JP3196689B2 - Sediment detector - Google Patents

Sediment detector

Info

Publication number
JP3196689B2
JP3196689B2 JP17825997A JP17825997A JP3196689B2 JP 3196689 B2 JP3196689 B2 JP 3196689B2 JP 17825997 A JP17825997 A JP 17825997A JP 17825997 A JP17825997 A JP 17825997A JP 3196689 B2 JP3196689 B2 JP 3196689B2
Authority
JP
Japan
Prior art keywords
deposit
electrode
pipe
electrodes
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17825997A
Other languages
Japanese (ja)
Other versions
JPH1123511A (en
Inventor
浩志 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17825997A priority Critical patent/JP3196689B2/en
Publication of JPH1123511A publication Critical patent/JPH1123511A/en
Application granted granted Critical
Publication of JP3196689B2 publication Critical patent/JP3196689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製造設備等の配管
内に経時的に蓄積する堆積物の量を検知する堆積物検知
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deposit detector for detecting an amount of deposit accumulated with time in a pipe of a manufacturing facility or the like.

【0002】[0002]

【従来の技術】従来、この種の堆積物検知器は、たとえ
ば特開昭61−215958号公報に示されるように、
配管内部を検査するために外部から超音波を放射して内
部からのエコー信号を観察するシステムを構築すること
により行われていた。この装置を図7に示す。
2. Description of the Related Art Conventionally, this kind of deposit detector is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-215958.
In order to inspect the inside of the pipe, it has been performed by constructing a system for radiating ultrasonic waves from the outside and observing an echo signal from the inside. This device is shown in FIG.

【0003】図7に示す従来例の堆積物検知器は、トラ
ンスジューサ18を配管11の周方向あるいは軸方向に
走査し、内部からのエコー波を、コントローラ部17で
制御される増幅部12、A/D変換部13、データメモ
リ14、D/A変換部15を介してテレビモニタ16に
画像データとして表示する構成になっていた。
A conventional deposit detector shown in FIG. 7 scans a transducer 18 in a circumferential direction or an axial direction of a pipe 11, and transmits an echo wave from the inside to an amplifying unit 12, A controlled by a controller unit 17. The configuration is such that image data is displayed on the television monitor 16 via the / D conversion unit 13, the data memory 14, and the D / A conversion unit 15.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図7に
示す従来例は、超音波を発し、その反射波すなわちエコ
ー信号をモニタリングすることで配管内の堆積物量を検
知する方法であるが、この方法では、通常の半導体製造
工場で用いられる排気配管の太さ(φ50〜75mm)
のものについての堆積物の正確な検知が難しいという問
題がある。
However, the prior art shown in FIG. 7 is a method of detecting the amount of deposits in a pipe by emitting an ultrasonic wave and monitoring a reflected wave, that is, an echo signal. Then, the thickness of the exhaust pipe used in a normal semiconductor manufacturing plant (φ50-75mm)
However, there is a problem that it is difficult to accurately detect the sediment of the object.

【0005】その理由は、超音波は、配管内の他の部分
の散乱波の影響を受けないようにするために、常に配管
中心に向かって発しないとならないが、実際には管内堆
積物が均一な厚さではなく、凹凸があるために少なから
ず、散乱波の影響を受けることによる。また配管径が小
さい場合、それぞれの管径に合わせた専用のトランスジ
ューサを準備しないかぎり正確な中心方向出しができな
いということもある。さらには、配管径が小さい場合、
トランスジューサ側の側壁の堆積物によるエコー信号に
反対側側壁の堆積物によるエコー信号が相乗してしま
い、この切り分けが難しく測定精度が出ないことが考え
られる。
[0005] The reason is that the ultrasonic waves must always be emitted toward the center of the pipe in order to prevent the ultrasonic waves from being affected by the scattered waves in other parts of the pipe. This is due to being affected by scattered waves to a considerable extent due to unevenness rather than uniform thickness. In addition, when the pipe diameter is small, accurate centering may not be achieved unless a dedicated transducer corresponding to each pipe diameter is prepared. Furthermore, when the pipe diameter is small,
It is conceivable that the echo signal due to the deposit on the opposite side wall is multiplied by the echo signal due to the deposit on the side wall on the transducer side, and this separation is difficult and measurement accuracy cannot be obtained.

【0006】また測定したい複数の配管のデータを継続
的に、かつ瞬時に測れないという問題があった。
Another problem is that data of a plurality of pipes to be measured cannot be measured continuously and instantaneously.

【0007】その理由は、システム自体が大きく、シス
テムの移動性、機動性が損なわれているためであること
と、トランスジューサを人間が操作しなければならない
ということにある。このことは、近年の半導体製造工場
に見られるような床下に配管を設置している場合には対
応できないことを意味する。
[0007] The reason is that the system itself is large and the mobility and mobility of the system are impaired, and that the transducer must be operated by a human. This means that it is impossible to cope with a case where pipes are installed under the floor as seen in a recent semiconductor manufacturing plant.

【0008】以上2つの問題点を解決する手法として、
特開平8−210836号公報に示される方法が提案さ
れている。この装置を図8に示す。図8に示す装置は、
配管31の外周に3個の容量測定用電極32,33,3
4をスペーサ36,37,38,39を介して取付け、
その電極間の容量を導線40で外部へ引き出し、堆積物
の量をモニタするものである。
As a method for solving the above two problems,
A method disclosed in JP-A-8-210836 has been proposed. This device is shown in FIG. The device shown in FIG.
Three capacitance measuring electrodes 32, 33, 3 are provided on the outer periphery of the pipe 31.
4 is attached via spacers 36, 37, 38, 39,
The capacitance between the electrodes is drawn out to the outside by the conducting wire 40, and the amount of the deposit is monitored.

【0009】しかしながら、図8に示す従来例では、使
用可能な箇所ならびに適用可能なガス種が限定されてし
まうという課題がある。
However, in the conventional example shown in FIG. 8, there is a problem that usable portions and applicable gas types are limited.

【0010】その理由は、電極が配管の外周部に平行し
て並んでいる構造のため、各電極間の絶縁をとるための
部品材質が非金属のような絶縁物に限定されてしまうた
めである。これにより、腐食性ガス等のモニタには不向
きであることがわかる。
[0010] The reason for this is that, since the electrodes are arranged in parallel with the outer peripheral portion of the pipe, the material of parts for insulating between the electrodes is limited to an insulator such as a nonmetal. is there. Thus, it is understood that the method is not suitable for monitoring a corrosive gas or the like.

【0011】また、堆積物の誘電率によっては正確にモ
ニタできないという課題があった。
Another problem is that accurate monitoring cannot be performed depending on the dielectric constant of the deposit.

【0012】その理由は、各電極間絶縁部の面積が大き
いために、この絶縁物の持つ寄生容量がモニタ時に加算
されるためである。このことは、低誘電率を有する堆積
物には適していないということを意味する。
The reason is that the parasitic capacitance of the insulator is added at the time of monitoring because the inter-electrode insulating portion has a large area. This means that it is not suitable for deposits having a low dielectric constant.

【0013】本発明の目的は、経時的に蓄積する堆積物
の量を電極間容量変化で検知する堆積物検知器を提供す
ることにある。
An object of the present invention is to provide a deposit detector for detecting the amount of deposit accumulated over time by a change in capacitance between electrodes.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る堆積物検知器は、配管内に経時的に蓄
積する堆積物の量を電極間容量変化で検知する管内板状
電極を有するものであって、前記管内板状電極は、表面
形状を波形としたものである。
In order to achieve the above object, a deposit detector according to the present invention has a plate-like shape in a pipe for detecting the amount of deposit accumulated in a pipe over time based on a change in interelectrode capacitance.
An electrode having an inner plate-shaped electrode,
The shape is a waveform.

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】また本発明に係る堆積物検知器は、配管内
に板状電極を有する堆積物検知器であって、 前記板状電
極は、対をなす電極からなり、配管の内壁に沿って設置
され、対の電極間に蓄積する堆積物の量を電極間容量変
化で検知するものであり、かつ前記板状電極は、表面形
状を波形とするものである。
Further, the deposit detector according to the present invention is provided in a pipe.
A deposit detector having a plate-shaped electrode on the
The poles consist of pairs of electrodes and are installed along the inner wall of the pipe
The amount of sediment accumulated between the pair of electrodes changes
And the plate-like electrode has a surface shape.
The shape is a waveform.

【0019】[0019]

【0020】また前記電極は、セラミック系材料で構成
した絶縁ガイシで電気的に絶縁したものである。
The electrodes are made of a ceramic material.
It is electrically insulated by the insulating insulator .

【0021】[0021]

【作用】次に本発明における原理について述べる。配管
内に設置した板状電極では、堆積物が全くないときは電
極間容量は空気の誘電率を持つキャパシタとして考えら
れる(図5)。例えば、電極面積をS、電極間距離をd
とすると、空気の誘電率はほぼ1であるため、この容量
をCoとすれば、C=εS/d=S/dとなる。すなわ
ち、この時点で測定した容量Coが初期値になる。これ
に対して図6に示すように、例えば誘電率ε”を持つ堆
積物が電極間に堆積してくると、見掛け上空気の誘電率
を持つキャパシタとε”の誘電率を持つキャパシタとが
直列に繋がった回路が形成されたことになり、この回路
の合計の誘電率は、初期値に対して変化する。
Next, the principle of the present invention will be described. In the case of a plate-like electrode installed in a pipe, the capacitance between the electrodes is considered as a capacitor having the dielectric constant of air when there is no deposit (FIG. 5). For example, the electrode area is S and the distance between the electrodes is d.
Then, since the dielectric constant of air is almost 1, if this capacitance is Co, C = εS / d = S / d. That is, the capacitance Co measured at this time becomes the initial value. On the other hand, as shown in FIG. 6, when a deposit having a dielectric constant of ε ″ is deposited between the electrodes, for example, a capacitor having an apparent dielectric constant of air and a capacitor having a dielectric constant of ε ″ are formed. A circuit connected in series has been formed, and the total permittivity of this circuit changes with respect to the initial value.

【0022】具体的には、例えば誘電率ε”の堆積物が
d”だけ堆積した場合、この系の合成容量をCtotal
堆積物がない箇所の容量をC1、誘電率ε”の堆積物が
ある箇所の容量をC2とすれば、Ctotal=(C1×C2
/(C1+C2)となる。ただし、C1=S/(d−
d”)、C2=ε”S/d”である。
Specifically, for example, when a deposit having a dielectric constant ε ″ is deposited by d ″, the combined capacity of this system is represented by C total ,
Assuming that the capacity at the place where no deposit exists is C 1 and the capacity at the place where the deposit having dielectric constant ε ″ is C 2 , C total = (C 1 × C 2 )
/ (C 1 + C 2 ). Here, C 1 = S / (d−
d ″), C 2 = ε ″ S / d ″.

【0017】この合成容量Ctotalを外部からモニタ
し、得られた合成容量Ctotalから堆積物膜厚d”を計
算することが可能となる。
This combined capacitance C total can be monitored from the outside, and the thickness d ″ of the deposit can be calculated from the combined capacitance C total obtained.

【0023】このとき、堆積物の誘電率の大小、堆積の
しやすさ等により、電極面積、電極間距離を設定するこ
とで、誘電率変化量を制御することが可能となり、微量
の堆積もモニタすることが可能となる。
At this time, the amount of change in the dielectric constant can be controlled by setting the electrode area and the distance between the electrodes according to the magnitude of the dielectric constant of the deposit, the ease of deposition, and the like. It becomes possible to monitor.

【0024】以上のように本発明による堆積物検知部品
を用いることで配管外部から継続的に、かつ容易に堆積
物量を測定することができる。
As described above, by using the deposit detecting component according to the present invention, the deposit amount can be continuously and easily measured from outside the pipe.

【0025】[0025]

【発明の実施の形態】次に、本発明の実施の形態につい
て図を参照して詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0026】(実施例1)図1は、本発明の実施例1を
示す斜視図、図2は、断面図である。
(Embodiment 1) FIG. 1 is a perspective view showing Embodiment 1 of the present invention, and FIG. 2 is a sectional view.

【0027】図1において、1はガスを流す配管、2は
配管1内の容量を測定する際の上部電極、3は同じく下
部電極、4は上下電極3、4を絶縁し、かつ等距離に離
すための絶縁用ガイシ、5は電極引き出し線、7は下部
電極3と配管1を絶縁するための電極絶縁用スペーサで
ある。また、図2において、6は配管1の内部に付いた
管内堆積物、8は引き出し用ボルトである。
In FIG. 1, 1 is a pipe through which gas flows, 2 is an upper electrode for measuring the capacity in the pipe 1, 3 is a lower electrode, and 4 is an upper electrode and an upper electrode which are insulated from each other. An insulating insulator for separation, an electrode lead wire 5, and an electrode insulating spacer 7 for insulating the lower electrode 3 from the pipe 1. In FIG. 2, reference numeral 6 denotes a sediment in the pipe attached to the inside of the pipe 1, and reference numeral 8 denotes a bolt for pulling out.

【0028】図1に示すように、本発明における実施例
1の堆積物検知器は、配管1の内部に配管形状にそった
上部電極2と下部電極3を有し、これら電極2、3間は
電極間絶縁ガイシ4で、また下部電極3と配管1の間は
電極絶縁用スペーサ7でそれぞれ電気的に絶縁されてい
る。
As shown in FIG. 1, the deposit detector according to the first embodiment of the present invention has an upper electrode 2 and a lower electrode 3 in a pipe 1 along a pipe shape. Is an insulator between electrodes 4, and the lower electrode 3 and the pipe 1 are electrically insulated by an electrode insulating spacer 7, respectively.

【0029】さらに、各電極2、3からは引き出し用ボ
ルト8が絶縁ガイシ4内を通っており、そこから引き出
し線5が引き出され、その先には通常用いられるような
容量測定計(図示せず)が接続されている。
Further, from each of the electrodes 2 and 3, a lead bolt 8 passes through the insulating insulator 4, from which a lead wire 5 is drawn, and beyond which a capacitance measuring meter (typically shown) is used. Is connected.

【0030】上部電極2および下部電極3は、例えばS
USなど通常用いられる電極材でよいが、流すガスに対
する耐腐食性の強い金属を電極材として選択する。その
電極の大きさは固定されることなく、配管のサイズ、流
すガスの種類によって適当な大きさとしてよい。また、
上下電極2、3の電気的絶縁性を保つため、さらに等距
離を保つために絶縁ガイシ4を用いる。絶縁ガイシ4
は、一般的なセラミックス系材料を用いて良い。
The upper electrode 2 and the lower electrode 3 are, for example, S
A commonly used electrode material such as US may be used, but a metal having high corrosion resistance to flowing gas is selected as the electrode material. The size of the electrode is not fixed, and may be an appropriate size depending on the size of the pipe and the type of gas flowing. Also,
An insulating insulator 4 is used to maintain the electrical insulation of the upper and lower electrodes 2 and 3 and to maintain the same distance. Insulation insulator 4
, A general ceramic material may be used.

【0031】絶縁ガイシ4の材料として用いるセラミッ
クス系材料は、比誘電率が一般的に8〜10と大きい
が、そのサイズを小さくすれば管内ガス流を妨げること
なく、かつキャパシタとしての有効面積が小さくなり、
その影響を無視することが可能となる。無視できない場
合でも、比誘電率および各寸法より、絶縁ガイシ4の持
つ容量は、あらかじめ算出可能であることから得られた
実測値の補正は可能となる。また電極絶縁用スペーサ7
も絶縁ガイシ4と同じ目的で用いるため、同じような材
質のもので形成する。
The ceramic material used as the material of the insulating insulator 4 has a large relative dielectric constant of generally 8 to 10, but if its size is reduced, it does not impede the gas flow in the pipe and the effective area as a capacitor is reduced. Smaller,
The effect can be ignored. Even if it cannot be neglected, the capacitance of the insulating insulator 4 can be calculated in advance from the relative permittivity and each dimension, so that the measured value obtained can be corrected. Also, electrode insulating spacer 7
Since it is used for the same purpose as the insulating insulator 4, it is formed of the same material.

【0032】本発明においては、堆積物の堆積しやす
さ、及び比誘電率で電極面積および電極間距離の最適化
を自在に図ることが可能であり、その結果、堆積物がな
い場合と、ある場合との容量変化量を大きく取ることが
可能となる。具体的な例を図3に示す。図3では、電極
面積は1cm2、電極間距離は0.1cm、堆積物を酸
化シリコン(比誘電率≒4)とした場合の初期状態、す
なわち堆積物がない場合の容量をCoとした場合の合成
容量Ctotalとの変化量を示したものである。図3から
堆積物6の厚さが0.01cm変化した場合でも、その
変化量が大きいため、確実に堆積物6の厚さを計測する
ことができることがわかる。
In the present invention, it is possible to freely optimize the electrode area and the inter-electrode distance based on the ease of deposition of the deposit and the relative permittivity. It is possible to increase the amount of change in capacitance from a certain case. FIG. 3 shows a specific example. In FIG. 3, the electrode area is 1 cm 2 , the distance between the electrodes is 0.1 cm, and the initial state when the deposit is silicon oxide (relative permittivity ≒ 4), that is, when the capacitance when there is no deposit is Co. 2 shows the amount of change from the combined capacity C total of FIG. FIG. 3 shows that even when the thickness of the deposit 6 changes by 0.01 cm, the thickness of the deposit 6 can be reliably measured because the change amount is large.

【0033】以上、詳しく説明したように本発明の実施
例1によれば、配管内に対をなす上部及び下部電極から
なる板状電極を設け、その電極間の合成容量値を継続的
にもしくは定期的に測定することにより、配管の大き
さ、材質によらず、その配管内の堆積物厚さをモニタす
ることができ、管内での堆積物のつまりによる事故や生
産設備の非常停止を未然に防ぐことが可能となる。
As described above in detail, according to the first embodiment of the present invention, a plate-like electrode comprising a pair of upper and lower electrodes is provided in a pipe, and the combined capacitance value between the electrodes is continuously or By measuring regularly, the thickness of the sediment in the pipe can be monitored regardless of the size and material of the pipe. Can be prevented.

【0034】また、図中では示していないが、本発明を
設置する配管の両側にVCR継手、スウェジロック継手
等の継手類をあらかじめ接続した形態にしておけば、本
発明の堆積物検知器のメンテナンスが容易になる。
Although not shown in the drawing, if the joints such as the VCR joint and the Swagelok joint are connected in advance to both sides of the pipe for installing the present invention, the maintenance of the deposit detector of the present invention can be performed. Becomes easier.

【0035】(実施例2)次に、本発明の実施例2につ
いて図4を参照して詳細に説明する。図4に示す実施例
2では、電極形状を波形状にしたことを特徴とするもの
である。電極2、3の形状を波形状にすることで、電極
の大きさは、小さいままで大きな面積を得ることができ
ることになる。従って、前述の実施例1の場合よりも、
さらに小さい配管径の中でも本発明の堆積物検知器を設
置することが可能となる。当然ながら、この場合でも図
中では示していないが、本発明を設置する配管の両側に
VCR継手、スウェージロック継手等の継手類をあらか
じめ接続した形態にしておけば、本発明の堆積物検知器
のメンテナンスが容易になる。
(Embodiment 2) Next, Embodiment 2 of the present invention will be described in detail with reference to FIG. Embodiment 2 shown in FIG. 4 is characterized in that the electrode shape is a wave shape. By making the shape of the electrodes 2 and 3 corrugated, a large area can be obtained while keeping the size of the electrodes small. Therefore, compared to the case of the first embodiment,
It becomes possible to install the deposit detector of the present invention even in a smaller pipe diameter. Naturally, even in this case, although not shown in the drawing, if the joints such as the VCR joint and the Swagelok joint are connected in advance on both sides of the pipe for installing the present invention, the sediment detector of the present invention can be used. Maintenance becomes easy.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、あ
らゆる材質、大きさの配管において、あらゆる誘電率を
持つ堆積物の厚さを測定することができる。
As described above, according to the present invention, it is possible to measure the thickness of a deposit having any dielectric constant in piping of any material and size.

【0037】その理由は、測定したい配管の大きさ及び
堆積物の誘電率に合わせて、電極のサイズ、電極の面積
を自在に調整できるためである。
The reason is that the size of the electrode and the area of the electrode can be freely adjusted according to the size of the pipe to be measured and the dielectric constant of the deposit.

【0038】さらに、堆積物の容量を測定することで集
中管理で継続的に、かつ正確に配管内の堆積物量を検知
することができ、堆積物のつまりによる事故や生産設備
の非定常停止を防止できる。
Further, by measuring the volume of the sediment, it is possible to continuously and accurately detect the amount of the sediment in the pipe by centralized control, thereby preventing an accident due to the clogging of the sediment and an abnormal stop of the production equipment. Can be prevented.

【0039】その理由は、堆積物の誘電率が既知であれ
ば、その値と測定容量値、電極面積と距離から堆積物の
厚さが容易に算出できるためである。
The reason is that if the dielectric constant of the deposit is known, the thickness of the deposit can be easily calculated from the value, the measured capacitance value, the electrode area and the distance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を示す一部断面した斜視図で
ある。
FIG. 1 is a partially sectional perspective view showing Embodiment 1 of the present invention.

【図2】本発明の実施例1を示す構造断面図である。FIG. 2 is a structural sectional view showing Example 1 of the present invention.

【図3】本発明の実施例1において堆積物厚さと容量変
化量との関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a deposit thickness and a capacitance change amount in the first embodiment of the present invention.

【図4】本発明の実施例2を示す一部断面した斜視図で
ある。
FIG. 4 is a partially sectional perspective view showing Embodiment 2 of the present invention.

【図5】本発明の原理を説明する図である。FIG. 5 is a diagram illustrating the principle of the present invention.

【図6】本発明の原理を説明する図である。FIG. 6 is a diagram illustrating the principle of the present invention.

【図7】従来例を示す図である。FIG. 7 is a diagram showing a conventional example.

【図8】別の従来例を示す図である。FIG. 8 is a diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

1 配管 2 上部電極 3 下部電極 4 電極間絶縁ガイシ 5 引き出し線 6 管内堆積物 7 電極絶縁用スペーサ 8 引き出し用ボルト DESCRIPTION OF SYMBOLS 1 Piping 2 Upper electrode 3 Lower electrode 4 Insulation insulator between electrodes 5 Lead wire 6 In-tube sediment 7 Electrode insulating spacer 8 Pull-out bolt

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配管内に経時的に蓄積する堆積物の量を
電極間容量変化で検知する管内板状電極を有する堆積物
検知器であって、前記管内板状電極は、表面形状を波形
したものであることを特徴とする堆積物検知器。
1. A deposit having an in- tube plate electrode for detecting the amount of deposit accumulated in a pipe over time by a change in interelectrode capacitance .
A detector, the tube plate electrodes, sediment detector, characterized in that is obtained by the surface shape a waveform.
【請求項2】 配管内に板状電極を有する堆積物検知器
であって、前記板状電極は、対をなす電極からなり、配
管の内壁に沿って設置され、対の電極間に蓄積する堆積
物の量を電極間容量変化で検知するものであり、かつ前
記板状電極は、表面形状を波形とするものであることを
特徴とする堆積物検知器。
2. A deposit detector having a plate-like electrode in a pipe, wherein the plate-like electrode comprises a pair of electrodes, is installed along an inner wall of the pipe, and accumulates between the pair of electrodes. A deposit detector for detecting an amount of a deposit by a change in interelectrode capacitance, and wherein the plate-like electrode has a waveform of a surface shape.
【請求項3】 前記電極は、セラミック系材料で構成し
た絶縁ガイシで電気的に絶縁したものであることを特徴
とする請求項1又は2に記載の堆積物検知器。
3. The deposit detector according to claim 1, wherein the electrode is electrically insulated by an insulating insulator made of a ceramic material.
JP17825997A 1997-07-03 1997-07-03 Sediment detector Expired - Fee Related JP3196689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17825997A JP3196689B2 (en) 1997-07-03 1997-07-03 Sediment detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17825997A JP3196689B2 (en) 1997-07-03 1997-07-03 Sediment detector

Publications (2)

Publication Number Publication Date
JPH1123511A JPH1123511A (en) 1999-01-29
JP3196689B2 true JP3196689B2 (en) 2001-08-06

Family

ID=16045374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17825997A Expired - Fee Related JP3196689B2 (en) 1997-07-03 1997-07-03 Sediment detector

Country Status (1)

Country Link
JP (1) JP3196689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224450A (en) * 2007-03-13 2008-09-25 Nissan Diesel Motor Co Ltd Liquid level measuring device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127615A (en) * 2005-10-05 2007-05-24 Yosoji Tanji Capacitance level sensor
JP4967673B2 (en) * 2007-01-16 2012-07-04 パナソニック株式会社 Liquid container for electrical equipment
KR101221619B1 (en) * 2012-07-20 2013-01-14 주식회사 래더트론 Apparatus for measuring thickness of cumulated powder on the pipe inside
KR101461227B1 (en) * 2014-07-11 2014-11-18 김광연 Apparatus and method for use in measuring powder thickness deposited on the inner surface of pipe
CN104502734A (en) * 2014-12-30 2015-04-08 中国科学院电子学研究所 Capacitive electric field sensor
CN106323416B (en) * 2016-09-23 2020-07-07 惠州华阳通用电子有限公司 Capacitance type oil quantity measuring device
JP6842328B2 (en) * 2017-03-23 2021-03-17 エドワーズ株式会社 Vacuum pump, main sensor, and thread groove stator
CN109469828B (en) * 2017-09-07 2020-09-08 中国石油天然气股份有限公司 Accumulated water detector, and method and device for detecting accumulated water in pipeline
DE102020128010A1 (en) * 2020-10-23 2022-04-28 Lufthansa Technik Aktiengesellschaft System and method for diagnosing a vacuum evacuation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199038U (en) * 1987-12-23 1989-07-03
JPH03107754A (en) * 1989-09-20 1991-05-08 Kokusai Electric Co Ltd Instrument for measuring deposit of chemical vapor deposition device
JPH06129803A (en) * 1992-10-21 1994-05-13 Mitsubishi Heavy Ind Ltd Detecting device for scale thickness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224450A (en) * 2007-03-13 2008-09-25 Nissan Diesel Motor Co Ltd Liquid level measuring device

Also Published As

Publication number Publication date
JPH1123511A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JP3196689B2 (en) Sediment detector
EP2800963B1 (en) Monitoring a conductive fluid conduit
KR100815877B1 (en) Water absorption test equipment and method for generator stator bar insulation by cross capacitance
US20060176061A1 (en) Fluid detection cable
JP7347433B2 (en) Improved devices and methods for measuring condensation and/or corrosion progression
RU2287883C1 (en) Method for ice detection on power transmission line conductors
US10890611B2 (en) Electrostatic measuring system for inner wall of fluid pipeline and measuring method thereof
US9395226B2 (en) Apparatus for determining and/or monitoring a process variable
EP0517530A2 (en) Coagulation detecting device for mixed phase container
CN102879717A (en) Sensing system for online detection of cable partial discharge
CN106441500A (en) Electric-conductive liquid level sensor applied to severe environments
KR100919785B1 (en) Detecting device a partial dischargein in oil filled transformer using ae sensor and method for detecting a partial dischargein
EP3902963B1 (en) Leak detection system and method
JP2001228197A (en) Insulator monitoring device
JP2007232477A (en) Defect detection method for prefabrication-type cable connection part and loop antenna-type sensor
CN102928050A (en) Multi-section admittance liquid level interfacial measuring instrument without unmeasurable area
US20060123933A1 (en) Flow measuring method and device
JP2002350276A (en) Medium fluctuation detection method
JP6364584B2 (en) Atmospheric electric field detector
JP2933853B2 (en) Capacitance sensor
JPH109905A (en) Strain, stress and water leakage detector
JP3357691B2 (en) Partial discharge detection device
EP0321013A2 (en) A method and apparatus for internal corrosion-inspection of pipes or tubes of a relatively small diameter
CN214252151U (en) Ultrasonic probe device for short section flaw detection
JPH09145449A (en) Level gauge

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees