばね等使用していない)。
(d)免震性能を阻害するエキスパンションと固定床112の接触(摩擦抵抗)がないので、十二分に免震効果を発揮させることができる。
(e)免震床111と固定床112の間の隙間がなく、完全に分離しているため安全、かつ、安心な構成とすることができ、また、エキスパンションがないため、有効免震床面積が拡大するとともに、超薄型なので天井高さ制限もクリアできる。
(f)免震床111上に設置されるコンピュータのエラーの一因とされるジンクウィスカ(亜鉛から発生する針状結晶)を発生させる材料は使用していない。
(g)高剛性の第1乃至第4の各免震支承1A乃至1Dであることから、薄型重荷重対応の多種多様な機器免震装置、薄型免震床等の支承の組合せ連結することで、自由自在に最適なレイアウトができ、施工後、簡単に縮小、増設も可能である。
(h)現在設置のOAフロアーを免震床111にリニューアルすることもできる。
(i)第1の免震支承1A等の上でなくスラブ上に安全に十分な配線領域を確保し、床下空調が可能である。
(j)グラウト(不陸調整モルタル)工事等は不用で、全てボルト締結のみのドライ工法を採用することで、工期短縮、施工現場での調整が不要であり、工事の省力化で、優れたコストパフォーマンスとメンテナンスフリーを実現できる。
等の諸点を挙げることができる。
As a feature of the seismic isolation floor 111 in this embodiment,
(A) An ultra-thin (125 mm) without expansion (buffer plate) and a seismic isolation floor 111 having a maximum displacement of ± 390 [mm] can be configured.
(B) By adopting a rail mechanism, the seismic isolation performance is stable even if the mounting load changes, and the vibration can be reduced to 1/6. Also, the damping performance is proportional to the mounting load, unlike the viscous damper. Horizontal displacement is suppressed by adopting a rotary friction damper that exhibits the damping force, and it can cope with long-period seismic waves.
(C) Avoid the risk of aftershocks with the restoration function (no use of restoration springs that are prone to accidents).
(D) Since there is no contact (friction resistance) between the expansion and the fixed floor 112 that hinders the seismic isolation performance, the seismic isolation effect can be fully exhibited.
(E) There is no gap between the seismic isolation floor 111 and the fixed floor 112, and since it is completely separated, it can be configured to be safe and secure, and since there is no expansion, the effective seismic isolation floor area As it expands, the ultra-thin shape can clear the ceiling height restriction.
(F) A material that generates zinc whiskers (needle crystals generated from zinc), which is a cause of errors in computers installed on the seismic isolation floor 111, is not used.
(G) Since each of the high-stiffness first to fourth seismic isolation bearings 1A to 1D is connected by combining various types of equipment such as thin and heavy load seismic isolation devices and thin base isolation floors. The optimal layout can be freely adjusted, and it can be easily reduced or expanded after construction.
(H) The currently installed OA floor can be renewed to the seismic isolation floor 111.
(I) A sufficient wiring area can be secured safely on the slab instead of on the first seismic isolation bearing 1A or the like, and underfloor air conditioning is possible.
(J) No need for grout (non-land adjustment mortar) construction, etc. By adopting a dry construction method that only bolts are tightened, the construction period is shortened and adjustment at the construction site is not required. Cost performance and maintenance-free can be realized.
The following points can be mentioned.

図21は、本実施例に係る免震床用免震支承の二次元連結構造の拡張例を示すものであり、上述した実施例の二次元連結構造を採用して、前後方向にN個(Nは2以上の正の整数)の免震支承1を上カバー板101を間に配置しつつ配列し、左右方向にM個(Mは2以上の正の整数)の免震支承1を上カバー板101を間に配置しつつ配列して、広面積の免震床111Aを構成したものである。   FIG. 21 shows an example of expansion of the two-dimensional connection structure of the seismic isolation bearing for the base isolation floor according to the present embodiment. The two-dimensional connection structure of the above-described embodiment is adopted, and N pieces ( N is a positive integer greater than or equal to 2) with the upper cover plate 101 in between, and M (M is a positive integer greater than or equal to 2) seismic isolation bearings 1 The seismic isolation floor 111A having a large area is configured by arranging the cover plates 101 in between.

この場合、前記上カバー板101の枚数Kは下記のように設定される。
すなわち、一般的に、K=(M−1)×N+{M+(M−1)}×(N−1)=(M−1)×N+(2M−1)×(N−1)枚となる。
In this case, the number K of the upper cover plates 101 is set as follows.
That is, in general, K = (M−1) × N + {M + (M−1)} × (N−1) = (M−1) × N + (2M−1) × (N−1) sheets Become.

例えば、既述した実施例の場合には、M=2、N=2であるから、上式からK=5枚となり、また、M=3、N=3の場合(免震支承1が9台の場合)には、上式からK=16枚となり、M=4、N=4の場合(免震支承1が16台の場合)には、上式からK=33枚となる。   For example, in the case of the embodiment described above, M = 2 and N = 2, so that K = 5 from the above formula, and in the case of M = 3 and N = 3 (the seismic isolation bearing 1 is 9). In the case of a stand), K = 16 from the above formula, and in the case of M = 4 and N = 4 (when the seismic isolation bearing 1 is 16), K = 33 from the above formula.

図21に示す拡張例の免震床用免震支承の二次元連結構造によれば、既述した実施例の場合と同様な構成で、かつ、一方向にM個(Mは2以上の正の整数)、他方向にN個(Nは2以上の正の整数)、合計M×N個分離配置に配列する複数の免震支承1と、各上架台4間に形成される各空間部内に装着する(M−1)×N+(2M−1)×(N−1)の式で決定される所要数の上カバー板101とを具備する構成の基に、既述した実施例の場合と同様な効果を奏し、かつ、前記免震支承1、上カバー板101の数を設置場所の規模の大小に応じ選択することで、所望の床面積の免震床111Aを簡略に実現し得る免震床用免震支承の二次元連結構造を実現し、提供することができる。   According to the two-dimensional connecting structure of the seismic isolation bearing for seismic isolation floor shown in FIG. 21, the configuration is the same as that of the above-described embodiment, and M pieces in one direction (M is a positive number of 2 or more). ), N in the other direction (N is a positive integer greater than or equal to 2), a total of M × N seismic isolation bearings 1 arranged in a separate arrangement, and each space portion formed between each upper frame 4 In the case of the embodiment described above, based on the configuration comprising the required number of upper cover plates 101 determined by the equation of (M-1) × N + (2M−1) × (N−1) The seismic isolation floor 111A having a desired floor area can be simply realized by selecting the number of the base isolation bearings 1 and the upper cover plate 101 according to the size of the installation location. A two-dimensional connection structure for seismic isolation bearings for seismic isolation floors can be realized and provided.

本考案の免震床用免震支承の二次元連結構造は、オフィスビル、工場、美術館、博物館等において、コンピュータ装置、各種機械、設備、精密機器、美術品、骨董品等のような免震対象物の免震用として広範に適用可能である。   The two-dimensional connection structure of the seismic isolation bearing for the seismic isolation floor of the present invention is a seismic isolation system such as computer equipment, various machines, equipment, precision instruments, arts, antiques, etc. in office buildings, factories, museums, museums, etc. Widely applicable for seismic isolation of objects.

1 免震支承
1A 第1の免震支承
1B 第2の免震支承
1C 第3の免震支承
1D 第4の免震支承
2 下架台
3 側片
4 上架台
5 側片
11A 第1の空間部
11B 第2の空間部
11C 第3の空間部
11D 第4の空間部
11E 第5の空間部
21 下フレーム
22 底片
23 長辺側片
24 短辺側片
25a ボルト
25b ボルト
31 下ジョイント
41 下ブリッジ
42 垂直片部
43 接合片部
44 水平片部
51 下スカート
52 下スカート垂直片部
53 下スカート水平片部
61 上ブリッジ
62 上ブリッジ接合片
63 第1垂直片部
64 第1水平片部
65 垂下片
66 上カバー板受片
67 上ブリッジ接合補助片
68 第2垂直片部
69 第2水平片部
70 垂下片
71 上カバー板受片
81 ピロー
82 垂直片部
83 水平片部
84 上スカート受片部
91 上スカート
92 外側スカート片
93 外側垂直片部
94 外側水平片部
95 内側スカート片
96 内側垂直片部
97 内側水平片部
98 垂下片
99 上カバー板受片
101 上カバー板
111 免震床
111A 免震床
112 固定床
113 免震対象物
DESCRIPTION OF SYMBOLS 1 Seismic isolation bearing 1A 1st seismic isolation bearing 1B 2nd seismic isolation bearing 1C 3rd seismic isolation bearing 1D 4th seismic isolation bearing 2 Lower stand 3 Side piece 4 Upper stand 5 Side piece 11A 1st space part 11B 2nd space part 11C 3rd space part 11D 4th space part 11E 5th space part 21 Lower frame 22 Bottom piece 23 Long side piece 24 Short side piece 25a Bolt 25b Bolt 31 Lower joint 41 Lower bridge 42 Vertical piece 43 Joint piece 44 Horizontal piece 51 Lower skirt 52 Lower skirt vertical piece 53 Lower skirt horizontal piece 61 Upper bridge 62 Upper bridge joined piece 63 First vertical piece 64 First horizontal piece 65 Drooping piece 66 Upper cover plate receiving piece 67 Upper bridge joining auxiliary piece 68 Second vertical piece 69 Second horizontal piece 70 Suspended piece 71 Upper cover plate receiving piece 81 Pillow 82 Vertical piece 83 Horizontal piece 84 Upper skirt receiving portion 91 Upper skirt 92 Outer skirt piece 93 Outer vertical piece portion 94 Outer horizontal piece portion 95 Inner skirt piece 96 Inner vertical piece portion 97 Inner horizontal piece portion 98 Drooping piece 99 Upper cover plate receiving piece 101 Upper cover plate 111 Seismic isolation floor 111A Seismic isolation floor 112 Fixed floor 113 Seismic isolation object

本考案は、免震床用免震支承の二次元連結構造に関し、詳しくは、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置するための構造、すなわち、免震床を構成する複数の免震支承を高精度に位置決めしつつ、所望の面積の免震床を容易に実現することができる免震床用免震支承の二次元連結構造に関するものである。   The present invention relates to a two-dimensional connection structure of base-isolated bearings for base-isolated floors, and more specifically, eliminates an error in mutual spacing (interval gaps) in a plurality of base-isolated bearings constituting the base-isolated floor. A structure for accurately installing seismic isolation bearings, that is, seismic isolation that can easily realize a seismic isolation floor of a desired area while positioning multiple seismic isolation bearings constituting the seismic isolation floor with high precision This is related to the two-dimensional connection structure of seismic isolation bearings for floors.

コンピュータや関連機器を設置するOAフロアーや、各種精密機器等を設置するフロアー等においては、そのフロアーに免震床を配置し、コンピュータや各種精密機器等のような免震対象物に対する地震災害を防ぐことが強く要請される。   On OA floors where computers and related equipment are installed, and floors where various precision devices are installed, seismic isolation floors are placed on those floors to prevent seismic disasters for seismic isolation objects such as computers and various precision devices. There is a strong demand for prevention.

このような免震床としては、通常複数の免震支承を前後左右に二次元配列し、複数の免震支承を連動させて免震性能を発揮させるようにしている。   As such a seismic isolation floor, usually, a plurality of seismic isolation bearings are two-dimensionally arranged in the front, rear, left, and right directions, and the plurality of seismic isolation bearings are linked so as to exhibit seismic isolation performance.

特許文献1には、本考案に関連する技術として、X軸離間空間を各々に間に挟んでM列に並べられてY軸離間空間を各々に間に挟んでN列に並べられるM×N個の免震本体と、前記X軸離間空間に各々に配されるX軸上架台連結部材と、前記Y軸離間空間に各々に配されるY軸上架台連結部材と、を備え、免震本体が下架台と台車と上架台とを有し、前記X軸上架台連結部材がX軸方向に延びるX軸上架台長尺部材と該X軸上架台長尺部材の1対の端部を前記X軸離間空間を挟む1対の前記免震本体の前記上架台に結合させる1対のX軸上架台結合部材とを有し、前記Y軸上架台連結部材がY軸方向に延びるY軸上架台長尺部材と該Y軸上架台長尺部材の1対の端部を前記Y軸離間空間を挟む1対の前記免震本体の前記上架台に各々に結合させる1対のY軸上架台結合部材とを有する構成の免震床構造が開示されている。   In Patent Document 1, as a technique related to the present invention, M × N is arranged in M rows with an X-axis separation space interposed therebetween and arranged in N rows with a Y-axis separation space interposed therebetween. A seismic isolation body, an X-axis gantry coupling member disposed in each of the X-axis separation spaces, and a Y-axis gantry coupling member disposed in each of the Y-axis separation spaces. The main body has a lower base, a carriage, and an upper base, and the X-axis upper base connecting member extends in the X-axis direction, and a pair of ends of the X-axis upper base long member A pair of X-axis upper frame coupling members coupled to the upper frame of the pair of seismic isolation main bodies sandwiching the X-axis separation space, and the Y-axis upper frame coupling member extending in the Y-axis direction. A pair of ends of the upper frame long member and the Y-axis upper frame long member are coupled to the upper frame of the pair of seismic isolation bodies sandwiching the Y-axis separation space, respectively. MenShinyuka structure arrangement is disclosed having a pair of Y on the axis gantry coupling member that.

しかし、特許文献1に開示された免震床構造の場合、X軸離間空間を挟む各免震本体の上架台、Y軸離間空間を挟む各免震本体の上架台を、各々1対のX軸上架台結合部材、1対のY軸上架台結合部材を用いて結合させる構成でありであり、かかる特許文献1の免震床構造においては、各免震本体の微細、微小な誤差の累積を解消することができず、各免震本体相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して各免震本体を高精度に位置決めしつつ連結することは困難であるものと推定される。   However, in the case of the base-isolated floor structure disclosed in Patent Document 1, each base-isolated main body base that sandwiches the X-axis separated space and each base-isolated main body base that sandwiches the Y-axis spaced space each have a pair of X It is the structure which couple | bonds using an on-axis mount coupling member, and a pair of Y-axis mount mounting member, In the seismic isolation floor structure of this patent document 1, accumulation of the minute and minute error of each seismic isolation main body It is not possible to eliminate the error, and the error (interval gap) between each seismic isolation main body is eliminated, and each seismic isolation main body is positioned accurately and connected with high accuracy. It is estimated that it is difficult to do.

特開2010−275799号公報JP 2010-275799 A

本考案が解決しようとする問題点は、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床を容易に実現し得るような免震床用免震支承の二次元連結構造が従来存在しない点である。   The problem to be solved by the present invention is that two or more seismic isolation bearings are separated and arranged two-dimensionally with high precision positioning in the front and rear and left and right directions to form a seismic isolation floor. Eliminates the error in the mutual spacing (separation of the gap) in the seismic bearings, accurately installs each seismic isolation bearing and demonstrates the high performance seismic isolation performance by linking multiple seismic isolation bearings reliably. The top surface of the seismic isolation floor can be completely flat, eliminating the restrictions on the placement of seismic isolation objects. In addition, the number of seismic isolation bearings can be increased and the seismic isolation with the desired floor area. There is no conventional two-dimensional connection structure for base-isolated bearings that can easily realize the floor.

本考案は、下架台と、この下架台と同寸法の上架台と、前記下架台、上架台間に配置した免震要素とを具備し、略立方体状とするとともに、前記下架台、上架台を前記免震要素の免震機能に応じて特定方向に相対移動し得るように構成した複数の免震支承を、一方向と、これに直交する他方向とに各々隣り合う免震支承間に空間部を有しつつ分離配列、かつ、二次元配列で連結し、上面に免震床領域を形成する免震床用免震支承の二次元連結構造であって、前記各免震支承のうちの外側端面を形成する各免震支承における前記空間部を隔て隣り合う下架台同士の各側片間を所定の寸法となるように高精度に位置決めして連結する所要数の下架台位置決め連結体、及びこの下架台位置決め連結体の外側端面と前記下架台同士の外側端面に臨む各側片間を仮止めする所要数の仮止片とを備える下架台位置決め連結機構と、前記各免震支承の内側領域で、架台同士が一方向で空間部を隔て隣り合い、前記各架台の他方向に沿った側片同士が対向する一対ずつの両免震支承における前記各架台の一方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を一方向に貫いて、かつ、内部重合空間部毎に2個並列配置する態様で連結する所要数の架台内部連結体を備える架台内部連結機構と、前記各免震支承の内側領域で、上架台同士が他方向で空間部を隔て隣り合い、各上架台の一方向に沿った側片同士が対向する一対ずつの両免震支承における前記各上架台の他方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を他方向に貫いて、かつ、内部重合空間部毎に他方向で2個並列配置する態様で連結するするとともに、前記内部重合空間部の四隅に上カバー板用の4個の受部を、両側に免震支承を有する空間部における前記内部重合空間部の隣位置の両隅部に上カバー板用の2個の受部を同一高さで形成する上架台内部連結体を備える上架台内部連結機構と、前記各免震支承のうちの外側端面を形成する各免震支承における空間部を隔て隣り合う各外側端面側の側片同士を前記空間部の外側端面を覆うようにして連結するとともに、前記下架台側の前記各架台位置決め連結体の上方に位置して、前記空間部の外側端面側の両隅に上カバー板用の2個の受部を形成し、前記上架台内部連結体が形成する2個の受部と併せて同一高さで4個構成とする上架台端面連結体を備える上架台端面連結機構と、前記各上架台間の各空間部、内部重合空間部に形成される4個ずつの受部に、各上架台の上面と面一な平坦面を呈するように装着し上面に上架台上面とともに平坦な免震床領域を形成する所要数の上カバー板と、前記仮止片を除去した後の下架台位置決め連結体の外端面側を覆うようにしてこの下架台位置決め連結体に取り付ける下架台間覆い体と、を有することを最も主要な特徴とする。 The present invention comprises a lower base, an upper base having the same dimensions as the lower base, the lower base, and a seismic isolation element disposed between the upper base and a substantially cubic shape, and the lower base and the upper base. A plurality of seismic isolation bearings configured to be able to move relative to each other in a specific direction according to the seismic isolation function of the seismic isolation element, between the seismic isolation bearings adjacent to each other in one direction and the other direction orthogonal thereto. A two-dimensional connection structure for a base-isolated bearing for a base-isolated floor that has a space portion and is connected in a separate array and a two-dimensional array to form a base-isolated floor region on the top surface, The required number of undercarriage positioning connecting bodies for positioning and connecting the respective side pieces of the adjoining undercarriages with a predetermined dimension with high precision so as to have a predetermined dimension in each seismic isolation bearing forming the outer end face of , And each facing the outer end surface of the lower platform positioning connector and the outer end surfaces of the lower platforms. A lower rack positioning coupling mechanism and a required number of temporary stop piece for tacking between pieces, the inside area of each base isolation bearing disposed adjacent to an intervening space between the upper cradle in one direction, each of the upper frame In the pair of both seismic isolation bearings in which the side pieces along the other direction face each other, the side pieces along the one direction of each of the upper bases are overlapped with each other in one direction and the other direction. the through in one direction, and a pedestal internal connection mechanism on with the required number of top cradle inner connecting member for connecting a manner that two parallel arranged for each inner polymerization space, the inside area of each base isolation support The side pieces along the other direction of each of the upper bases in a pair of both seismic isolation bearings in which the upper bases are adjacent to each other across the space in the other direction and the side pieces along the one direction of each upper base are opposed to each other. The internal polymerization space part where each space part in one direction and the other direction overlaps each other in the other direction It is connected in such a manner that two inner overlapping space portions are arranged in parallel in the other direction, and four receiving portions for the upper cover plate are provided at the four corners of the inner overlapping space portion. An upper frame internal coupling mechanism comprising an upper frame internal coupling body that forms two receiving portions for the upper cover plate at the same height at both corners adjacent to the internal overlapping space in the space having a support; The side pieces on each outer end face side adjacent to each other with the space portion in each seismic isolation bearing forming the outer end face of each of the seismic isolation bearings connected so as to cover the outer end face of the space portion, and the lower Two receiving portions for the upper cover plate are formed at both corners on the outer end face side of the space portion, and are located above the respective base positioning connecting bodies on the base side, and the upper base internal connection body is formed. The upper frame end surface coupling body which consists of four at the same height with two receiving parts. Equipped with an end surface coupling mechanism of the upper platform, and each receiving portion formed in each space portion between each upper platform and the internal overlapping space portion so as to present a flat surface flush with the upper surface of each upper platform. A required number of upper cover plates that form a flat base-isolated floor region on the upper surface together with the upper surface of the upper table, and the lower table so as to cover the outer end surface side of the lower table positioning coupling body after the temporary fixing pieces are removed. The main feature is to have an undercarriage covering body attached to the positioning connecting body.

請求項1記載の考案によれば、所要数の下架台位置決め連結体、仮止片からなる下架台位置決め連結機構、所要数の上架台内部連結体からなる上架台内部連結機構、所要数の上架台端面連結体からなる上架台端面連結機構、所要数の上カバー板、及び所要数の下架台覆い体を用いる構成の基に、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床を容易に実現し得る免震床用免震支承の二次元連結構造を実現し、提供することができる。   According to the first aspect of the present invention, the required number of lower base positioning connection bodies, the lower base positioning connection mechanism consisting of temporary fixing pieces, the upper base internal connection mechanism consisting of the required number of upper base internal connection bodies, and the required number of overhead mountings. Based on a structure using an upper base end face connection mechanism consisting of base end face connecting bodies, a required number of upper cover plates, and a required number of lower base cover bodies, a plurality of seismic isolation bearings are accurately positioned in the front, rear, left and right directions. However, two-dimensionally arranging the base-isolated floor, the error of the mutual spacing (interval gap) in the base-isolated bearings constituting the base-isolated floor is eliminated, and each base-isolated base is accurately installed. As a result, it is possible to reliably link multiple seismic isolation bearings to demonstrate high-performance seismic isolation performance, and to eliminate the restriction of seismic isolation objects by making the top surface of the base isolation floor completely flat. Moreover, it is easy to increase the number of seismic isolation bearings installed. To realize a two-dimensional connection structure easily realized can MenShinyuka for seismic isolation bearing the MenShinyuka, can be provided.

請求項2記載の考案によれば、所要数の下フレーム、下ジョイントからなる下架台位置決め連結機構、所要数の下ブリッジからなる下架台内部連結機構、所要数の上ブリッジからなる上架台内部連結機構、所要数の上スカートからなる上架台端面連結機構、所要数の上カバー板、及び所要数の下スカートを用いる構成の基に、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床を容易に実現し得る免震床用免震支承の二次元連結構造を実現し、提供することができる。   According to the second aspect of the present invention, a required number of lower frames, a lower base positioning and connecting mechanism including a lower joint, a lower base internal connecting mechanism including a required number of lower bridges, and an upper base internal connection including a required number of upper bridges. Based on a mechanism, a structure that uses the required number of upper skirts, an upper platform end face coupling mechanism, a required number of upper cover plates, and a required number of lower skirts, multiple seismic isolation bearings can be separated from each other with high accuracy in the front, rear, left, and right directions. The base isolation floor is configured by positioning in two dimensions while positioning, and the error of the mutual spacing (interval gap) in multiple base isolation bearings that make up the base isolation floor is eliminated to accurately identify each base isolation bearing. It can be installed to reliably link multiple seismic isolation bearings to achieve high performance seismic isolation performance, and the top surface of the base isolation floor can be completely flat to eliminate the restriction of seismic isolation object placement. And more installations of seismic isolation bearings It is a simplified, to achieve a two-dimensional connection structure of MenShinyuka for seismic isolation bearings which can easily realize MenShinyuka having a desired floor space, can be provided.

図1は本考案の実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結終了状態の平面図である。FIG. 1 is a plan view of four seismic isolation bearings in a two-dimensional connection end state in a two-dimensional connection structure of a seismic isolation bearing for a seismic isolation floor according to an embodiment of the present invention. 図2は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結終了状態の正面図である。FIG. 2 is a front view showing a state where the two-dimensional connection ends of the four seismic isolation bearings in the two-dimensional connection structure of the seismic isolation bearings for the base isolation floor according to the present embodiment. 図3は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結前の配置説明図である。FIG. 3 is an explanatory view of the arrangement of the four seismic isolation bearings before the two-dimensional connection in the two-dimensional connection structure of the base isolation base for the base isolation floor according to the present embodiment. 図4は本実施例に係る免震床用免震支承の二次元連結構造における一台の免震支承の平面及び正面を示す図である。FIG. 4 is a diagram showing a plan view and a front view of one seismic isolation bearing in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図5は本実施例に係る免震床用免震支承の二次元連結構造における下ジョイントを取り付けた下フレームの平面、正面及び側面を示す図である。FIG. 5 is a diagram showing a plane, a front surface, and a side surface of the lower frame to which the lower joint is attached in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図6は本実施例に係る免震床用免震支承の二次元連結構造における下ジョイントの正面図である。FIG. 6 is a front view of the lower joint in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図7は本実施例に係る免震床用免震支承の二次元連結構造における下ブリッジの平面、正面及び側面を示す図である。FIG. 7 is a diagram showing a plane, a front surface, and a side surface of the lower bridge in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図8は本実施例に係る免震床用免震支承の二次元連結構造におけるスカートの平面、正面及び側面を示す図である。FIG. 8 is a diagram showing a plane, a front surface, and a side surface of the upper skirt in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図9は本実施例に係る免震床用免震支承の二次元連結構造における上ブリッジの平面、正面及び側面を示す図である。FIG. 9 is a diagram showing a plane, a front surface, and a side surface of the upper bridge in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図10は本実施例に係る免震床用免震支承の二次元連結構造におけるピローの平面、正面及び側面を示す図である。FIG. 10 is a diagram illustrating a plane, a front surface, and a side surface of a pillow in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図11は本実施例に係る免震床用免震支承の二次元連結構造における上スカートの平面、正面及び側面を示す図である。FIG. 11 is a view showing a plane, a front surface, and a side surface of the upper skirt in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図12は本実施例に係る免震床用免震支承の二次元連結構造における上カバー板を示す平面図である。FIG. 12 is a plan view showing the upper cover plate in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図13は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の二次元連結前の状態を示す平面図である。FIG. 13: is a top view which shows the state before the two-dimensional connection of the four seismic isolation bearings in the two-dimensional connection structure of the base-isolation support for base isolation floors concerning a present Example. 図14は本実施例に係る免震床用免震支承の二次元連結構造における免震支承に対する下フレーム、下ジョイント及び下ブリッジの取り付け状態を示す部分拡大説明図である。FIG. 14 is a partially enlarged explanatory view showing a mounting state of the lower frame, the lower joint, and the lower bridge with respect to the seismic isolation bearing in the two-dimensional connection structure of the seismic isolation bearing for a seismic isolation floor according to the present embodiment. 図15は本実施例に係る免震床用免震支承の二次元連結構造における免震支承4台に対する下フレーム、下ジョイント及び下ブリッジの取り付け状態を示す拡大平面図である。FIG. 15 is an enlarged plan view showing a state in which the lower frame, the lower joint, and the lower bridge are attached to the four seismic isolation bearings in the two-dimensional connection structure of the seismic isolation floor support base according to the present embodiment. 図16は本実施例に係る免震床用免震支承の二次元連結構造において各下架台を連結した後各免震支承の上架台に対してピロー及び上ジョイントを付加した状態を示す部分拡大説明図である FIG. 16 is a partially enlarged view showing a state in which a pillow and an upper joint are added to the base of each base isolation support after connecting the bases in the two-dimensional connection structure of the base isolation base for base isolation floor according to the present embodiment. It is explanatory drawing . 図17は本実施例に係る免震床用免震支承の二次元連結構造における免震支承4台の各上架台に対してピロー及び上ジョイントを付加した状態を示す拡大平面図である。FIG. 17 is an enlarged plan view showing a state in which pillows and upper joints are added to each of the four bases of the base isolation bearings in the two-dimensional connection structure of the base isolation base for base isolation floors according to the present embodiment. 図18は本実施例に係る免震床用免震支承の二次元連結構造における免震支承の上架台に対して上スカートを、下架台に対して下スカートを付加した状態を示す部分拡大説明図であるFIG. 18 is a partially enlarged explanation showing a state in which an upper skirt is added to the upper base of the base isolation bearing and a lower skirt is added to the lower base in the two-dimensional connection structure of the base isolation base for the base isolation floor according to the present embodiment. It is a figure 図19は本実施例に係る免震床用免震支承の二次元連結構造における4台の免震支承の上架台に対して上スカートを、下架台に対して下スカートを付加した状態を示す拡大平面図である。FIG. 19 shows a state in which an upper skirt is added to the upper base of the four seismic isolation bearings and a lower skirt is added to the lower base in the two-dimensional connection structure of the base isolation base for the base isolation floor according to this embodiment. It is an enlarged plan view. 図20は本実施例に係る免震床用免震支承の二次元連結構造において4台の免震支承の間の各上架台の間及び中央部に5枚の上カバー板を設置して二次元連結終了状態とし免震床とした状態を示す拡大平面図である。FIG. 20 shows a two-dimensional connection structure for base-isolated bearings for base-isolated floors according to the present embodiment, in which five upper cover plates are installed between four upper bases and at the center between four base-isolated supports. It is an enlarged plan view which shows the state used as the seismic isolation floor as a dimension connection completion state. 図21は本実施例に係る免震床用免震支承の二次元連結構造において、前後方向にN台、左右方向にM台の免震支承を連結し、かつ、各免震支承の間に各々上カバー板を設置して広面積の免震床とした拡張例を示す平面図である。FIG. 21 shows a two-dimensional connection structure for a base-isolated bearing for a base-isolated floor according to the present embodiment, in which N base-isolated bearings are connected in the front-rear direction and M base-isolated bearings are connected in the left-right direction. It is a top view which shows the example of an expansion which installed each upper cover board and made it the seismic isolation floor of a large area.

本考案は、複数の免震支承を分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床を構成し、免震床を構成する複数の免震支承における相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置して、複数の免震支承を確実に連動させて高性能の免震性能を発揮し得るとともに、免震床の上面を完全な平坦面として免震対象物の配置制限を無くすことができ、しかも、免震支承の設置台数の増設も簡略であって、所望の床面積を有する免震床を容易に実現し得る免震床用免震支承の二次元連結構造を実現し提供するという目的を、下架台と、この下架台と同寸法の上架台と、前記下架台、上架台間に配置した免震要素とを具備し、略立方体状とするとともに、前記下架台、上架台を前記免震要素の免震機能に応じて特定方向に相対移動し得るように構成した複数の免震支承を、一方向と、これに直交する他方向とに各々隣り合う免震支承間に空間部を有しつつ分離配列、かつ、二次元配列で連結し、上面に免震床領域を形成する免震床用免震支承の二次元連結構造であって、前記各免震支承のうちの外側端面を形成する各免震支承における前記空間部を隔て隣り合う下架台同士の各側片間を所定の寸法となるようにボルトのねじ込み調節で(免震床を構成する複数の免震支承における相互の間隔の誤差或いは間隔のズレを解消して複数の各免震支承を正確に設置するために)高精度に位置決めして連結する所要数の下フレーム、及びこの下フレームの外側端面と前記下架台同士の外側端面に臨む各側片両隅部間を一定寸法となるように仮止めする所要数の下ジョイントとを備える下架台位置決め連結機構と、前記各免震支承の内側領域で、架台同士が一方向で空間部を隔て隣り合い、前記各架台の他方向に沿った側片同士が対向する一対ずつの両免震支承における前記各架台の一方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を一方向に貫いて、かつ、内部重合空間部毎に2個並列配置する態様で連結する所要数の下ブリッジを備える架台内部連結機構と、前記各免震支承の内側領域で、上架台同士が他方向で空間部を隔て隣り合い、各上架台の一方向に沿った側片同士が対向する一対ずつの両免震支承における前記各上架台の他方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を他方向に貫いて、かつ、内部重合空間部毎に他方向で2個並列配置する態様で連結するするとともに、前記内部重合空間部の四隅に上カバー板用の4個の受部を、両側に免震支承を有する空間部における前記内部重合空間部の隣位置の両隅部に上カバー板用の2個の受部を同一高さで形成する上ブリッジを備える上架台内部連結機構と、前記各免震支承のうちの外側端面を形成する各免震支承における空間部を隔て隣り合う各外側端面側の側片同士を前記空間部の外側端面を覆うようにして連結するとともに、前記下架台側の前記各下フレームの上方に位置して、前記空間部の外側端面側の両隅に前記各外側端面側の側片に取り付けた各ピローにより支持した上カバー板用の2個の受部を形成し、前記上架台内部連結体が形成する2個の受部と併せて同一高さで4個構成とする上スカートを備える上架台端面連結機構と、前記各上架台間の各空間部、内部重合空間部に形成される4個ずつの受部に、各上架台の上面と面一な平坦面を呈するように装着し上面に上架台上面とともに平坦な免震床領域を形成する所要数の上カバー板と、前記下ブリッジを除去した後の下フレームの外面側を覆うようにしてこの下フレームに取り付ける下スカートと、を有する構成により実現した。 The present invention forms a base-isolated floor by positioning a plurality of base-isolated bearings in a separated state with high accuracy in the front-rear and left-right directions to form a base-isolated floor. By eliminating errors (interval gaps) and accurately installing multiple seismic isolation bearings, the multiple seismic isolation bearings can be reliably linked to demonstrate high-performance seismic isolation performance. The upper surface is a completely flat surface, which eliminates the restrictions on the placement of seismic isolation objects.In addition, the number of seismic isolation bearings can be increased easily, and seismic isolation floors with the desired floor area can be easily realized. The purpose of realizing and providing a two-dimensional connection structure of seismic isolation bearings for seismic isolation floors is to provide a lower frame, an upper frame of the same size as the lower frame, and a base isolation element disposed between the lower frame and the upper frame. And having a substantially cubic shape, the base frame and the base frame are used for the base isolation function of the base isolation element. A plurality of seismic isolation bearings configured to be able to move relative to each other in a specific direction, with a space portion between the seismic isolation bearings adjacent to each other in one direction and the other direction orthogonal thereto, and Each of the seismic isolation bearings forming the outer end surface of the seismic isolation bearings. By adjusting the screwing of the bolts so that each side piece between adjacent bases across the space in FIG. 2 has a predetermined size (the error or spacing between the mutual spacings of the plurality of base-isolated bearings constituting the base-isolated floor) The required number of lower frames to be positioned and connected with high accuracy, and the outer end surfaces of the lower frames and the outer end surfaces of the lower mounts (to eliminate misalignment and accurately install a plurality of seismic isolation bearings) Temporarily fix between the corners of each side so that the dimensions are constant. A lower rack positioning coupling mechanism and a lower joint of a few, the inside area of each base isolation bearing, between the upper cradle adjoin intervening space in one direction, the side pieces along said other direction of each upper frame The side pieces along one direction of each of the upper mounts in a pair of both seismic isolation bearings facing each other, unidirectionally penetrate the internal overlapping space part where each space part overlaps in one direction, and In addition, an upper base internal connection mechanism having a required number of lower bridges to be connected in a mode of being arranged in parallel for each internal superposition space portion, and an inner region of each of the seismic isolation bearings, the upper bases in the other directions The side pieces along the other direction of the upper frame in the pair of both seismic isolation bearings that are adjacent to each other and the side pieces along the one direction of the upper frame are opposed to each other. Penetrate the internal polymerization space where the parts overlap in the other direction and In a space portion having two receiving portions for the upper cover plate at the four corners of the inner overlapping space portion and seismic isolation bearings on both sides. An upper mount internal coupling mechanism having an upper bridge that forms two receiving portions for the upper cover plate at the same height at both corners adjacent to the inner overlapping space portion, and the outer side of each of the seismic isolation bearings The side pieces on the outer end face side adjacent to each other with the space portion in each seismic isolation bearing forming the end face are connected so as to cover the outer end face of the space portion, and above the lower frame on the lower frame side The two receiving portions for the upper cover plate supported by each pillow attached to the side piece on each outer end surface side are formed at both corners on the outer end surface side of the space portion, and the interior of the upper base is formed. Together with the two receiving parts formed by the coupling body, it is composed of four pieces at the same height. A flat surface that is flush with the upper surface of each upper frame is formed on the upper frame end surface coupling mechanism having upper skirts and four receiving portions formed in each space between the upper frames and in the internal overlapping space. A required number of upper cover plates that form a flat base-isolated floor region together with the upper surface of the upper base on the upper surface, and an outer surface side of the lower frame after removing the lower bridge are attached to the lower frame. This is realized by a configuration having a lower skirt to be attached.

以下、本考案の実施例に係る免震床用免震支承の二次元連結構造について、例えば、4台の免震支承を相互に等しい間隔を隔て前後、左右に配列し、全体として平面視正方形配列となるように二次元連結する場合を例にして、図面を参照して詳細に説明する。   Hereinafter, regarding the two-dimensional connection structure of the base-isolated bearing for the base-isolated floor according to the embodiment of the present invention, for example, four base-isolated bearings are arranged in front, back, left and right at equal intervals, and the plan view is square as a whole. The case of two-dimensional connection so as to form an array will be described in detail with reference to the drawings.

図1、図2は本実施例に係る免震床用免震支承の二次元連結構造において、4台、すなわち、第1乃至第4の各免震支承1A乃至1D及び5枚の上カバー板101を用いて免震床111とした状態の平面図、正面図を示すものである。   FIG. 1 and FIG. 2 show a two-dimensional connection structure of seismic isolation bearings for a seismic isolation floor according to the present embodiment, that is, four units, that is, first to fourth seismic isolation bearings 1A to 1D and five upper cover plates. The top view and the front view of the state made into the seismic isolation floor 111 using 101 are shown.

また、図3は、第1乃至第4の各免震支承1A乃至1Dの二次元連結前の配置関係を示すものであり、本実施例においては、説明の便宜上、図面上の方向を明確にするために、図3に示すように、「前」「後」「左」「右」と定義し、かつ、左右方向を一方向、前後方向を他方向と定義して以下の説明を行う。   FIG. 3 shows the arrangement relationship before the two-dimensional connection of the first to fourth seismic isolation bearings 1A to 1D. In this embodiment, the direction on the drawing is clearly shown for convenience of explanation. Therefore, as shown in FIG. 3, the following description will be given by defining “front”, “rear”, “left”, and “right”, defining the left-right direction as one direction, and the front-rear direction as the other direction.

また、本実施例においては、4台の各免震支承を第1乃至第4の各免震支承1A乃至1Dの二次元連結構造において、第1の免震支承1Aと第2の免震支承1Bとの間の空間を第1の空間部11Aと、第1の免震支承1Aと第3の免震支承1Cとの間の空間を第2の空間部11Bと、第2の免震支承1Bと第4の免震支承1Dとの間の空間を第3の空間部11Cと、第3の免震支承1Cと第4の免震支承1Dとの間の空間を第4の空間部11Dと、中央に形成される空間部を第5の空間部(内部重合空間部)11Eと定義する。   In this embodiment, each of the four seismic isolation bearings is divided into the first to fourth seismic isolation bearings 1A to 1D in a two-dimensional connection structure, and the first seismic isolation bearing 1A and the second seismic isolation bearing. The space between 1B is the first space portion 11A, the space between the first seismic isolation bearing 1A and the third seismic isolation bearing 1C is the second space portion 11B, and the second seismic isolation bearing. The space between 1B and the fourth seismic isolation bearing 1D is the third space portion 11C, and the space between the third seismic isolation bearing 1C and the fourth seismic isolation bearing 1D is the fourth space portion 11D. And the space part formed in the center is defined as the 5th space part (internal polymerization space part) 11E.

更に、前記第1の免震支承1Aは、図4に示すように、平面視でいずれも一辺が例えば500mm四方の正方形状で、全高が例えば99mmの立体形状であり、前記第1乃至第5の各空間部11A乃至11Eも各辺が、500mmで、平面視で正方形状を呈する立体空間を形成するものとして以下の説明を行う。   Further, as shown in FIG. 4, each of the first seismic isolation bearings 1A has a three-dimensional shape having a square shape with a side of, for example, 500 mm and a total height of, for example, 99 mm in plan view. The following description will be made assuming that each of the space portions 11A to 11E has a side of 500 mm and forms a three-dimensional space having a square shape in plan view.

前記第1の免震支承1Aは、図4に示すように、下架台2と、この下架台2と等寸法の上架台4と、これら下架台2、上架台4間に配置した例えばレール式の免震要素(図示せず)とを具備している。   As shown in FIG. 4, the first seismic isolation bearing 1 </ b> A includes a lower base 2, an upper base 4 having the same dimensions as the lower base 2, and a rail type disposed between the lower base 2 and the upper base 4. And a seismic isolation element (not shown).

前記第1の免震支承1Aの下架台2の前後左右の各側片3には所要のボルト螺合用のネジ孔を設け、同様に前記上架台4の前後左右の各側片5にも所要のボルト螺合用のネジ孔を設けている。   Necessary bolt screw holes are provided in the front, rear, left and right side pieces 3 of the lower base 2 of the first seismic isolation bearing 1A. Similarly, the front, rear, left and right side pieces 5 of the upper base 4 are also required. Screw holes for screwing are provided.

前記第1の免震支承1Aの上架台4は、下架台2に対して一方向(又は他方向)と45度の斜め方向(これをP方向とする)及びP方向と直交する斜め方向(これをQ方向とする)に変位して免震機能を発揮する構成としている。   The upper base 4 of the first seismic isolation bearing 1A has one direction (or other direction) with respect to the lower base 2 and an oblique direction of 45 degrees (referred to as P direction) and an oblique direction orthogonal to the P direction ( This is configured to exhibit the seismic isolation function by shifting in the Q direction).

前記第2乃至第4の免震支承1B乃至1Dについても、前記第1の免震支承1Aの場合と同様に構成している。   The second to fourth seismic isolation bearings 1B to 1D are configured in the same manner as in the case of the first seismic isolation bearing 1A.

次に、本実施例に係る免震床用免震支承の二次元連結構造における二次元連結用の各構成要素の詳細について図5乃至図12を参照して説明する。   Next, the detail of each component for two-dimensional connection in the two-dimensional connection structure of the seismic isolation bearing for a base isolation floor according to the present embodiment will be described with reference to FIGS.

(第1乃至第4の各免震支承における各下架台連結用の構成要素)
本実施例において各下架台2の連結用の構成要素は、4個の下フレーム21からなる下架台位置決め連結体と、8個の下ジョイント31からなる仮止片と、4個の下スカート51からなる下架台間覆い片とからなり、下架台位置決め連結体と仮止片とにより下架台位置決め連結機構を構成している。
(Constituent elements for connecting each base in the first to fourth seismic isolation bearings)
In the present embodiment, the components for connecting the lower mounts 2 are the lower mount positioning connecting body including the four lower frames 21, the temporary fastening pieces including the eight lower joints 31, and the four lower skirts 51. The lower platform positioning connecting mechanism is composed of the lower platform positioning connecting body and the temporary fixing piece.

前記下フレーム21は、図5に示すように、長方形状の底片22と、この底片22の一方の長辺端縁から垂直に起立させた長辺側片23と、底片22の両側の短辺端縁から垂直に起立させた一対の短辺側片24と、を一体に具備し、前記底片22の他方の長辺端縁側及び前記底片22の上方を開放状態とし、一側面及び上面開放型の略直方体箱型状に形成し、全部で4個構成としている。   As shown in FIG. 5, the lower frame 21 includes a rectangular bottom piece 22, a long side piece 23 erected vertically from one long side edge of the bottom piece 22, and short sides on both sides of the bottom piece 22. And a pair of short side pieces 24 vertically raised from the end edges, the other long side edge side of the bottom piece 22 and the upper side of the bottom piece 22 are in an open state, one side and top open type Are formed in a substantially rectangular parallelepiped box shape, and have a total of four.

また、前記下フレーム21の前記長辺側片23の左右方向の外寸法及び前記一対の短辺側片24の両外面間の寸法は例えば正確に497mm、前記長辺側片23及び短辺側片24の高さ寸法は例えば30mmとしている。   Also, the outer dimension in the left-right direction of the long side piece 23 of the lower frame 21 and the dimension between the outer surfaces of the pair of short side pieces 24 are, for example, exactly 497 mm, the long side piece 23 and the short side The height dimension of the piece 24 is 30 mm, for example.

更に、前記長辺側片23の両隅部にはボルト挿通用の所要の挿通孔を所定の配置で設け、一対の短辺側片24にも各々所要の間隔をもったボルト挿通用の3個の挿通孔を設けている。   Further, required insertion holes for inserting bolts are provided in both corners of the long side piece 23 in a predetermined arrangement, and the pair of short side pieces 24 are respectively provided with a required interval 3 for inserting bolts. An insertion hole is provided.

前記下ジョイント31は、図6に示すように、両端部を丸めた平板状で、ボルト挿通用の所要の挿通孔を所定の配置で設けて例えば全長100mmに形成し、全部で8個構成としている。   As shown in FIG. 6, the lower joint 31 has a flat plate shape with both ends rounded, and a predetermined insertion hole for bolt insertion is provided in a predetermined arrangement, for example, a total length of 100 mm. Yes.

前記下ブリッジ41は、後述するように、前記第1の免震支承1A、第2の免震支承1Bの各上架台4の中央側の側片5、5同士、及び第3の免震支承1C、第4の免震支承1Dの各上架台4の中央側の側片5、5同士を各々左右方向で連結するために2個構成とし、全長を例えば870mmに形成している。 As will be described later, the lower bridge 41 includes side pieces 5 and 5 on the center side of the upper base 4 of each of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B, and a third seismic isolation bearing. In order to connect the side pieces 5 and 5 on the center side of the upper mounts 4 of 1C and the fourth seismic isolation bearing 1D in the left-right direction, two pieces are formed, and the total length is, for example, 870 mm.

この下ブリッジ41は、図7に示すように、両隅部に一対の接合片部43、43を設けた垂直片部42と、この垂直片部42の下端から水平方向に突出させた鉤形の水平片部44と、を具備し、かつ、前記一対の接合片部43、43に各々ボルト挿通用の所要の挿通孔を所定の配置で設けている。   As shown in FIG. 7, the lower bridge 41 includes a vertical piece 42 having a pair of joining pieces 43, 43 at both corners, and a saddle shape projecting horizontally from the lower end of the vertical piece 42. And a pair of joining piece portions 43, 43 each having a predetermined insertion hole for inserting a bolt in a predetermined arrangement.

前記下スカート51は、図8に示すように、下スカート垂直片部52と、この下スカート垂直片部52の下端から水平方向に突出した小寸法の下スカート水平片部53とを具備する略L型状で、かつ、全長を例えば498mmに形成し、全部で4個構成としている。   As shown in FIG. 8, the lower skirt 51 includes a lower skirt vertical piece 52 and a small skirt horizontal piece 53 protruding in a horizontal direction from the lower end of the lower skirt vertical piece 52. It is L-shaped and has a total length of, for example, 498 mm, for a total of four.

また、前記下スカート垂直片部52には、ボルト挿通用の所要の挿通孔を所定の配置で設け、前記下ジョイント31を除去した後の前記下フレーム21の長辺側片23の外側を覆う態様でこの下フレーム21にボルト止めにて連結固定するように構成している。   The lower skirt vertical piece 52 is provided with a predetermined insertion hole for inserting a bolt in a predetermined arrangement to cover the outside of the long side piece 23 of the lower frame 21 after the lower joint 31 is removed. In this embodiment, the lower frame 21 is connected and fixed with bolts.

(第1乃至第4の各免震支承における各上架台連結用の構成要素)
本実施例において各上架台連結用の構成要素は、2個の上ブリッジ61と、2個の下ブリッジ41からなる上架台内部連結体と、8個のピロー81と、4個の上スカート91からなる上架台端面連結体と、5枚の上カバー板101と、を有し、2個の上ブリッジ61と2個の下ブリッジ41により上架台内部連結機構を構成し、前記8個のピロー81と、4個の上スカート91とにより、上架台端面連結機構を構成している。
(Constituent elements for connecting each base in the first to fourth seismic isolation bearings)
In the present embodiment, the components for connecting the upper bases are the upper base internal connection body composed of two upper bridges 61 , two lower bridges 41 , eight pillows 81, and four upper skirts 91. And the upper cover plate 101, and the two upper bridges 61 and the two lower bridges 41 constitute an upper mount internal connection mechanism, and the eight pillows 81 and the four upper skirts 91 constitute an upper platform end surface coupling mechanism.

前記上ブリッジ61は、第1の免震支承1A、第3の免震支承1Cの各上架台4、4の中央側の側片5、5同士及び第2の免震支承1B、第4の免震支承1Dの各上架台4、4の中央側の側片5、5同士を各々前後方向配置で連結するために2個構成とし、全長を例えば920mmに形成している。   The upper bridge 61 includes side pieces 5 and 5 on the center side of the upper bases 4 and 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C, and the second seismic isolation bearing 1B and the fourth In order to connect the side pieces 5 and 5 on the center side of the upper bases 4 and 4 of the seismic isolation bearing 1D in the front-rear direction arrangement, two pieces are formed, and the total length is, for example, 920 mm.

前記上ブリッジ61は、図9に示すように、全長を例えば920mmとした第1垂直片部63と、この第1垂直片部63の下端から水平方向に、かつ、全長に渡って水平方向に突出した第1水平片部64と、この第1水平片部64から下方に突出した垂下片65と、前記第1水平片部64の上面に所定の間隔で設けた四角形状で合計4個の上カバー板受片66とを具備するL型の上ブリッジ接合片62と、全長を前記第1垂直片部63の略半分の長さとした第2垂直片部68と、この第2垂直片部68の下端から水平方向に、かつ、全長に渡って水平方向に突出した第2水平片部69と、この第2水平片部69から下方に突出した垂下片70と、前記第2水平片部69の上面に所定の間隔で設けた四角形状で合計2個の上カバー板受片71とを具備するL型の上ブリッジ接合補助片67とを、前記第1垂直片部63、第2垂直片部68が背中合わせとなるようにして、かつ、両者の長さ方向中心が合致するようにしてネジ止等により一体連結することにより構成している。   As shown in FIG. 9, the upper bridge 61 includes a first vertical piece 63 having a total length of, for example, 920 mm, and a horizontal direction from the lower end of the first vertical piece 63, and in a horizontal direction over the entire length. The projecting first horizontal piece 64, the hanging piece 65 projecting downward from the first horizontal piece 64, and a total of four rectangular shapes provided at predetermined intervals on the upper surface of the first horizontal piece 64. An L-shaped upper bridge joining piece 62 having an upper cover plate receiving piece 66, a second vertical piece 68 having an overall length substantially half the length of the first vertical piece 63, and the second vertical piece A second horizontal piece 69 projecting horizontally from the lower end of 68 in a horizontal direction over the entire length, a hanging piece 70 projecting downward from the second horizontal piece 69, and the second horizontal piece A total of two upper cover plate receiving pieces 71 in a rectangular shape provided at predetermined intervals on the upper surface of 69; The L-shaped upper bridge joining auxiliary piece 67 is provided so that the first vertical piece 63 and the second vertical piece 68 are back-to-back, and the lengthwise centers of both coincide with each other. It is configured by being integrally connected by screwing or the like.

前記上ブリッジ接合片62における中央に近い側の隣り合う2個の上カバー板受片66、66の間隔は、2個の上ブリッジ61、61のうちの一方の上ブリッジ61を、詳細は後述するが、例えば前記第1の免震支承1A、第3の免震支承1Cの各上架台4、4の中央側(右側)の側片5、5間に連結したとき、これら2個の上カバー板受片66、66が前記第5の空間部11Eの左側の両隅部(前側、後側)に収まる間隔としている。   The distance between two adjacent upper cover plate receiving pieces 66, 66 on the side close to the center of the upper bridge joining piece 62 is such that the upper bridge 61 of one of the two upper bridges 61, 61 will be described in detail later. However, for example, when connected between the side pieces 5 and 5 on the center side (right side) of the upper bases 4 and 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C, The cover plate receiving pieces 66 and 66 are set to have an interval within the left corners (front side and rear side) of the fifth space portion 11E.

また、このとき、前記2個の上カバー板受片66、66の外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの左側で、かつ、中央側の隅部と、前記第4の空間部11Dの左側で、かつ、中央側の隅部に収まるように設定している。   At this time, the two upper cover plate receiving pieces 66, 66 outside the two upper cover plate receiving pieces 66, 66 are respectively located on the left side of the first space portion 11A and on the central side. It is set so as to fit in the corner and the corner on the left side of the fourth space portion 11D and on the center side.

更に、前記上ブリッジ接合補助片67の2個の上カバー板受片71、71の間隔は、前記上ブリッジ接合片62における中央に近い側の隣り合う2個の上カバー板受片66、66と同一間隔とし、これにより、上ブリッジ接合補助片67の2個の上カバー板受片71、71は、各々前記第2の空間部11Bにおける中央側の両隅部(前側、後側)に収まるようにしている。   Further, the distance between the two upper cover plate receiving pieces 71, 71 of the upper bridge joining auxiliary piece 67 is such that two upper cover plate receiving pieces 66, 66 adjacent to each other on the side close to the center of the upper bridge joining piece 62. Thus, the two upper cover plate receiving pieces 71, 71 of the upper bridge joining auxiliary piece 67 are respectively located at the central corners (front side, rear side) of the second space portion 11B. I try to fit.

上述した場合とは逆に2個の上ブリッジ61、61のうちの他方の上ブリッジ61を例えば第2の免震支承1B、第4の免震支承1Dの各上架台4、4の中央側の側片5、5間に連結したときには、他方の上ブリッジ61における上ブリッジ接合片62における中央に近い側の隣り合う2個の上カバー板受片66、66は、前記第5の空間部11Eの右側の両隅部(前側、後側)に収まり、前記2個の上カバー板受片66、66の外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの右側で、かつ、中央側の隅部と、前記第4の空間部11Dの右側で、かつ、中央側の隅部に収まるようになっている。   Contrary to the case described above, the other upper bridge 61 of the two upper bridges 61, 61 is, for example, the center side of the upper bases 4, 4 of the second seismic isolation bearing 1B and the fourth seismic isolation bearing 1D. When connected between the side pieces 5 and 5, the two upper cover plate receiving pieces 66 and 66 adjacent to each other on the side close to the center of the upper bridge joining piece 62 of the other upper bridge 61 are connected to the fifth space portion. 11E, the two upper cover plate receiving pieces 66, 66 outside the two upper cover plate receiving pieces 66, 66 are placed in the right corners (front side, rear side) of the 11E. It is arranged on the right side of the portion 11A and on the corner on the center side, and on the right side of the fourth space portion 11D and on the corner on the center side.

更に、このとき、前記上ブリッジ接合補助片67の2個の上カバー板受片71、71は、各々前記第3の空間部11における中央側の両隅部(前側、後側)に収まるようになっている。 Further, at this time, the two upper cover plate receiving pieces 71, 71 of the upper bridge auxiliary bonding piece 67 is fit in both corners of each said third central side in the space portion 11 C of (front, rear) It is like that.

前記ピロー81は、図10に示すように、垂直片部82と、この垂直片部82の下端から水平方向に突出させた鉤形の水平片部83と、を具備している。   As shown in FIG. 10, the pillow 81 includes a vertical piece 82 and a bowl-shaped horizontal piece 83 that protrudes in the horizontal direction from the lower end of the vertical piece 82.

前記水平片部83の突出端に前記水平片部83よりも高位置となるように段違いに上スカート受片部84を水平配置に形成し、全長を例えば90mmに設定するとともに、前記垂直片部82にボルト又はネジを挿通するための所要の挿通孔を設け、全部で8個構成としている。   The upper skirt receiving piece 84 is formed in a horizontal arrangement at a protruding end of the horizontal piece 83 so as to be higher than the horizontal piece 83, the total length is set to 90 mm, for example, and the vertical piece The required insertion holes for inserting bolts or screws are provided in 82, and a total of eight holes are formed.

前記上スカート91は、図11に示すように、全長を例えば998mmとした外側垂直片部93と、この外側垂直片部93の下端から水平方向に、かつ、全長に渡って水平方向に突出した外側水平片部94と、を具備する外側スカート片92と、前記外側垂直片部93と同一の長さで、かつ、略半分の高さ寸法とした内側垂直片部96と、この内側垂直片部96の下端中央部から水平方向に、かつ、前記外側水平片部94とは反対方向に突出させた長さ略500mmの内側水平片部97と、この内側水平片部97の下面から下方に突出させた垂下片98と、前記内側水平片部97の上面両隅部に設けた上カバー板受片99、99と、を具備する内側スカート片95と、を具備している。   As shown in FIG. 11, the upper skirt 91 protrudes in the horizontal direction from the lower end of the outer vertical piece 93 having a total length of, for example, 998 mm, and from the lower end of the outer vertical piece 93 in the horizontal direction. An outer skirt piece 92 having an outer horizontal piece portion 94, an inner vertical piece portion 96 having the same length as the outer vertical piece portion 93 and substantially half the height, and the inner vertical piece piece. An inner horizontal piece 97 having a length of approximately 500 mm that protrudes in the horizontal direction from the center of the lower end of the portion 96 and in the direction opposite to the outer horizontal piece 94, and downward from the lower surface of the inner horizontal piece 97 An inner skirt piece 95 having a projecting hanging piece 98 and upper cover plate receiving pieces 99 and 99 provided at both upper corners of the inner horizontal piece 97 is provided.

そして、前記外側スカート片92と、内側スカート片95とを外側垂直片部93、内側垂直片部96の上端縁が一致するようにして、これら両者をボルト又はネジを用いて一体化するように構成している。   Then, the outer skirt piece 92 and the inner skirt piece 95 are aligned so that the upper end edges of the outer vertical piece 93 and the inner vertical piece 96 coincide with each other, and these two are integrated using bolts or screws. It is composed.

これにより、前記内側水平片部97は、内側垂直片部96の長さ方向中心からその両側に等寸法延在し、前記上カバー板受片99、99は、内側垂直片部96の長さ方向中心に関して対象配置となるように構成している。   Accordingly, the inner horizontal piece 97 extends from the center in the length direction of the inner vertical piece 96 to both sides thereof, and the upper cover plate receiving pieces 99 and 99 have the length of the inner vertical piece 96. It is configured to be a target arrangement with respect to the direction center.

前記内側スカート片95の一対の上カバー板受片99、99は、後述するように前記ピロー81の上スカート受片84上に設置される。   The pair of upper cover plate receiving pieces 99, 99 of the inner skirt piece 95 is installed on the upper skirt receiving piece 84 of the pillow 81 as will be described later.

前記上カバー板101は、図12に示すように、前記第1乃至第5の各空間部11A乃至11Eの平面寸法と略等しい一辺が略500mmの正方形状を呈する例えば金属平板等により形成され、全部で5枚構成としている。   As shown in FIG. 12, the upper cover plate 101 is formed of, for example, a metal flat plate or the like having a square shape with a side substantially equal to the planar dimensions of the first to fifth space portions 11A to 11E. There are 5 sheets in total.

次に、上述した各構成要素を用いた本実施例に係る免震床用免震支承の二次元連結構造において、免震支承4台連結の場合の二次元連結構造及び二次元連結工程について、図13乃至図20を参照して詳細に説明する。   Next, in the two-dimensional connection structure of the base isolation base for the base isolation floor according to the present embodiment using each of the above-described components, the two-dimensional connection structure and the two-dimensional connection step in the case of connecting the four base isolation bearings, This will be described in detail with reference to FIGS.

(第1乃至第4の各免震支承1A乃至1Dの各下架台2に対する下フレーム21、下ジョイント31、及び下スカート51による連結)
まず、図13に示すように、第1乃至第4の各免震支承1A乃至1Dを用意し、次に図14、図15に示すように、第1乃至第4の各免震支承1A乃至1Dの下架台2を4個の下フレーム21により連結する。
(Connection by the lower frame 21, the lower joint 31, and the lower skirt 51 with respect to the lower mounts 2 of the first to fourth seismic isolation bearings 1A to 1D)
First, as shown in FIG. 13, first to fourth seismic isolation bearings 1A to 1D are prepared. Next, as shown in FIGS. 14 and 15, the first to fourth seismic isolation bearings 1A to 1D are prepared. The 1D undercarriage 2 is connected by four lower frames 21.

なお、図14は、前記第1の空間部11Aにおいて、第1の免震支承1Aにおける右側の側片3、第2の免震支承1Bの左側の側片3を、前記下フレーム21を用いて連結する態様を一部拡大して示すものである。   In FIG. 14, in the first space portion 11A, the right side piece 3 of the first seismic isolation bearing 1A and the left side piece 3 of the second seismic isolation bearing 1B are used using the lower frame 21. A partly enlarged manner of connection is shown.

図14に示すように、前記第1の空間部11Aの前面側において、前記下フレーム21を第1の免震支承1Aの下架台2の右側の側片3、第2の免震支承1Bの左側の側片3の間に配置し、これらの間に、下フレーム21の底片22及び一対の短辺側片24を挿入し、下フレーム21の長辺側片23の前面が第1の免震支承1A、第2の免震支承1Bの両下架台2の各前面の側片3と面一となる状態とする。   As shown in FIG. 14, on the front surface side of the first space portion 11A, the lower frame 21 is connected to the right side piece 3 of the undercarriage 2 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B. The bottom piece 22 of the lower frame 21 and a pair of short side pieces 24 are inserted between the left side pieces 3 and the front side of the long side piece 23 of the lower frame 21 is the first relief. It is set as the state which becomes flush with the side piece 3 of each front surface of the both base 2 of the seismic support 1A and the 2nd seismic isolation support 1B.

そして、2個の下ジョイント31により、前記第1の免震支承1A、第2の免震支承1Bの各下架台2の前面の側片3の端部と、下フレーム21の長辺側片23の前面の両端部とを各々ボルトとナットとを用いて仮止態様で連結固定する。なお、ナットについては図示省略する。   Then, by two lower joints 31, the end of the side piece 3 on the front surface of each lower base 2 of the first seismic isolation bearing 1 </ b> A and the second seismic isolation bearing 1 </ b> B and the long side piece of the lower frame 21 The both ends of the front surface of 23 are connected and fixed in a temporarily fixed manner using bolts and nuts, respectively. The illustration of the nut is omitted.

このとき、前記下フレーム21における長辺側片23の左右方向の外寸法は497mmに設定されており、この下フレーム21の連結領域(前側端面領域)において、前記第1の免震支承1Aの下架台2の右側の側片3と、前記下フレーム21の左側の短辺側片24との間、及び前記第2の免震支承1Bの下架台2の左側の側片3と、前記下フレーム21の右側の短辺側片24との間に、各々1.5mmの隙間Gが形成され、かつ、前記第1の免震支承1A、第2の免震支承1Bの前記第1の空間部11Aにおいて対向する下架台2の両側片3の間隔が正確に500mmとなるように前記各下架台2の各側片3のネジ孔、前記下フレーム21、下ジョイント31の各挿通孔の位置を予め設定している。   At this time, the outer dimension in the left-right direction of the long side piece 23 in the lower frame 21 is set to 497 mm. In the connection region (front end surface region) of the lower frame 21, the first seismic isolation bearing 1A Between the right side piece 3 of the lower frame 2 and the short side piece 24 on the left side of the lower frame 21, and the left side piece 3 of the lower frame 2 of the second seismic isolation bearing 1B, A gap G of 1.5 mm is formed between each short side piece 24 on the right side of the frame 21 and the first space of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B. The positions of the screw holes of the side pieces 3 of the lower mounts 2 and the insertion holes of the lower frame 21 and the lower joint 31 so that the distance between the opposite side pieces 3 of the lower mount 2 facing each other in the portion 11A is accurately 500 mm. Is set in advance.

次に、前記第1の免震支承1Aの下架台2の右側の側片3と、下フレーム21の左側の短辺側片24との間、及び前記第2の免震支承1Bの下架台2の左側の側片3と、下フレーム21の右側の短辺側片24との間の各隙間Gを正確に1.5mmになるようにして調整して、前記第1の免震支承1A、前記第2の免震支承1Bを高精度に位置決めする。   Next, between the right side piece 3 of the cradle 2 of the first seismic isolation bearing 1A and the short side piece 24 on the left side of the lower frame 21, and the cradle base of the second seismic isolation bearing 1B The first seismic isolation bearing 1A is adjusted such that each gap G between the left side piece 3 of 2 and the short side piece 24 on the right side of the lower frame 21 is exactly 1.5 mm. The second seismic isolation bearing 1B is positioned with high accuracy.

すなわち、図14に示すように、前記下フレーム21の左側の短辺側片24に設けた3個の挿通孔から第1の免震支承1Aの下架台2の右側の側片3に所定の間隔をもって3本のボルト25a、25b、25aをねじ込み、同様に、前記下フレーム21の右側の短辺側片24に設けた3個の挿通孔から第2の免震支承1Bの下架台2の右側の側片3に所定の間隔をもって3本のボルト25a、25b、25aをねじ込む。   That is, as shown in FIG. 14, a predetermined amount is provided from the three insertion holes provided in the left side piece 24 on the left side of the lower frame 21 to the right side piece 3 of the cradle 2 of the first seismic isolation bearing 1A. Three bolts 25a, 25b, 25a are screwed in at intervals, and similarly, the base 2 of the second seismic isolation bearing 1B from the three insertion holes provided in the short side piece 24 on the right side of the lower frame 21. Three bolts 25a, 25b, and 25a are screwed into the right side piece 3 with a predetermined interval.

このとき、左右の短辺側片24の長さ方向略中央位置に各々ボルト25bを配置し、このボルト25bの両側(下ジョイント31側、第5の空間部11E側)に各々ボルト25a、25aを配置するものとする。   At this time, the bolts 25b are respectively arranged at substantially the center positions in the length direction of the left and right short side pieces 24, and the bolts 25a and 25a are respectively provided on both sides (the lower joint 31 side and the fifth space portion 11E side) of the bolt 25b. Shall be placed.

また、前記ボルト25aは、そのボルト頭部の短辺側片24の外面に接触する部分が平坦状であり、前記ボルト25bは、そのボルト頭部の短辺側片24の外面に接触する部分が略円錐状に設定されているものとする。   The bolt 25a has a flat portion in contact with the outer surface of the short side piece 24 of the bolt head, and the bolt 25b has a portion in contact with the outer surface of the short side piece 24 of the bolt head. Is set to be substantially conical.

このような3本のボルト25a、25b、25aを用いて、前記下フレーム21の左側の短辺側片24に設けた3個の挿通孔から第1の免震支承1Aの下架台2の右側の側片3にこれらをねじ込み、ねじ込み状態を調節することにより、前記ボルト25bの締め付け力により前記短辺側片24が第1の免震支承1Aの下架台2の右側の側片3側に押圧されるように作用し、他方、他の2本のボルト25a、25aの締め付け力により第1の免震支承1Aの下架台2の右側の側片3が第1の空間部11A側に引き込まれるように作用する。   Using such three bolts 25a, 25b, 25a, the right side of the undercarriage 2 of the first seismic isolation bearing 1A from the three insertion holes provided in the short side piece 24 on the left side of the lower frame 21. By screwing these into the side piece 3 and adjusting the screwed state, the short side piece 24 is moved to the right side piece 3 side of the undercarriage 2 of the first seismic isolation bearing 1A by the tightening force of the bolt 25b. On the other hand, the right side piece 3 of the undercarriage 2 of the first seismic isolation bearing 1A is pulled into the first space portion 11A side by the tightening force of the other two bolts 25a and 25a. Act to be

この結果、前記下フレーム21の左側の短辺側片24と前記第1の免震支承1Aの下架台2の右側の側片3とは正確に平行配置となる。   As a result, the short side piece 24 on the left side of the lower frame 21 and the right side piece 3 of the gantry 2 of the first seismic isolation bearing 1A are accurately arranged in parallel.

前記下フレーム21の右側の短辺側片24に設けた3個の挿通孔から第2の免震支承1Bの下架台2の右側の側片3に3本のボルト25a、25b、25aをねじ込み、ねじ込み状態を調節した場合も上述した場合と同様である。   Three bolts 25a, 25b, and 25a are screwed into the right side piece 3 of the undercarriage 2 of the second seismic isolation bearing 1B from the three insertion holes provided in the right side short piece 24 of the lower frame 21. The case where the screwed state is adjusted is the same as that described above.

そして、前記下フレーム21の一対の短辺側片24の両外面間の寸法は正確に497mmに設定されていることから、前記下フレーム21の左側の短辺側片24と前記第1の免震支承1Aの下架台2の右側の側片3との間に正確に1.5mmの隙間Gが形成され、同様に前記下フレーム21右側の短辺側片24と前記第2の免震支承1Bの下架台2の左側の側片3との間にも正確に1.5mmの隙間Gが形成されて、これにより、前記第1の免震支承1Aの下架台2と、前記第2の免震支承1Bの下架台2とは、間隔500mmを有し、かつ、完全に平行配置に位置決めされる。   Since the dimension between the outer surfaces of the pair of short side pieces 24 of the lower frame 21 is accurately set to 497 mm, the short side piece 24 on the left side of the lower frame 21 and the first relief A gap G of exactly 1.5 mm is formed between the right side piece 3 of the base 2 of the seismic support 1A, and similarly the short side piece 24 on the right side of the lower frame 21 and the second seismic isolation support. A gap G of exactly 1.5 mm is also formed between the left side piece 3 of the lower base 2 of 1B, and thereby the lower base 2 of the first seismic isolation bearing 1A and the second The base 2 of the seismic isolation bearing 1B has an interval of 500 mm and is positioned in a completely parallel arrangement.

第1の免震支承1Aの下架台2と第3の免震支承1Cの下架台2との間、第2の免震支承1Bの下架台2と第4の免震支承1Dの下架台2との間、及び第3の免震支承1Cの下架台2と第4の免震支承1Dの下架台2との間に関しても、上述したような前記下フレーム21、下ジョイント31を用いた連結構造を採用することにより、各々相互に間隔500mmを有し、かつ、完全に平行配置に位置決めされる。   Between the base 2 of the first seismic isolation bearing 1A and the base 2 of the third base isolation 1C, the base 2 of the second base isolation 1B and the base 2 of the fourth base isolation 1D And the connection between the lower base 2 of the third seismic isolation bearing 1C and the lower base 2 of the fourth seismic isolation support 1D using the lower frame 21 and the lower joint 31 as described above. By adopting the structure, each is spaced 500 mm from each other and is positioned in a completely parallel arrangement.

次に、前記2個の下ブリッジ41により、前記第1の免震支承1A、第2の免震支承1Bの各架台の中央側(第2の空間部11B側)の側片5、5同士及び第3の免震支承1C、第4の免震支承1Dの各架台の中央側(第3の空間部11C側)の側片5、5同士を各々左右方向で連結する。 Next, by the two lower bridges 41, side pieces 5 on the center side (second space portion 11B side) of each upper base 4 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B , The side pieces 5 and 5 on the center side (the third space portion 11C side) of each of the upper bases 4 of the 5 and the third seismic isolation bearing 1C and the fourth seismic isolation bearing 1D are connected in the left-right direction.

すなわち、一方の下ブリッジ41の垂直片部42に設けた一対の接合片部43、43を各々前記第1の免震支承1A、第2の免震支承1Bの各架台4、4の中央側の側片の外面に等分に接合し、ボルトを用いてこれら接合片部43、43を前記各下架台2の中央側の側片の外面に連結固定し、また、他方の下ブリッジ41の垂直片部42に設けた一対の接合片部43、43を前記第3の免震支承1C、第4の免震支承1Dの各架台4、4の中央側の側片の外面に等分に接合し、ボルトを用いてこれら接合片部43、43を前記各架台の中央側の側片の外面に連結固定する。 That is, the pair of joint pieces 43, 43 provided on the vertical piece 42 of one lower bridge 41 are respectively connected to the centers of the upper bases 4 , 4 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B. The joint pieces 43 and 43 are joined equally to the outer surface of the side piece 5 on the side, and the joint pieces 43 and 43 are connected and fixed to the outer surface of the side piece 5 on the center side of each of the lower mounts 2 by using bolts. A pair of joint pieces 43 and 43 provided on the vertical piece 42 of the bridge 41 are connected to the side pieces 5 on the center side of the upper bases 4 and 4 of the third seismic isolation bearing 1C and the fourth seismic isolation bearing 1D. It joined equally to the outer surface, coupling to fix these joining pieces 43, 43 on the center side outer surface of the side pieces 5 of the upper frame 4 using bolts.

このようにして、4個の下フレーム21、8個の下ジョイント31、2個の下ブリッジ41により第1乃至第4の各免震支承1A乃至1Dを連結した状態を図15に示す。   FIG. 15 shows a state in which the first to fourth seismic isolation bearings 1A to 1D are connected by the four lower frames 21, the eight lower joints 31, and the two lower bridges 41 in this way.

この状態では、前記第1乃至第4の各免震支承1A乃至1Dにおける各下架台2の各側片3は、第1乃至第
4の各空間部11A乃至11Dを挟んで対向するもの同士が正確に500mmの間隔を有するように高精度に位置決めされる
In this state, the side pieces 3 of the undercarriage 2 in the first to fourth seismic isolation bearings 1A to 1D are opposed to each other across the first to fourth space portions 11A to 11D. It is positioned with high accuracy so as to have an interval of exactly 500 mm .

前記第1乃至第4の各免震支承1A乃至1Dの各下架台2の上方に位置する各上架台4についても、上述した各下架台2の場合と同様、第1乃至第4の各空間部11A乃至11Dを挟んで対向するもの同士が正確に500mmの間隔を有するように高精度に位置決めされる。   The first to fourth spaces of the upper bases 4 positioned above the lower bases 2 of the first to fourth seismic isolation bearings 1A to 1D are also the same as those of the lower bases 2 described above. Positioning with high accuracy so that the parts facing each other across the portions 11A to 11D have an accurate spacing of 500 mm.

更に、前記第1乃至第4の各免震支承1A乃至1Dにより囲まれる中央領域には、平面視一辺500mmの正方形状を呈する立体空間である第5の空間部(内部重合空間部)11Eが高精度に形成される。   Further, in the central region surrounded by the first to fourth seismic isolation bearings 1A to 1D, there is a fifth space portion (inner overlapping space portion) 11E that is a three-dimensional space having a square shape with a side of 500 mm in plan view. Formed with high accuracy.

(第1乃至第4の各免震支承1A乃至1Dの各上架台4に対する上ブリッジ61、ピロー81、上スカート91及び上カバー板101による連結)
次に、第1乃至第4の各免震支承1A乃至1Dの各上架台4に関しての二次元連結構造及び連結工程について、図16乃至図20を参照して説明する。
(Connection by the upper bridge 61, the pillow 81, the upper skirt 91, and the upper cover plate 101 to each of the upper mounts 4 of the first to fourth seismic isolation bearings 1A to 1D)
Next, a two-dimensional connection structure and a connection process for the upper mounts 4 of the first to fourth seismic isolation bearings 1A to 1D will be described with reference to FIGS.

まず、図16に示すように、2個の上ブリッジ61のうちの一方の上ブリッジ61により、第1の免震支承1A、第3の免震支承1Cの各上架台4、4の中央側(第1の空間部11A側、第4の空間部11D側)の側片5、5同士を前後方向配置で連結する。   First, as shown in FIG. 16, the upper bridge 61 of one of the two upper bridges 61 has a central side of each of the upper bases 4 and 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C. The side pieces 5, 5 on the first space portion 11 </ b> A side and the fourth space portion 11 </ b> D side are connected in the front-rear direction arrangement.

また、他方の上ブリッジ61により、第2の免震支承1B、第4の免震支承1Dの各上架台4、4の中央側(第1の空間部11A側、第4の空間部11D側)の側片5、5同士を各々前後方向配置で連結する。   Further, the other upper bridge 61 allows the central side (first space portion 11A side, fourth space portion 11D side) of the upper bases 4 and 4 of the second seismic isolation bearing 1B and the fourth seismic isolation bearing 1D. ) Side pieces 5 and 5 are connected in a front-rear direction arrangement.

具体的には、図16、図18に示すように、前記一方の上ブリッジ61を前後方向配置で、かつ、上ブリッジ接合片62の第1垂直片部63が右側となる配置として、この第1垂直片部63の前側端部側を、前記第1の免震支承1Aの上架台4の右側の側片5に接合してボルトを用いて前記側片5に連結する。   Specifically, as shown in FIGS. 16 and 18, the first upper bridge 61 is arranged in the front-rear direction, and the first vertical piece 63 of the upper bridge joining piece 62 is on the right side. The front end portion of one vertical piece 63 is joined to the right side piece 5 of the upper base 4 of the first seismic isolation bearing 1A and connected to the side piece 5 using a bolt.

また、前記一方の上ブリッジ61の上ブリッジ接合片62の第1垂直片部63の後側端部側を、前記第3の免震支承1Cの上架台4の右側の側片5に接合してボルトを用いて前記側片5に連結する。   Further, the rear end portion side of the first vertical piece 63 of the upper bridge joining piece 62 of the one upper bridge 61 is joined to the right side piece 5 of the gantry 4 of the third seismic isolation bearing 1C. Then, it is connected to the side piece 5 using a bolt.

同様にして、他方の上ブリッジ61を前後方向配置で、かつ、上ブリッジ接合片62の第1垂直片部63が左側となる配置として、この第1垂直片部63の前側端部側を、前記第2の免震支承1Bの上架台4の左側の側片5に接合してボルトを用いて前記側片5に連結する。   Similarly, the other upper bridge 61 is arranged in the front-rear direction and the first vertical piece 63 of the upper bridge joining piece 62 is on the left side, and the front end side of the first vertical piece 63 is The second seismic isolation bearing 1B is joined to the left side piece 5 of the gantry 4 and connected to the side piece 5 using bolts.

また、前記他方の上ブリッジ61の上ブリッジ接合片62の第1垂直片部63の後側端部側を、前記第4の免震支承1Dの上架台4の左側の側片5に接合してボルトを用いて前記側片5に連結する。   Further, the rear end portion side of the first vertical piece portion 63 of the upper bridge joint piece 62 of the other upper bridge 61 is joined to the left side piece 5 of the gantry 4 of the fourth seismic isolation bearing 1D. Then, it is connected to the side piece 5 using a bolt.

これにより、既述したように、一方の上ブリッジ61における上ブリッジ接合片62の中央に近い2個の上カバー板受片66、66は、前記第5の空間部11Eにおける左側の両隅部(前側、後側)に収まり、その外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの左側で、かつ、中央側の隅部と、前記第4の空間部11Dの左側で、かつ、中央側の隅部に収まる。   As a result, as described above, the two upper cover plate receiving pieces 66, 66 near the center of the upper bridge joining piece 62 in one upper bridge 61 are formed at the left corners of the fifth space portion 11E. (The front side and the rear side), and the two upper cover plate receiving pieces 66, 66 on the outer side are respectively the left side of the first space portion 11A and the corner on the center side, and the fourth side It fits on the left side of the space 11D and in the corner on the center side.

更に、一方の上ブリッジ61における上ブリッジ接合補助片67に設けた2個の上カバー板受片71、71は、前記第2の空間部11Bの中央側で前側、後側の各隅部に各々収まる。   Further, the two upper cover plate receiving pieces 71, 71 provided on the upper bridge joining auxiliary piece 67 in one upper bridge 61 are provided at the front and rear corners on the center side of the second space portion 11 </ b> B. Each fits.

同様に、他方の上ブリッジ61における中央に近い2個の上カバー板受片66、66は、前記第5の空間部11Eの右側の両隅部(前側、後側)に収まり、その外側の2個の上カバー板受片66、66は、各々前記第1の空間部11Aの右側で、かつ、中央側の隅部と、前記第4の空間部11Dの右側で、かつ、中央側の隅部に収まり、他方の上ブリッジ61における上ブリッジ接合補助片67に設けた2個の上カバー板受片71,71は、前記第3の空間部11Cの中央側で前側、後側の各隅部に各々収まる。   Similarly, the two upper cover plate receiving pieces 66, 66 near the center of the other upper bridge 61 are accommodated in the right corners (front side, rear side) of the fifth space portion 11E, The two upper cover plate receiving pieces 66, 66 are respectively located on the right side of the first space portion 11A, on the central corner, on the right side of the fourth space portion 11D, and on the center side. The two upper cover plate receiving pieces 71 and 71 which are placed in the corner portion and provided on the upper bridge joining auxiliary piece 67 in the other upper bridge 61 are front side and rear side at the center side of the third space portion 11C. Fits in each corner.

次に、図16に示すように、2個のピロー81、81を用意し、第1の空間部11Aに配置した前記下フレーム21の上方となる配置で、一方のピロー81の垂直片部82をボルトにより第1の免震支承1Aの上架台4の右側の側片5に密接状態で連結して、上スカート受片部84が第2の免震支承1Bの上架台4側に向けて突出する状態とする。   Next, as shown in FIG. 16, two pillows 81, 81 are prepared and arranged above the lower frame 21 arranged in the first space portion 11 </ b> A, and the vertical piece 82 of one pillow 81 is provided. Are connected in close contact with the right side piece 5 of the upper base 4 of the first seismic isolation bearing 1A, and the upper skirt receiving piece 84 faces the upper base 4 side of the second seismic isolation bearing 1B. Protruding state.

同様に、前記下フレーム21の上方となる配置で、他方のピロー81の垂直片部82をボルトにより第2の免震支承1Bの上架台4の左側の側片5に密接状態で連結して、上スカート受片部84が第1の免震支承1Aの上架台4側に向けて突出する状態とする。   Similarly, in the arrangement above the lower frame 21, the vertical piece 82 of the other pillow 81 is closely connected to the left side piece 5 of the upper base 4 of the second seismic isolation bearing 1B by bolts. The upper skirt receiving piece 84 is in a state of protruding toward the gantry 4 side of the first seismic isolation bearing 1A.

すなわち、2個のピロー81の各上スカート受片部84、84を、前記下フレーム21の上方で対向する配置とする。   That is, the upper skirt receiving pieces 84 and 84 of the two pillows 81 are arranged to face each other above the lower frame 21.

前記第2の空間部11B、第3の空間部11C、第4の空間部11Dに各々配置した各前記下フレーム21の上方においても、上述した場合と同様にして各々2個のピロー81、81を配置する。   In the same manner as described above, two pillows 81, 81 are also provided above the lower frames 21 arranged in the second space portion 11B, the third space portion 11C, and the fourth space portion 11D, respectively. Place.

上述したような第1乃至第4の各免震支承1A乃至1Dの各上架台4に対して、2個の上ブリッジ61、61を配置することによって、図17に示すように、前記第5の空間部11Eの四隅には、各々上カバー板受片66が各上架台4の上面よりも低位置となる状態で正方形配置に、かつ、水平方向に関して面一となる態様で存在することになる。   By arranging two upper bridges 61 and 61 for each upper base 4 of each of the first to fourth seismic isolation bearings 1A to 1D as described above, as shown in FIG. In each of the four corners of the space portion 11E, the upper cover plate receiving pieces 66 are in a square arrangement in a state where the upper cover plate receiving pieces 66 are positioned lower than the upper surfaces of the upper mounts 4 and in a manner that is flush with the horizontal direction. Become.

また、前記第1の空間部11A、第4の空間部11Dの各中央側両隅部にも、2個ずつ合計4個の上カバー板受片66が前記第5の空間部11Eの場合と同様、各上架台4の上面よりも低位置となる状態で、かつ、水平方向に関して面一となる態様で存在することになる。   Further, a total of four upper cover plate receiving pieces 66 at the center side corners of each of the first space portion 11A and the fourth space portion 11D are provided for the fifth space portion 11E. Similarly, it exists in the state which becomes a position lower than the upper surface of each upper stand 4 and is flush with the horizontal direction.

更に、前記第2の空間部11Bの中央側両隅部には、前記上カバー板受片71,71が各々各上架台4の上面よりも低位置となる状態で、かつ、水平方向に関して面一となる態様で存在し、前記第3の空間部11Cの中央側両隅部にも、前記上カバー板受片71,71が各々各上架台4の上面よりも低位置となる状態で、かつ、水平方向に関して面一となる態様で存在することになる。   Further, the upper cover plate receiving pieces 71 and 71 are respectively positioned at both lower corners of the second space portion 11B at a position lower than the upper surface of each upper pedestal 4 and in the horizontal direction. The upper cover plate receiving pieces 71 and 71 are located at lower positions than the upper surfaces of the upper mounts 4 at both corners on the center side of the third space portion 11C. And it exists in the aspect which becomes flush | planar about a horizontal direction.

このようにして、第1乃至第4の各免震支承1A乃至1Dの各上架台4に対して、2個の上ブリッジ61、61、8個のピロー81を配置した状態を図17に示す。   FIG. 17 shows a state in which two upper bridges 61, 61 and eight pillows 81 are arranged in this way on each of the upper bases 4 of the first to fourth seismic isolation bearings 1A to 1D. .

次に、第1乃至第4の各免震支承1A乃至1Dを図17に示す状態に連結した後、4個の上スカート91をこれら第1乃至第4の各免震支承1A乃至1Dに連結する。   Next, after connecting the first to fourth seismic isolation bearings 1A to 1D in the state shown in FIG. 17, the four upper skirts 91 are connected to the first to fourth seismic isolation bearings 1A to 1D. To do.

図18(図18下欄)は、第1の免震支承1A、第2の免震支承1Bの各上架台4の前側端面に上スカート91を連結した状態を示すものである。   FIG. 18 (bottom of FIG. 18) shows a state in which the upper skirt 91 is connected to the front end face of each upper base 4 of the first seismic isolation bearing 1A and the second seismic isolation bearing 1B.

具体的には、前記上スカート91における外側スカート片92を前側、内側スカート片95を第1の空間部11A側とし、かつ、前記内側水平片部97が第1の空間部11A内に挿入される状態として前記外側垂直片部93、内側水平片部97の両隅側を第1の免震支承1A、第2の免震支承1Bの各上架台4の各側片5の前側端面に接合し、ボルトを用いてこれらを各上架台4に連結する。   Specifically, the outer skirt piece 92 of the upper skirt 91 is the front side, the inner skirt piece 95 is the first space portion 11A side, and the inner horizontal piece portion 97 is inserted into the first space portion 11A. As a state, both corners of the outer vertical piece 93 and the inner horizontal piece 97 are joined to the front end face of each side piece 5 of each upper base 4 of the first seismic isolation bearing 1A and second seismic isolation bearing 1B. Then, these are connected to each upper mount 4 using bolts.

これにより、前記上スカート91における内側水平片部97の両隅下面は、前記2個のピロー81の各上スカート受片部84上に接触して支持されるとともに、内側水平片部97の両隅に設けた一対の上カバー板受片99、99は、前記第1の免震支承1A、第2の免震支承1Bの各上架台4の各側片5の右側、左側に位置して、かつ、前記第1の空間部11Aの前側両隅に既述した前記上カバー板受片66と同一の高さとなる状態で存在することになる。   As a result, the lower surfaces of both corners of the inner horizontal piece 97 in the upper skirt 91 are supported in contact with the upper skirt receiving pieces 84 of the two pillows 81, and both the inner horizontal pieces 97 are also supported. A pair of upper cover plate receiving pieces 99, 99 provided at the corners are located on the right side and the left side of each side piece 5 of each upper base 4 of the first seismic isolation bearing 1A and second seismic isolation bearing 1B. And it exists in the state which becomes the same height as the above-mentioned upper cover board receiving piece 66 in the front side both corners of said 1st space part 11A.

第1の免震支承1A、第3の免震支承1Cの各上架台4の左側端面間及び第2の空間部11B、第2の免震支承1B、第4の免震支承1Dの各上架台4の右側端面間及び第3の空間部11B、並びに、第3の免震支承1C、第4の免震支承1Dの各上架台4の後側端面間及び第4の空間部11Dに関しても、上述した場合と同様にして各々上スカート91が連結される。   Between the left side end surfaces of the upper bases 4 of the first seismic isolation bearing 1A and the third seismic isolation bearing 1C and the second space 11B, the second seismic isolation bearing 1B, and the fourth seismic isolation bearing 1D Also between the right end surface of the base 4 and the third space portion 11B, and between the rear side end surfaces of the upper bases 4 of the third seismic isolation bearing 1C and the fourth seismic isolation bearing 1D and the fourth space portion 11D. The upper skirts 91 are connected in the same manner as described above.

この結果、前記第1の空間部11Aにおける前記第1の免震支承1Aの上架台4の右側で、かつ、前側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片66が配置され、前記第2の免震支承1Bの上架台4の左側で前側隅部、中央側隅部にも前記上カバー板受片99、上カバー板受片66が配置され、かつ、これら4個の上カバー板受片99、99、上カバー板受片66、66は、各上架台4の上面よりも低位置において同一高さの状態となる。   As a result, the upper cover plate receiving piece 99 and the upper cover are provided on the right side of the upper base 4 of the first seismic isolation bearing 1A in the first space portion 11A, and at the front corner and the central corner. A plate receiving piece 66 is arranged, and the upper cover plate receiving piece 99 and the upper cover plate receiving piece 66 are also arranged at the front corner and the central corner on the left side of the gantry 4 of the second seismic isolation bearing 1B. The four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 66 and 66 are in the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第1の空間部11Aの四隅には、左右両側の上架台4の隣に位置して、合計4個の上カバー板受片99、99、上カバー板受片66、66が配置される。   That is, a total of four upper cover plate receiving pieces 99 and 99 and upper cover plate receiving pieces 66 and 66 are arranged at the four corners of the first space portion 11A, next to the left and right upper mounts 4. Is done.

前記第2の空間部11Aにおける前記第1の免震支承1Aの上架台4の中央側で、かつ、左側隅部、中央隅部には、前記前記上カバー板受片99、上カバー板受片71が配置され、前記第3の免震支承1Cの上架台4の中央側で、かつ、左側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片71が配置され、これら4個の上カバー板受片99、99、上カバー板受片71、71は、各上架台4の上面よりも低位置において同一高さの状態となる。   In the second space 11A, on the center side of the upper base 4 of the first seismic isolation bearing 1A, and on the left corner and the central corner are the upper cover plate receiving piece 99, the upper cover plate holder. A piece 71 is disposed, and the upper cover plate receiving piece 99 and the upper cover plate receiving piece 71 are provided at the center side of the upper base 4 of the third seismic isolation bearing 1C and at the left corner and the central corner. The four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 71 and 71 are at the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第2の空間部11Bの四隅には、前後両側の上架台4の隣に位置して、合計4個の上カバー板受片99、99、上カバー板受片71、71が配置される。   That is, a total of four upper cover plate receiving pieces 99, 99 and upper cover plate receiving pieces 71, 71 are arranged at the four corners of the second space portion 11B, next to the upper and lower gantry 4 on both sides. Is done.

前記第3の空間部11Cにおける前記第2の免震支承1Bの上架台4の中央側で、かつ、右側隅部、中央側隅部には、前記前記上カバー板受片99、上カバー板受片71が配置され、前記第3の免震支承1Cの上架台4の中央側で、かつ、左側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片71が配置され、これら4個の上カバー板受片99、99、上カバー板受片71、71は、各上架台4の上面よりも低位置において同一高さの状態となる。   The upper cover plate receiving piece 99, the upper cover plate are provided at the center side of the upper base 4 of the second seismic isolation bearing 1B in the third space portion 11C, and at the right corner and the central corner. A receiving piece 71 is disposed, and the upper cover plate receiving piece 99 and the upper cover plate receiving piece are provided at the center side of the upper base 4 of the third seismic isolation bearing 1C and at the left corner and the central corner. 71 is arranged, and the four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 71 and 71 are in the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第3の空間部11Cの四隅には、前後両側の上架台4の隣に位置して合計4個の上カバー板受片99、99、上カバー板受片71、71が配置される。   That is, a total of four upper cover plate receiving pieces 99 and 99, and upper cover plate receiving pieces 71 and 71 are arranged at the four corners of the third space portion 11C next to the upper and lower gantry 4 respectively. The

前記第4の空間部11Dにおける前記第3の免震支承1Cの上架台4の中央側で、かつ、後側隅部、中央側隅部には、前記前記上カバー板受片99、上カバー板受片66が配置され、前記第4の免震支承1Dの上架台4の中央側で、かつ、後側隅部、中央側隅部には、前記上カバー板受片99、上カバー板受片66が配置され、これら4個の上カバー板受片99、99、上カバー板受片66、66は、各上架台4の上面よりも低位置において同一高さの状態となる。   In the fourth space 11D, on the center side of the upper base 4 of the third seismic isolation bearing 1C, and on the rear corner and the center corner, the upper cover plate receiving piece 99, the upper cover A plate receiving piece 66 is disposed on the center side of the upper base 4 of the fourth seismic isolation bearing 1D, and at the rear corner and the central corner, the upper cover plate receiving piece 99, the upper cover plate The receiving pieces 66 are arranged, and the four upper cover plate receiving pieces 99 and 99 and the upper cover plate receiving pieces 66 and 66 are in the same height at a position lower than the upper surface of each upper mount 4.

すなわち、前記第4の空間部11Dの四隅には、左右両側の上架台4の隣に位置して、合計4個の上カバー板受片99、99、上カバー板受片66、66が配置される。
更に、前記第5の空間部11Eの四隅には、合計4個の上カバー板受片66が配置される。
That is, a total of four upper cover plate receiving pieces 99 and 99 and upper cover plate receiving pieces 66 and 66 are arranged at the four corners of the fourth space portion 11D, next to the left and right upper mounts 4. Is done.
Further, a total of four upper cover plate receiving pieces 66 are disposed at the four corners of the fifth space portion 11E.

このようにして、第1乃至第4の各免震支承1A乃至1Dにおける各上架台4の前後左右の各外面に対して、4個の上スカート91を連結した状態を図19に示す。 FIG. 19 shows a state in which the four upper skirts 91 are connected to the front, rear, left, and right outer surfaces of the upper mounts 4 in the first to fourth seismic isolation bearings 1A to 1D in this way.

図19から明らかなように、前記第1乃至第5の空間部11A乃至11には、各々各上架台4の隣に位置して平面視正方形状で、一辺が500mmの上カバー板101用の5箇所の装着領域が形成される。 As apparent from FIG. 19, wherein the first to fifth space 11A to 11 E, each in plan view a square shape are located next to each of the upper frame 4, a cover plate 101 on the one side 500mm These five mounting areas are formed.

そして、前記第1乃至第5の空間部11A乃至11に形成される各装着領域に対して合計5枚の上カバー板101を装着することで、図20に示すように、4台の免震支承1A乃至1Dと、5枚の上カバー板101とを前後左右に、かつ、高精度に位置決めされた状態で二次元連結し、上面を平坦とした免震床111を得ることができる。 Then, the first, by attaching a fifth total of five on the cover plate 101 with respect to each placement region formed in the space 11A to 11 E, shown in Figure 20, four Men The seismic bearings 1A to 1D and the five upper cover plates 101 are two-dimensionally connected in a state of being accurately positioned in the front-rear and left-right directions, and the seismic isolation floor 111 having a flat upper surface can be obtained.

最後に、前記各下架台2側の4個の下ジョイント31を除去した後、4個の下スカート51を前記下フレーム21の長辺側片23の外側端面を覆う態様でこの下フレーム21にボルト止めにて連結固定し、フレーム21の長辺側片23の外側端面の外観体裁を良好なものとすることで、免震床111が完成し、一連の連結工程が終了する。   Finally, after removing the four lower joints 31 on each of the lower frame 2 side, the four lower skirts 51 are attached to the lower frame 21 so as to cover the outer end face of the long side piece 23 of the lower frame 21. By connecting and fixing by bolting and making the appearance of the outer end face of the long side piece 23 of the frame 21 good, the seismic isolation floor 111 is completed, and a series of connecting steps is completed.

このようにして完成した免震床111を固定床112上に配置した状態の平面及び正面を図1、図2に示す。   FIGS. 1 and 2 show a plan view and a front view of the seismic isolation floor 111 thus completed arranged on the fixed floor 112. FIG.

以上説明した本実施例によれば、所要数の下フレーム21、下ジョイント31からなる下架台位置決め連結機構、所要数の下ブリッジ41と上ブリッジ61からなる上架台内部連結機構、所要数の上スカート91からなる上架台端面連結機構、所要数の上カバー板101、及び所要数の下スカート51を用いる構成の基に、免震床を構成する第1乃至第4の各免震支承1A乃至1Dにおける相互の間隔の誤差(間隔のズレ)を解消して複数の各免震支承を正確に設置するための構造、すなわち、第1乃至第4の各免震支承1A乃至1Dを分離状態で前後左右に高精度に位置決めしつつ二次元配列して免震床111を構成し、第1の乃至第4の免震支承1A乃至1Dを確実に連動させて高性能の免震性能を発揮し得るとともに、免震床111の上面を完全な平坦面として免震対象物113の配置制限を無くすことができ、しかも、使用する免震支承の設置台数の増設も簡略であり、所望の床面積を有する免震床111を簡略、容易に実現し得る免震床用免震支承の二次元連結構造を実現することができる。   According to the present embodiment described above, the required number of lower frames 21 and the lower base positioning and connecting mechanism including the lower joint 31, the required number of upper base internal connection mechanisms including the lower bridge 41 and the upper bridge 61, and the required number of upper frames. Each of the first to fourth seismic isolation bearings 1A to 1A constituting the seismic isolation floor based on the configuration using the upper frame end face coupling mechanism including the skirt 91, the required number of upper cover plates 101, and the required number of lower skirts 51. A structure for accurately installing each of the plurality of base-isolated bearings by eliminating the error (interval gap) between each other in 1D, that is, the first to fourth base-isolated bearings 1A to 1D are separated. The seismic isolation floor 111 is configured by two-dimensionally arranging it with high precision positioning in the front and rear, left and right, and the first to fourth seismic isolation bearings 1A to 1D are reliably linked to demonstrate high performance seismic isolation performance. Of the seismic isolation floor 111 The placement of the base isolation object 113 can be eliminated by making the surface completely flat, and the number of seismic isolation bearings to be used can be increased, simplifying the base isolation floor 111 having the desired floor area. Thus, it is possible to realize a two-dimensional connection structure of seismic isolation bearings for seismic isolation floors that can be easily realized.

前記第1の免震支承1A(第2乃至第4の免震支承1B乃至1Dも同様)、免震床111の具体的構成の一例について言及すると、例えば、第1の免震支承1Aのサイズは、500×500×99(mm)、最大変位量±390mm、搭載許容荷重5000(500)N(kgf)/1基、質量23kgであり、免震要素としては、ロータリーフリクションダンパーを採用した減衰機構、レール方式の支承機構を採用した例を挙げることができる。   When mentioning an example of a specific configuration of the first seismic isolation bearing 1A (the second to fourth seismic isolation bearings 1B to 1D) and the seismic isolation floor 111, for example, the size of the first seismic isolation bearing 1A Is 500 × 500 × 99 (mm), maximum displacement ± 390 mm, allowable load of mounting 5000 (500) N (kgf) / 1 unit, mass 23 kg, damping using a rotary friction damper as a seismic isolation element An example that employs a mechanism and a rail-type support mechanism can be given.

前記第1乃至第4の各免震支承1A乃至1Dとしては、これに限らず公知の構造の各種免震支承を用いることができることはいうまでもない。   Needless to say, the first to fourth seismic isolation bearings 1A to 1D are not limited to this, and various seismic isolation bearings having a known structure can be used.

また、前記免震床111の面積は最低1平方メートルで無制限とすることができ、免震床111の高さ125〜600mmに設定可能である。   Further, the area of the seismic isolation floor 111 is at least 1 square meter and can be unlimited, and the height of the base isolation floor 111 can be set to 125 to 600 mm.

本実施例における免震床111の特徴としては、
(a)エキスパンション(緩衝板)のない超薄型(125mm)で、しかも、最大変位量±390[mm]の免震床111を構成できる。
(b)免震性能は、レール機構の採用により、搭載荷重が変わっても安定で、揺れを1/6に低減することができ、また、減衰性能は粘性ダンパーとは違い、搭載荷重に比例した減衰力を発揮するロータリーフリクションダンパーの採用により水平変位を抑制し、長周期地震波にも対応できる。
(c)復元機能で余震に対するリスクを回避する(事故の発生しやすい復元ばね等使用していない)。
(d)免震性能を阻害するエキスパンションと固定床112の接触(摩擦抵抗)がないので、十二分に免震効果を発揮させることができる。
(e)免震床111と固定床112の間の隙間がなく、完全に分離しているため安全、かつ、安心な構成とすることができ、また、エキスパンションがないため、有効免震床面積が拡大するとともに、超薄型なので天井高さ制限もクリアできる。
(f)免震床111上に設置されるコンピュータのエラーの一因とされるジンクウィスカ(亜鉛から発生する針状結晶)を発生させる材料は使用していない。
(g)高剛性の第1乃至第4の各免震支承1A乃至1Dであることから、薄型重荷重対応の多種多様な機器免震装置、薄型免震床等の支承の組合せ連結することで、自由自在に最適なレイアウトができ、施工後、簡単に縮小、増設も可能である。
(h)現在設置のOAフロアーを免震床111にリニューアルすることもできる。
(i)第1の免震支承1A等の上でなくスラブ上に安全に十分な配線領域を確保し、床下空調が可能である。
(j)グラウト(不陸調整モルタル)工事等は不用で、全てボルト締結のみのドライ工法を採用することで、工期短縮、施工現場での調整が不要であり、工事の省力化で、優れたコストパフォーマンスとメンテナンスフリーを実現できる。
等の諸点を挙げることができる。
As a feature of the seismic isolation floor 111 in this embodiment,
(A) An ultra-thin (125 mm) without expansion (buffer plate) and a seismic isolation floor 111 having a maximum displacement of ± 390 [mm] can be configured.
(B) By adopting a rail mechanism, the seismic isolation performance is stable even if the mounting load changes, and the vibration can be reduced to 1/6. Also, the damping performance is proportional to the mounting load, unlike the viscous damper. Horizontal displacement is suppressed by adopting a rotary friction damper that exhibits the damping force, and it can cope with long-period seismic waves.
(C) Avoid the risk of aftershocks with the restoration function (no use of restoration springs that are prone to accidents).
(D) Since there is no contact (friction resistance) between the expansion and the fixed floor 112 that hinders the seismic isolation performance, the seismic isolation effect can be fully exhibited.
(E) There is no gap between the seismic isolation floor 111 and the fixed floor 112, and since it is completely separated, it can be configured to be safe and secure, and since there is no expansion, the effective seismic isolation floor area As it expands, the ultra-thin shape can clear the ceiling height restriction.
(F) A material that generates zinc whiskers (needle crystals generated from zinc), which is a cause of errors in computers installed on the seismic isolation floor 111, is not used.
(G) Since each of the high-stiffness first to fourth seismic isolation bearings 1A to 1D is connected by combining various types of equipment such as thin and heavy load seismic isolation devices and thin base isolation floors. The optimal layout can be freely adjusted, and it can be easily reduced or expanded after construction.
(H) The currently installed OA floor can be renewed to the seismic isolation floor 111.
(I) A sufficient wiring area can be secured safely on the slab instead of on the first seismic isolation bearing 1A or the like, and underfloor air conditioning is possible.
(J) No need for grout (non-land adjustment mortar) construction, etc. By adopting a dry construction method that only bolts are tightened, the construction period is shortened and adjustment at the construction site is not required. Cost performance and maintenance-free can be realized.
The following points can be mentioned.

図21は、本実施例に係る免震床用免震支承の二次元連結構造の拡張例を示すものであり、上述した実施例の二次元連結構造を採用して、前後方向にN個(Nは2以上の正の整数)の免震支承1を上カバー板101を間に配置しつつ配列し、左右方向にM個(Mは2以上の正の整数)の免震支承1を上カバー板101を間に配置しつつ配列して、広面積の免震床111Aを構成したものである。   FIG. 21 shows an example of expansion of the two-dimensional connection structure of the seismic isolation bearing for the base isolation floor according to the present embodiment. The two-dimensional connection structure of the above-described embodiment is adopted, and N pieces ( N is a positive integer greater than or equal to 2) with the upper cover plate 101 in between, and M (M is a positive integer greater than or equal to 2) seismic isolation bearings 1 The seismic isolation floor 111A having a large area is configured by arranging the cover plates 101 in between.

この場合、前記上カバー板101の枚数Kは下記のように設定される。
すなわち、一般的に、K=(M−1)×N+{M+(M−1)}×(N−1)=(M−1)×N+(2M−1)×(N−1)枚となる。
In this case, the number K of the upper cover plates 101 is set as follows.
That is, in general, K = (M−1) × N + {M + (M−1)} × (N−1) = (M−1) × N + (2M−1) × (N−1) sheets Become.

例えば、既述した実施例の場合には、M=2、N=2であるから、上式からK=5枚となり、また、M=3、N=3の場合(免震支承1が9台の場合)には、上式からK=16枚となり、M=4、N=4の場合(免震支承1が16台の場合)には、上式からK=33枚となる。   For example, in the case of the embodiment described above, M = 2 and N = 2, so that K = 5 from the above formula, and in the case of M = 3 and N = 3 (the seismic isolation bearing 1 is 9). In the case of a stand), K = 16 from the above formula, and in the case of M = 4 and N = 4 (when the seismic isolation bearing 1 is 16), K = 33 from the above formula.

図21に示す拡張例の免震床用免震支承の二次元連結構造によれば、既述した実施例の場合と同様な構成で、かつ、一方向にM個(Mは2以上の正の整数)、他方向にN個(Nは2以上の正の整数)、合計M×N個分離配置に配列する複数の免震支承1と、各上架台4間に形成される各空間部内に装着する(M−1)×N+(2M−1)×(N−1)の式で決定される所要数の上カバー板101とを具備する構成の基に、既述した実施例の場合と同様な効果を奏し、かつ、前記免震支承1、上カバー板101の数を設置場所の規模の大小に応じ選択することで、所望の床面積の免震床111Aを簡略に実現し得る免震床用免震支承の二次元連結構造を実現し、提供することができる。   According to the two-dimensional connecting structure of the seismic isolation bearing for seismic isolation floor shown in FIG. 21, the configuration is the same as that of the above-described embodiment, and M pieces in one direction (M is a positive number of 2 or more). ), N in the other direction (N is a positive integer greater than or equal to 2), a total of M × N seismic isolation bearings 1 arranged in a separate arrangement, and each space portion formed between each upper frame 4 In the case of the embodiment described above, based on the configuration comprising the required number of upper cover plates 101 determined by the equation of (M-1) × N + (2M−1) × (N−1) The seismic isolation floor 111A having a desired floor area can be simply realized by selecting the number of the base isolation bearings 1 and the upper cover plate 101 according to the size of the installation location. A two-dimensional connection structure for seismic isolation bearings for seismic isolation floors can be realized and provided.

本考案の免震床用免震支承の二次元連結構造は、オフィスビル、工場、美術館、博物館等において、コンピュータ装置、各種機械、設備、精密機器、美術品、骨董品等のような免震対象物の免震用として広範に適用可能である。   The two-dimensional connection structure of the seismic isolation bearing for the seismic isolation floor of the present invention is a seismic isolation system such as computer equipment, various machines, equipment, precision instruments, arts, antiques, etc. in office buildings, factories, museums, museums, etc. Widely applicable for seismic isolation of objects.

1 免震支承
1A 第1の免震支承
1B 第2の免震支承
1C 第3の免震支承
1D 第4の免震支承
2 下架台
3 側片
4 上架台
5 側片
11A 第1の空間部
11B 第2の空間部
11C 第3の空間部
11D 第4の空間部
11E 第5の空間部
21 下フレーム
22 底片
23 長辺側片
24 短辺側片
25a ボルト
25b ボルト
31 下ジョイント
41 下ブリッジ
42 垂直片部
43 接合片部
44 水平片部
51 下スカート
52 下スカート垂直片部
53 下スカート水平片部
61 上ブリッジ
62 上ブリッジ接合片
63 第1垂直片部
64 第1水平片部
65 垂下片
66 上カバー板受片
67 上ブリッジ接合補助片
68 第2垂直片部
69 第2水平片部
70 垂下片
71 上カバー板受片
81 ピロー
82 垂直片部
83 水平片部
84 上スカート受片部
91 上スカート
92 外側スカート片
93 外側垂直片部
94 外側水平片部
95 内側スカート片
96 内側垂直片部
97 内側水平片部
98 垂下片
99 上カバー板受片
101 上カバー板
111 免震床
111A 免震床
112 固定床
113 免震対象物
DESCRIPTION OF SYMBOLS 1 Seismic isolation bearing 1A 1st seismic isolation bearing 1B 2nd seismic isolation bearing 1C 3rd seismic isolation bearing 1D 4th seismic isolation bearing 2 Lower stand 3 Side piece 4 Upper stand 5 Side piece 11A 1st space part 11B 2nd space part 11C 3rd space part 11D 4th space part 11E 5th space part 21 Lower frame 22 Bottom piece 23 Long side piece 24 Short side piece 25a Bolt 25b Bolt 31 Lower joint 41 Lower bridge 42 Vertical piece 43 Joint piece 44 Horizontal piece 51 Lower skirt 52 Lower skirt vertical piece 53 Lower skirt horizontal piece 61 Upper bridge 62 Upper bridge joined piece 63 First vertical piece 64 First horizontal piece 65 Drooping piece 66 Upper cover plate receiving piece 67 Upper bridge joining auxiliary piece 68 Second vertical piece 69 Second horizontal piece 70 Suspended piece 71 Upper cover plate receiving piece 81 Pillow 82 Vertical piece 83 Horizontal piece 84 Upper skirt receiving portion 91 Upper skirt 92 Outer skirt piece 93 Outer vertical piece portion 94 Outer horizontal piece portion 95 Inner skirt piece 96 Inner vertical piece portion 97 Inner horizontal piece portion 98 Drooping piece 99 Upper cover plate receiving piece 101 Upper cover plate 111 Seismic isolation floor 111A Seismic isolation floor 112 Fixed floor 113 Seismic isolation object

Claims (2)

下架台と、この下架台と同寸法の上架台と、前記下架台、上架台間に配置した免震要素とを具備し、略立方体状とするとともに、前記下架台、上架台を前記免震要素の免震機能に応じて特定方向に相対移動し得るように構成した複数の免震支承を、一方向と、これに直交する他方向とに各々隣り合う免震支承間に空間部を有しつつ分離配列、かつ、二次元配列で連結して、上面に免震床領域を形成する免震床用免震支承の二次元連結構造であって、
前記各免震支承のうちの外側端面を形成する各免震支承における前記空間部を隔て隣り合う下架台同士の各側片間を所定の寸法となるように高精度に位置決めして連結する所要数の下架台位置決め連結体、及びこの下架台位置決め連結体の外側端面と前記下架台同士の外側端面に臨む各側片間を仮止めする所要数の仮止片とを備える下架台位置決め連結機構と、
前記各免震支承の内側領域で、下架台同士が一方向で空間部を隔て隣り合い、前記各下架台の他方向に沿った側片同士が対向する一対ずつの両免震支承における前記各下架台の一方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を一方向に貫いて、かつ、内部重合空間部毎に2個並列配置する態様で連結する所要数の下架台内部連結体を備える下架台内部連結機構と、
前記各免震支承の内側領域で、上架台同士が他方向で空間部を隔て隣り合い、各上架台の一方向に沿った側片同士が対向する一対ずつの両免震支承における前記各上架台の他方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を他方向に貫いて、かつ、内部重合空間部毎に他方向で2個並列配置する態様で連結するするとともに、前記内部重合空間部の四隅に上カバー板用の4個の受部を、両側に免震支承を有する空間部における前記内部重合空間部の隣位置の両隅部に上カバー板用の2個の受部を同一高さで形成する上架台内部連結体を備える上架台内部連結機構と、
前記各免震支承のうちの外側端面を形成する各免震支承における空間部を隔て隣り合う各外側端面側の側片同士を前記空間部の外側端面を覆うようにして連結するとともに、前記下架台側の前記各架台位置決め連結体の上方に位置して、前記空間部の外側端面側の両隅に上カバー板用の2個の受部を形成し、前記上架台内部連結体が形成する2個の受部と併せて同一高さで4個構成とする上架台端面連結体を備える上架台端面連結機構と、
前記各上架台間の各空間部、内部重合空間部に形成される各々4個ずつの受部に、各上架台の上面と面一な平坦面を呈するように装着し上面に上架台上面とともに平坦な免震床領域を形成する所要数の上カバー板と、
前記仮止片を除去した後の前記下架台位置決め連結体の外端面側を覆うようにしてこの下架台位置決め連結体に取り付ける下架台間覆い体と、
を具備し、
免震床を構成する複数の免震支承における相互の間隔の誤差或いは間隔のズレを解消して複数の各免震支承を正確に設置できるようにしたことを特徴とする免震床用免震支承の二次元連結構造。
A lower base, an upper base of the same size as the lower base, and a base isolation element disposed between the lower base and the upper base. The base base has a substantially cubic shape, and the base base and the upper base are A plurality of seismic isolation bearings that can be moved relative to each other in a specific direction according to the seismic isolation function of the element, have a space between the seismic isolation bearings adjacent to each other in one direction and the other direction orthogonal thereto. However, it is a two-dimensional connection structure of seismic isolation bearings for seismic isolation floors that are separated and connected in a two-dimensional array to form a base isolation floor region on the upper surface,
It is necessary to position and connect each side piece of adjacent bases with high accuracy so as to have a predetermined dimension with each space base in each seismic isolation bearing forming the outer end surface of each seismic isolation bearing. A number of lower base positioning connecting bodies, and a lower base positioning positioning mechanism having a required number of temporary fixing pieces for temporarily fixing between the outer end surfaces of the lower base positioning connecting bodies and the side pieces facing the outer end surfaces of the lower bases. When,
In the inner region of each of the base isolation bearings, the bases are adjacent to each other with a space in one direction, and the side pieces along the other direction of the bases are opposed to each other in each pair of base isolation bases. In a mode in which two side pieces along one direction of the undercarriage pierce in one direction through the internal polymerization space part where each space part in one direction and the other direction overlap, and are arranged in parallel for each internal polymerization space part. An undercarriage internal connection mechanism including a required number of undercarriage internal connection bodies to be connected;
In the inner region of each of the base isolation bearings, the upper bases are adjacent to each other with a space in the other direction and the side pieces along one direction of the upper bases face each other. Side pieces along the other direction of the table are arranged in parallel in one direction, through the internal polymerization space part where each space part in the other direction overlaps in the other direction, and in the other direction for each internal polymerization space part. And connecting the four receiving portions for the upper cover plate at the four corners of the inner overlapping space portion, and the corner portions adjacent to the inner overlapping space portion in the space portion having the seismic isolation support on both sides. An upper frame internal coupling mechanism including an upper frame internal coupling body that forms two receiving portions for the upper cover plate at the same height;
The side pieces on each outer end face side adjacent to each other with the space portion in each seismic isolation bearing forming the outer end face of each of the seismic isolation bearings connected so as to cover the outer end face of the space portion, and the lower Two receiving portions for the upper cover plate are formed at both corners on the outer end face side of the space portion, and are located above the respective base positioning connecting bodies on the base side, and the upper base internal connection body is formed. An upper frame end surface coupling mechanism including an upper frame end surface coupling body configured to have four at the same height together with two receiving portions;
Attached to each space part between the above-described upper bases and four receiving portions formed in the internal overlapping space part so as to present a flat surface flush with the upper surface of each upper base, together with the upper surface of the upper base A required number of upper cover plates to form a flat base-isolated floor region;
An undercarriage cover that is attached to the undercarriage positioning connector so as to cover the outer end surface side of the undercarriage positioning connector after removing the temporary fixing piece;
Comprising
Seismic isolation for seismic isolation floors, which enables accurate installation of multiple seismic isolation bearings by eliminating errors or gaps in the distance between the multiple seismic isolation bearings that make up the base isolation floor Two-dimensional connection structure of the bearing.
下架台と、この下架台と同寸法の上架台と、前記下架台、上架台間に配置した免震要素とを具備し、略立方体状とするとともに、前記下架台、上架台を前記免震要素の免震機能に応じて特定方向に相対移動し得るように構成した複数の免震支承を、一方向と、これに直交する他方向とに各々隣り合う免震支承間に空間部を有しつつ分離配列、かつ、二次元配列で連結して、上面に免震床領域を形成する免震床用免震支承の二次元連結構造であって、
前記各免震支承のうちの外側端面を形成する各免震支承における前記空間部を隔て隣り合う下架台同士の各側片間を所定の寸法となるようにボルトのねじ込み調節で高精度に位置決めして連結する所要数の下フレーム、及びこの下フレームの外側端面と前記下架台同士の外側端面に臨む各側片両隅部間を一定寸法となるように仮止めする所要数の下ジョイントとを備える下架台位置決め連結機構と、
前記各免震支承の内側領域で、上架台同士が一方向で空間部を隔て隣り合い、前記各上架台の他方向に沿った側片同士が対向する一対ずつの両免震支承における前記各上架台の一方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を一方向に貫いて、かつ、内部重合空間部毎に2個並列配置する態様で連結する所要数の下ブリッジを備える上架台内部連結機構と、
前記各免震支承の内側領域で、上架台同士が他方向で空間部を隔て隣り合い、各上架台の一方向に沿った側片同士が対向する一対ずつの両免震支承における前記各上架台の他方向に沿った側片同士を、一方向、他方向の各空間部が重なり合う内部重合空間部を他方向に貫いて、かつ、内部重合空間部毎に他方向で2個並列配置する態様で連結するするとともに、前記内部重合空間部の四隅に上カバー板用の4個の受部を、両側に免震支承を有する空間部における前記内部重合空間部の隣位置の両隅部に上カバー板用の2個の受部を同一高さで形成する上ブリッジを備える上架台内部連結機構と、
前記各免震支承のうちの外側端面を形成する各免震支承における空間部を隔て隣り合う各外側端面側の側片同士を前記空間部の外側端面を覆うようにして連結するとともに、前記下架台側の前記各下フレームの上方に位置して、前記空間部の外側端面側の両隅に前記各外側端面側の側片に取り付けた各ピローにより支持した上カバー板用の2個の受部を形成し、前記上架台内部連結体が形成する2個の受部と併せて同一高さで4個構成とする上スカートを備える上架台端面連結機構と、
前記各上架台間の各空間部、内部重合空間部に形成される各々4個ずつの受部に、各上架台の上面と面一な平坦面を呈するように装着し上面に上架台とともに平坦な免震床領域を形成する所要数の上カバー板と、
前記下ブリッジを除去した後の前記下フレームの外端面側を覆うようにしてこの下フレームに取り付ける下スカートと、
を具備し、
免震床を構成する複数の免震支承における相互の間隔の誤差或いは間隔のズレを解消して複数の各免震支承を正確に設置できるようにしたことを特徴とする免震床用免震支承の二次元連結構造。
A lower base, an upper base of the same size as the lower base, and a base isolation element disposed between the lower base and the upper base. The base base has a substantially cubic shape, and the base base and the upper base are A plurality of seismic isolation bearings that can be moved relative to each other in a specific direction according to the seismic isolation function of the element, have a space between the seismic isolation bearings adjacent to each other in one direction and the other direction orthogonal thereto. However, it is a two-dimensional connection structure of seismic isolation bearings for seismic isolation floors that are separated and connected in a two-dimensional array to form a base isolation floor region on the upper surface,
Positioning with high precision by adjusting the screwing of the bolts so that each side piece between adjacent bases with the space portion in each seismic isolation bearing forming the outer end face of each seismic isolation bearing has a predetermined size. The required number of lower frames to be connected, and the required number of lower joints to temporarily fix the outer end surfaces of the lower frames and the corners of each side facing the outer end surfaces of the lower mounts so as to have a fixed dimension. An undercarriage positioning connection mechanism comprising:
In the inner region of each of the seismic isolation bearings, the bases are adjacent to each other with a space in one direction, and the side pieces along the other direction of the upper bases face each other in a pair of both seismic isolation bearings. In a mode in which two side pieces along one direction of the upper base are arranged in parallel through one internal polymerization space portion where each space portion in one direction and the other direction overlaps, and for each internal polymerization space portion. An upper frame internal coupling mechanism having a required number of lower bridges to be coupled;
In the inner region of each of the base isolation bearings, the upper bases are adjacent to each other with a space in the other direction and the side pieces along one direction of the upper bases face each other. Side pieces along the other direction of the table are arranged in parallel in one direction, through the internal polymerization space part where each space part in the other direction overlaps in the other direction, and in the other direction for each internal polymerization space part. And connecting the four receiving portions for the upper cover plate at the four corners of the inner overlapping space portion, and the corner portions adjacent to the inner overlapping space portion in the space portion having the seismic isolation support on both sides. An upper frame internal coupling mechanism including an upper bridge that forms two receiving portions for the upper cover plate at the same height;
The side pieces on each outer end face side adjacent to each other with the space portion in each seismic isolation bearing forming the outer end face of each of the seismic isolation bearings connected so as to cover the outer end face of the space portion, and the lower Two receivers for the upper cover plate, which are positioned above the respective lower frames on the gantry side and supported by the respective pillows attached to the side pieces on the outer end surface side at both corners on the outer end surface side of the space portion. An upper base end face connection mechanism comprising an upper skirt that forms four parts at the same height together with two receiving parts formed by the upper base internal connection body,
Mounted on each space between the upper platforms and four receiving portions formed in the internal overlapping space so as to present a flat surface flush with the upper surface of each upper platform, and flat on the upper surface together with the upper platform The required number of upper cover plates to form a seismically isolated floor area,
A lower skirt attached to the lower frame so as to cover the outer end surface side of the lower frame after removing the lower bridge;
Comprising
Seismic isolation for seismic isolation floors, which enables accurate installation of multiple seismic isolation bearings by eliminating errors or gaps in the distance between the multiple seismic isolation bearings that make up the base isolation floor Two-dimensional connection structure of the bearing.
JP2015000424U 2015-01-30 2015-01-30 Two-dimensional connection structure of seismic isolation bearing for base isolation floor Active JP3197015U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015000424U JP3197015U (en) 2015-01-30 2015-01-30 Two-dimensional connection structure of seismic isolation bearing for base isolation floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000424U JP3197015U (en) 2015-01-30 2015-01-30 Two-dimensional connection structure of seismic isolation bearing for base isolation floor

Publications (1)

Publication Number Publication Date
JP3197015U true JP3197015U (en) 2015-04-16

Family

ID=52986614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000424U Active JP3197015U (en) 2015-01-30 2015-01-30 Two-dimensional connection structure of seismic isolation bearing for base isolation floor

Country Status (1)

Country Link
JP (1) JP3197015U (en)

Similar Documents

Publication Publication Date Title
KR101326806B1 (en) Earthquake-resistant structure member for cable tray support member
JP2011140749A (en) Ceiling brace mounting fitting
KR101222106B1 (en) Table having pipe frame structure of non-welding type 3 direction assembly system
JP3197015U (en) Two-dimensional connection structure of seismic isolation bearing for base isolation floor
JP5178246B2 (en) Curtain wall structure
JPH0426594Y2 (en)
JP5279798B2 (en) Base-isolated floor structure
TWM609059U (en) Underground partition plate for raised floor
JP2006016910A (en) Apparatus installing structure in clean room
JP2009068307A (en) Reinforcing device for post erected on base stone
JP2016023418A (en) Highly earthquake resistant glass panel device
JP2513784Y2 (en) H-shaped steel connection structure
JP3527355B2 (en) Floor structure and floor construction method
JP5745783B2 (en) How to place building units
KR102551741B1 (en) Joint assembly for earthquake-resistant cable tray
JP6346473B2 (en) Support structure for outer panel
JP2022011514A (en) Wall cover, and cover structure
JPH08302817A (en) Framework fixing structure
JP5433616B2 (en) Anti-vibration structure of unit building
JP2892513B2 (en) Curtain wall support device
JP2003293567A (en) Base isolation floor
JP2004244821A (en) Ceiling structure
JP6978159B2 (en) Suspended ceiling structure
JP5456713B2 (en) Base-isolated floor structure
JP2007332567A (en) Structure of damping floor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

R150 Certificate of patent or registration of utility model

Ref document number: 3197015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250