JP3196859B2 - Diode on-resistance measurement circuit - Google Patents
Diode on-resistance measurement circuitInfo
- Publication number
- JP3196859B2 JP3196859B2 JP22422492A JP22422492A JP3196859B2 JP 3196859 B2 JP3196859 B2 JP 3196859B2 JP 22422492 A JP22422492 A JP 22422492A JP 22422492 A JP22422492 A JP 22422492A JP 3196859 B2 JP3196859 B2 JP 3196859B2
- Authority
- JP
- Japan
- Prior art keywords
- diode
- current
- potential difference
- resistance
- constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ダイオードのオン抵抗
測定回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diode on-resistance measuring circuit.
【0002】[0002]
【従来の技術】図7は、従来のダイオードのオン抵抗測
定回路図である。図8は、従来のダイオードのオン抵抗
測定を説明する為のダイオード特性図である。図7にお
いて、可変電圧源6の一端がダイオードD1のアノード
に、他端が基準電位に、電流測定装置7の一端がダイオ
ードD1のカソードに、他端が基準電位に接続されてい
る。2. Description of the Related Art FIG. 7 is a circuit diagram of a conventional diode for measuring the on-resistance. FIG. 8 is a diode characteristic diagram for explaining the conventional on-resistance measurement of a diode. 7, one end of the variable voltage source 6 is connected to the anode of the diode D1, the other end is connected to the reference potential, one end of the current measuring device 7 is connected to the cathode of the diode D1, and the other end is connected to the reference potential.
【0003】次に、上記従来例の動作を説明する。可変
電圧源6よりダイオードD1に順方向電圧を連続的に上
げて印加し、それによってダイオードD1に流れる電流
を電流測定装置7で測定し、図8に示すようなダイオー
ドD1の順方向の電流−電圧特性を得る。図8におい
て、電圧がV1の時の電流値をI1とし、電圧がV2の時
の電流値をI2とすると、ダイオードD1のオン抵抗R
ONは、次式 RON=(V2−V1)/(I2−I1) により算出して求めていた。Next, the operation of the above conventional example will be described. The forward voltage is continuously increased and applied to the diode D1 from the variable voltage source 6, and the current flowing through the diode D1 is measured by the current measuring device 7, and the forward current of the diode D1 as shown in FIG. Obtain voltage characteristics. In FIG. 8, if the current value when the voltage is V 1 is I 1, and the current value when the voltage is V 2 is I 2 , the on-resistance R
ON was calculated by the following equation: R ON = (V 2 −V 1 ) / (I 2 −I 1 ).
【0004】[0004]
【発明が解決しようとする課題】このような従来の技術
にあっては、ダイオードD1に電流を流すことでダイオ
ードD1は自己発熱するが、その電流が大きくなるにつ
れてダイオードD1自体の温度は上昇する。それにつれ
てダイオードD1のオン抵抗は下がってしまう為、正確
なオン抵抗測定ができないという問題点があった。本発
明は、従来の有するこのような問題点に鑑みてなされた
ものであり、その目的とするところは、所定の動作点に
おいてダイオードの自己発熱の影響を受けず正確にダイ
オードのオン抵抗を測定できるダイオードのオン抵抗測
定回路を提供することである。In such a conventional technique, the diode D1 generates heat by flowing a current through the diode D1, but the temperature of the diode D1 itself increases as the current increases. . As a result, the on-resistance of the diode D1 decreases, so that accurate on-resistance measurement cannot be performed. SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and has as its object to accurately measure the on-resistance of a diode at a predetermined operating point without being affected by self-heating of the diode. It is an object of the present invention to provide a circuit for measuring the ON resistance of a diode.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、定電流源1から供給される一定電流がバ
イアス電流として順方向に流されるダイオードD1と、
前記ダイオードD1に並列に接続され、前記ダイオード
D1の熱応答時定数よりも大きい周波数の既知の微少変
動電流を前記ダイオードD1に供給する交流電流源3
と、前記ダイオードD1の陽極と前記交流電流源3の間
に接続される第一コンデンサC1と、前記ダイオードD
1に並列に接続され前記ダイオードD1の両端の交流電
位差を測定する交流電位差測定装置2とからなり、前記
微小変動電流の値と前記交流電位差測定装置2の指示と
から前記ダイオードD1のオン抵抗を測定することを特
徴とするダイオードのオン抵抗測定回路である。To achieve the above object, the present invention provides a diode D1 in which a constant current supplied from a constant current source 1 flows forward as a bias current;
An alternating current source 3 connected in parallel to the diode D1 and supplying a known minute fluctuation current having a frequency greater than the thermal response time constant of the diode D1 to the diode D1.
A first capacitor C1 connected between the anode of the diode D1 and the AC current source 3;
And an AC potential difference measuring device 2 connected in parallel to 1 to measure the AC potential difference between both ends of the diode D1. The on-resistance of the diode D1 is determined from the value of the minute fluctuation current and the instruction of the AC potential difference measuring device 2. It is a circuit for measuring the on-resistance of a diode, which is characterized by measuring.
【0006】[0006]
【作用】このような本発明では、定電流源1から一定の
直流のバイアス電流がダイオードD1に流れると、ダイ
オードD1の動作点が定められ、またダイオードD1の
温度は一定に保たれる。ここでコンデンサC1を介して
交流電流源3から既知の振幅を持った交流電流がダイオ
ードD1に重畳されると、ダイオードD1の両端に交流
電流に対応した交流電位差が生じる。従って交流電流源
の周波数をダイオードD1の熱応答時定数に対して十分
大きく設定すれば、ダイオードD1の温度上昇によるオ
ン抵抗の減少は無視できるものとなり、所定の動作点に
おけるダイオードD1のオン抵抗は、交流電流の振幅と
交流電位差測定装置2で測定されるダイオードD1の両
端の交流電位差の振幅とから正確に求められる。上記の
ダイオードの熱応答時定数について説明する。半導体ダ
イオードに通電すると接合部等で電力消費が起こり、自
己発熱による温度上昇で電流が多く流れるようになり、
図8に示した電流―電圧特性が同一の電圧に対する電流
が高くなる方向、即ち電圧が低くなる方向に平行移動す
るため、、電流と電圧の傾きが特性が平行移動いない正
常な場合と比較して大きくなる、即ち正常な場合よりも
オン抵抗が小さく測定される。そして、温度上昇に対す
るオン抵抗の変動(減少)はダイオードの構造,電力消
費量などにより各々のダイオード固有の過渡状態があ
り、時間と共に変化する。そして、時間軸を拡大して考
えると通電直後では自己発熱量が僅かであり温度上昇は
ほとんど発生していないため、電流―電圧特性の変化が
測定限界以下である時間が存在することとなり、この特
性変化が測定限界以下となる時間が各々のダイオード固
有の熱応答時定数である。 According to the present invention, when a constant DC bias current flows from the constant current source 1 to the diode D1, the operating point of the diode D1 is determined, and the temperature of the diode D1 is kept constant. Here, when an AC current having a known amplitude is superimposed on the diode D1 from the AC current source 3 via the capacitor C1, an AC potential difference corresponding to the AC current is generated at both ends of the diode D1. Therefore, if the frequency of the AC current source is set sufficiently large with respect to the thermal response time constant of the diode D1, the decrease in the on-resistance due to the temperature rise of the diode D1 becomes negligible, and the on-resistance of the diode D1 at a predetermined operating point becomes , Can be accurately obtained from the amplitude of the AC current and the amplitude of the AC potential difference between both ends of the diode D1 measured by the AC potential difference measuring device 2. above
The thermal response time constant of the diode will be described. Semiconductor
When power is supplied to the electrode, power is consumed at the joints, etc.
A large amount of current flows due to temperature rise due to self-heating,
The current for the same voltage with the current-voltage characteristic shown in FIG.
In the direction in which the voltage increases, that is, the direction in which the voltage decreases.
Therefore, the slope of the current and voltage is
Larger than usual, that is, more than normal
The on-resistance is measured small. And respond to the temperature rise
Fluctuation (decrease) in the on-resistance depends on the diode structure and power consumption.
Each diode has its own transient state due to cost and other factors.
Change over time. Then, consider expanding the time axis.
The self-heating is small immediately after the power is turned on,
Since there is almost no change, the change in current-voltage characteristics
There is a time that is below the measurement limit.
The time at which the change in performance falls below the measurement limit is
It is a significant thermal response time constant.
【0007】[0007]
【実施例】次に、本発明の実施例について図面を用いて
説明する。図1は本発明の請求項1の実施例を示す回路
図である。図2は図1に示す回路の動作を説明する波形
図である。図1において、一定の直流のバイアス電流I
10を供給する定電流源1はダイオードD1のアノード
に、ダイオードD1のカソードは基準電位に、交流電位
差測定装置2はダイオードD1に並列に、交流電流源3
は第一コンデンサーC1を介してダイオードD1に並列
に接続されている。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a waveform chart for explaining the operation of the circuit shown in FIG. In FIG. 1, a constant DC bias current I
The constant current source 1 for supplying 10 is connected to the anode of the diode D1, the cathode of the diode D1 is connected to the reference potential, the AC potential difference measuring device 2 is connected in parallel with the diode D1,
Is connected in parallel with the diode D1 via the first capacitor C1.
【0008】次に、上記実施例の動作を図2(a),
(b)の波形図を用いて説明する。図1において、ダイ
オードD1に定電流源1から一定の直流のバイアス電流
I 10が流れている定常状態で、交流電流源3から図2
(a)に示す周波数をf10とし予め設定された振幅ΔI
10を持った正弦波形の交流電流が第一コンデンサーC1
を介してダイオードD1に流れると、ダイオードD1の
両端の電位差は、交流電位差測定装置2によって、図2
(b)で示す、振幅ΔV10を持った正弦波形の電位差と
して測定される。従ってこの場合のダイオードD1のオ
ン抵抗RONは、次式 RON=ΔV10/ΔI10 により正確に求められる。Next, the operation of the above embodiment will be described with reference to FIG.
This will be described with reference to the waveform diagram of FIG. In FIG. 1, the die
Constant D bias current from constant current source 1 to diode D1
I TenIn the steady state where the air flows, FIG.
The frequency shown in FIG.TenAnd a preset amplitude ΔI
TenAC current with a sine waveform with the first capacitor C1
Flows through the diode D1 through the
The potential difference between both ends is measured by an AC potential difference measuring device 2 as shown in FIG.
Amplitude ΔV shown in (b)TenAnd the potential difference of a sinusoidal waveform with
Measured. Therefore, in this case, the diode D1 is turned off.
Resistance RONIs given by the following equation RON= ΔVTen/ ΔITen Is more accurately determined.
【0009】この場合、定常状態として定電流源1から
一定の直流のバイアス電流I10がダイオードD1に流
れている為、ダイオードD1の動作点が定められ、また
ダイオードD1の温度は一定に保たれている。従って交
流の周波数f10をダイオードD1の熱応答時定数に対
して十分大きく設定すれば、ダイオードD1の温度上昇
によるオン抵抗の減少は無視できるものとなり、所定の
動作点において正確なダイオードD1のオン抵抗測定が
可能となる。即ち、交流電流源3の1/2周期の時間
(電流の最小値から最大値まで変化する時間)の幅がダ
イオードD1の熱応答時定数よりも大きい場合は、図8
に示したようなダイオードD1の電流―電圧特性が電圧
が低くなる方向に平行移動してしまい、オン抵抗が正常
時よりも小さく測定されてしまうが、交流電流源3の1
/2周期の時間の幅をダイオードD1の熱応答時定数に
対して十分短く設定すれば、ダイオードD1の温度が上
昇する前に交流電流は立ち下がるので、ダイオードは熱
応答(温度上昇)することはない。従って、ダイオード
D1の電流−電圧特性が電圧が低くなる方向に平行移動
することはなく、ダイオードD1のオン抵抗の減少も無
視することができ、正確なオン抵抗の測定が可能とな
る。 [0009] In this case, since the bias current I 10 of the constant DC from the constant current source 1 as steady state is flowing through the diode D1, the operating point of the diode D1 is defined, and the temperature of the diode D1 is kept constant ing. Therefore, if sufficiently large set the frequency f 10 of the AC relative thermal response time constant of the diode D1, a decrease in on-resistance due to temperature rise of the diode D1 becomes negligible, on the exact diodes D1 at a predetermined operating point Resistance measurement becomes possible. That is, the time of a half cycle of the AC current source 3
(The time required for the current to change from the minimum value to the maximum value)
If the thermal response time constant is larger than that of the ion D1, FIG.
The current-voltage characteristic of the diode D1 as shown in FIG.
Parallel movement in the direction where
Although it is measured smaller than the time, one of the AC current sources 3
/ 2 period time width as the thermal response time constant of diode D1
If it is set short enough, the temperature of diode D1 will rise.
Since the AC current falls before rising, the diode heats up.
There is no response (temperature rise). Therefore, the diode
The current-voltage characteristic of D1 moves parallel to the direction in which the voltage decreases.
And no decrease in the on-resistance of the diode D1.
And on-resistance can be measured accurately.
You.
【0010】図3は本発明の他の実施例を示す回路図で
ある。図4は図2に示す回路の動作を説明する波形図で
ある。図3において、既知のバイアス電流I20とパルス
状の微少変動電流ΔI20とが重畳された変動電流I20+
ΔI20を供給する電流源4はダイオードD1のアノード
に、ダイオードD1のカソードは基準電位に、第一電位
差測定装置5は第一コンデンサーC1を介してダイオー
ドD1に並列に接続されている。FIG. 3 is a circuit diagram showing another embodiment of the present invention. FIG. 4 is a waveform chart for explaining the operation of the circuit shown in FIG. In FIG. 3, a fluctuation current I20 + in which a known bias current I20 and a pulse-like minute fluctuation current ΔI20 are superimposed.
The current source 4 for supplying ΔI20 is connected to the anode of the diode D1, the cathode of the diode D1 is connected to the reference potential, and the first potential difference measuring device 5 is connected in parallel to the diode D1 via the first capacitor C1.
【0011】次に、上記実施例の動作を図4(a),
(b)の波形図を用いて説明する。図3において、ダイ
オードD1に電流源4からバイアス電流I20として例え
ばI20=7.5mAが流れている状態で、図4(a)に
示すパルス状の微少変動電流ΔI20として例えばΔI20
=0.1mAが重畳された変動電流I20+ΔI20がダイ
オードD1に入力すると、この0.1mAの変動により
ダイオードD1の両端の電位差は微少変動する。Next, the operation of the above embodiment will be described with reference to FIG.
This will be described with reference to the waveform diagram of FIG. 3, in a state in which is from the current source 4 to the diode D1 to the bias current I 20 example I 20 = 7.5 mA is flowing, pulsating minute change current [Delta] I 20 and to for example [Delta] I 20 shown in FIGS. 4 (a)
When the fluctuation current I 20 + ΔI 20 superimposed with = 0.1 mA is input to the diode D1, the fluctuation of 0.1 mA causes the potential difference between both ends of the diode D1 to slightly fluctuate.
【0012】このバイアス電流I20によるダイオードD
1での電圧降下分を含んだ電位差の絶対値は800mV
程度であって、もしこの電位差を第一電位差測定装置5
として例えば12bitのデジタルオシロスコープで測
定すると、800mVを1/4096に分解することと
なり、分解能は0.2mV程度の広いレンジとなってし
まうが、本実施例ではダイオードD1のアノードと第一
電位差測定装置5の間に第一コンデンサーC1があるの
で、この第一コンデンサC1で直流成分(バイアス電流
I20に対応する)をカットして変動電流I20+ΔI20が
入力されたことによって生じる電位差の微少変動分のみ
を高分解能で測定することとなり、それは、図4(b)
に示す振幅ΔV20を持ったパルス状の電位差として正確
に測定される。従ってこの場合のダイオードD1のオン
抵抗RONは、次式 RON=ΔV20/ΔI20 により正確に求められる。The diode D caused by the bias current I 20
The absolute value of the potential difference including the voltage drop at 1 is 800 mV
If this potential difference is measured by the first potential difference measuring device 5
For example, when measured with a 12-bit digital oscilloscope, 800 mV is decomposed into 1/4096, and the resolution becomes a wide range of about 0.2 mV. In this embodiment, the anode of the diode D1 and the first potential difference measuring device since during the 5 there is a first capacitor C1, slight variations in the potential difference caused by the DC component in the first capacitor C1 (the bias current corresponding to I 20) varying current I 20 + ΔI 20 by cutting is input Only the minute is measured with high resolution, which is shown in FIG.
Is accurately measured as a pulse-like potential difference having an amplitude ΔV 20 shown in FIG. Therefore, the ON resistance R ON of the diode D1 in this case can be accurately obtained by the following equation: R ON = ΔV 20 / ΔI 20
【0013】この場合も、電流源4からパルス状の微少
変動電流ΔI20が立ち上がるまでは定常的にバイアス電
流I20がダイオードD1に流れている為、ダイオードD
1の動作点が定められ、またダイオードD1の温度は一
定に保たれている。また微少変動電流ΔI20はパルス状
にきわめて短い時間に与えられるので、ダイオードD1
の温度上昇によるオン抵抗の減少は無視できるものとな
り、正確なダイオードD1のオン抵抗測定が可能とな
る。また、図3において、ダイオードD1の両端の電位
差を安定させる為に第一電位差測定装置5に並列に抵抗
を接続しても良い。[0013] For this case also, the constant bias current I 20 until the pulsating minute change current [Delta] I 20 from current source 4 rises is flowing through the diode D1, the diode D
1 and the temperature of the diode D1 is kept constant. Since the minute fluctuation current ΔI 20 is given in a very short time in a pulse form, the diode D1
The decrease in the on-resistance due to the rise in temperature becomes negligible, and the on-resistance of the diode D1 can be accurately measured. In FIG. 3, a resistor may be connected in parallel to the first potential difference measuring device 5 in order to stabilize the potential difference between both ends of the diode D1.
【0014】図5は本発明の他の実施例を示す回路図で
ある。図6は図5に示す回路の動作を説明する波形図で
ある。図5は、図3に示す回路に図4におけるΔI20を
測定する回路を加えた場合の回路図であり、抵抗値が正
確に分かっている抵抗R1は電流源4とダイオードD1
との間に、第二電位差測定装置50は第二コンデンサC
2を介して抵抗R1に並列に接続されている。FIG. 5 is a circuit diagram showing another embodiment of the present invention. FIG. 6 is a waveform chart for explaining the operation of the circuit shown in FIG. FIG. 5 is a circuit diagram in a case where a circuit for measuring ΔI20 in FIG. 4 is added to the circuit shown in FIG. 3. The resistor R1 whose resistance value is accurately known is a current source 4 and a diode D1.
Between the second capacitor C and the second capacitor C
2 is connected in parallel to the resistor R1.
【0015】次に、上記実施例の動作を図6(a),
(b),(c)の波形図を用いて説明する。図5におい
て、抵抗R1に電流源4からバイアス電流I20が流れて
いる状態で、図6(a)に示すパルス状の微少変動電流
ΔI20が重畳された変動電流I20+ΔI20が抵抗R1に
入力すると、この電流の微少変動により抵抗R1の両端
の電位差は微少変動する。Next, the operation of the above embodiment will be described with reference to FIGS.
This will be described with reference to the waveform diagrams of (b) and (c). 5, resistor R1 from the current source 4 in a state in which the bias current I 20 flows in, FIG varying current pulsating minute change current [Delta] I 20 shown in (a) is superimposed I 20 + [Delta] I 20 is the resistor R1 , The potential difference between both ends of the resistor R1 slightly fluctuates due to the minute fluctuation of the current.
【0016】本実施例では第二電位差測定装置50(例
えば12bitのデジタルオシロスコープ)は、第二コ
ンデンサーC2を介して抵抗R1に並列に接続されてい
るので、第二コンデンサC2で変動電流I20+ΔI20の
直流成分(バイアス電流I20に対応する)をカットし、
変動電流I20+ΔI20が入力されたことによって生じる
抵抗R1の両端の電位差の微少変動分のみを高分解能で
測定することとなり、それは、図6(b)に示す振幅Δ
V30を持ったパルス状の電位差として正確に測定され
る。従ってこの場合のパルス状の微少変動電流ΔI
20は、次式、 ΔI20=ΔV30/R1 により正確に求められる。In this embodiment, since the second potential difference measuring device 50 (for example, a 12-bit digital oscilloscope) is connected in parallel to the resistor R1 via the second capacitor C2, the second capacitor C2 causes the fluctuating current I 20 + ΔI Cut the DC component of 20 (corresponding to the bias current I 20 )
Only the minute fluctuation of the potential difference between both ends of the resistor R1 caused by the input of the fluctuation current I 20 + ΔI 20 is measured with high resolution, which is represented by the amplitude Δ shown in FIG.
It is accurately measured as a pulsed potential difference with V 30. Therefore, in this case, the pulse-shaped minute fluctuation current ΔI
20 can be accurately obtained by the following equation: ΔI 20 = ΔV 30 / R1.
【0017】同時に、ダイオードD1の両端の電位差の
微少変動分も、請求項2の実施例の説明と同様に図6
(c)においてパルス波形の電位差の振幅ΔV20として
正確に測定される。従ってこの場合のダイオードD1の
オン抵抗RONは、先に求めたΔI20を用いて、次式 RON=ΔV20/ΔI20 により正確に求められる。At the same time, the minute variation of the potential difference between the two ends of the diode D1 is also determined in the same manner as in the second embodiment.
In (c), it is accurately measured as the amplitude ΔV 20 of the potential difference of the pulse waveform. Accordingly, the ON resistance R ON of the diode D1 in this case can be accurately obtained by using the previously obtained ΔI 20 according to the following equation: R ON = ΔV 20 / ΔI 20
【0018】[0018]
【発明の効果】本発明は、以上説明したように、定電流
源から供給される一定電流がバイアス電流として順方向
に流されるダイオードと、前記ダイオードに並列に接続
され、前記ダイオードの熱応答時定数よりも大きい周波
数の既知の微少変動電流を前記ダイオードに供給する交
流電流源と、前記ダイオードの陽極と前記交流電流源の
間に接続される第一コンデンサと、前記ダイオードに並
列に接続され前記ダイオードの両端の交流電位差を測定
する交流電位差測定装置とからなり、前記微小変動電流
の値と前記交流電位差測定装置の指示とから前記ダイオ
ードのオン抵抗を測定することを特徴とするように構成
されているので、所定の動作点においてダイオードの自
己発熱の影響を受けず正確にダイオードのオン抵抗を測
定できるダイオードのオン抵抗測定回路を提供すること
ができる。As described above, according to the present invention, a diode in which a constant current supplied from a constant current source flows in a forward direction as a bias current, and a diode connected in parallel with the diode and having a thermal response when the diode responds thermally. An alternating current source that supplies a known small fluctuating current having a frequency greater than a constant to the diode, a first capacitor connected between the anode of the diode and the alternating current source, and the first capacitor connected in parallel with the diode; An AC potential difference measuring device for measuring an AC potential difference between both ends of the diode, wherein the on-resistance of the diode is measured from the value of the minute fluctuation current and an instruction from the AC potential difference measuring device. The diode can accurately measure the on-resistance of the diode without being affected by the self-heating of the diode at the specified operating point. It is possible to provide the on-resistance measuring circuit.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の請求項1の実施例を示す回路図であ
る。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
【図2】図1に示す回路の動作を説明する波形図であ
る。FIG. 2 is a waveform chart illustrating the operation of the circuit shown in FIG.
【図3】本発明の他の実施例を示す回路図である。FIG. 3 is a circuit diagram showing another embodiment of the present invention.
【図4】図2に示す回路の動作を説明する波形図であ
る。FIG. 4 is a waveform chart for explaining the operation of the circuit shown in FIG. 2;
【図5】本発明の他の実施例を示す回路図である。FIG. 5 is a circuit diagram showing another embodiment of the present invention.
【図6】図3に示す回路の動作を説明する波形図であ
る。FIG. 6 is a waveform chart for explaining the operation of the circuit shown in FIG. 3;
【図7】従来のダイオードのオン抵抗測定回路図であ
る。FIG. 7 is a circuit diagram of a conventional diode for measuring the on-resistance.
【図8】従来のダイオードのオン抵抗測定を説明する為
のダイオード特性図である。FIG. 8 is a diode characteristic diagram for explaining a conventional on-resistance measurement of a diode.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鎌田 浩実 東京都武蔵野市中町2丁目9番32号 横 河電機株式会社内 (72)発明者 小林 信治 東京都武蔵野市中町2丁目9番32号 横 河電機株式会社内 (72)発明者 八木原 剛 東京都武蔵野市中町2丁目9番32号 横 河電機株式会社内 (72)発明者 野々山 淳 東京都武蔵野市中町2丁目9番32号 横 河電機株式会社内 審査官 下中 義之 (56)参考文献 特開 昭50−128978(JP,A) 特開 昭61−110064(JP,A) 実開 平1−135375(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01R 27/02 G01R 31/26 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromi Kamada 2-9-132 Nakamachi, Musashino-shi, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Shinji Kobayashi 2-9-132 Nakamachi, Musashino-shi, Tokyo Next to (72) Inventor Tsuyoshi Yagihara 2-9-1, Nakamachi, Musashino-shi, Tokyo Yokogawa Electric Co., Ltd. (72) Atsushi Nonoyama 2-9-1, Nakamachi, Musashino-shi, Tokyo Yokogawa Electric Examiner in a corporation Yoshiyuki Shimonaka (56) References JP-A-50-128978 (JP, A) JP-A-61-110064 (JP, A) JP-A-1-135375 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) G01R 27/02 G01R 31/26
Claims (1)
ス電流として順方向に流されるダイオードと、前記ダイ
オードに並列に接続され、前記ダイオードの熱応答時定
数よりも大きい周波数の既知の微少変動電流を前記ダイ
オードに供給する交流電流源と、前記ダイオードの陽極
と前記交流電流源の間に接続される第一コンデンサと、
前記ダイオードに並列に接続され前記ダイオードの両端
の交流電位差を測定する交流電位差測定装置とからな
り、前記微小変動電流の値と前記交流電位差測定装置の
指示とから前記ダイオードのオン抵抗を測定することを
特徴とするダイオードのオン抵抗測定回路。1. A diode in which a constant current supplied from a constant current source flows in a forward direction as a bias current, and a known minute fluctuation of a frequency connected in parallel with the diode and having a frequency larger than a thermal response time constant of the diode. An alternating current source that supplies current to the diode, a first capacitor connected between the anode of the diode and the alternating current source,
An AC potential difference measuring device connected in parallel to the diode and measuring an AC potential difference between both ends of the diode; and measuring the on-resistance of the diode from the value of the minute fluctuation current and an instruction from the AC potential difference measuring device. A circuit for measuring the on-resistance of a diode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22422492A JP3196859B2 (en) | 1992-08-24 | 1992-08-24 | Diode on-resistance measurement circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22422492A JP3196859B2 (en) | 1992-08-24 | 1992-08-24 | Diode on-resistance measurement circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0666857A JPH0666857A (en) | 1994-03-11 |
JP3196859B2 true JP3196859B2 (en) | 2001-08-06 |
Family
ID=16810456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22422492A Expired - Fee Related JP3196859B2 (en) | 1992-08-24 | 1992-08-24 | Diode on-resistance measurement circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3196859B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2015086A1 (en) * | 2007-07-13 | 2009-01-14 | Infineon Technologies Austria AG | Method for measuring an on-resistance of a load-path of a transistor |
JP5640336B2 (en) * | 2009-07-02 | 2014-12-17 | 日産自動車株式会社 | Electric motor control system |
-
1992
- 1992-08-24 JP JP22422492A patent/JP3196859B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0666857A (en) | 1994-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3106645A (en) | Temperature compensated transistor sensing circuit | |
JPH04294286A (en) | Method for measuring breakdown voltage | |
JP3196859B2 (en) | Diode on-resistance measurement circuit | |
CN221039311U (en) | Transistor parameter measuring device | |
JPH06281693A (en) | Measuring method for thermal resistance of semiconductor device | |
US4728764A (en) | Apparatus for detecting discharge gap in electric discharge machining | |
JP7181805B2 (en) | Power supply circuit for transient thermal resistance measurement of semiconductor devices | |
JPS61280560A (en) | Method for measuring concentration of oxygen | |
US7003424B2 (en) | Temperature detection cell, and method to determine the detection threshold of such a cell | |
Bensebaa et al. | On-line temperature measurement during power cycle of PCB-embedded diode | |
JPH0750134B2 (en) | AC / DC difference comparison device for thermoelectric AC / DC converter | |
JP2007316052A (en) | Diode temperature measuring instrument | |
JPH11281688A (en) | Constant-current source and resistancemeasuring device | |
JP3001692B2 (en) | Voltage detection circuit | |
JP2671617B2 (en) | Semiconductor laser characteristic measuring device | |
WO2000020941A1 (en) | Improvements in zener diode reference voltage standards | |
Siegal | Laser diode junction temperature measurement alternatives: An overview | |
JP3058716B2 (en) | Temperature sensitive element destruction test equipment | |
SU1335896A1 (en) | Complex resistance parameters meter | |
SU1144184A1 (en) | Regulator for a.c.voltage source | |
JPH10160568A (en) | Infrared spectrophotometer | |
JP2005241404A (en) | Device for measuring electrical conductivity, and its control method | |
SU1335820A1 (en) | Device for measuring temperature of p - n-junction of bipolar transistors | |
JP3106459B2 (en) | Electricity generator | |
JPH11304877A (en) | Voltage applying current measuring circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |