JP3189970B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3189970B2
JP3189970B2 JP25304998A JP25304998A JP3189970B2 JP 3189970 B2 JP3189970 B2 JP 3189970B2 JP 25304998 A JP25304998 A JP 25304998A JP 25304998 A JP25304998 A JP 25304998A JP 3189970 B2 JP3189970 B2 JP 3189970B2
Authority
JP
Japan
Prior art keywords
film
interlayer insulating
wiring
insulating film
etch stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25304998A
Other languages
Japanese (ja)
Other versions
JP2000091425A (en
Inventor
泰章 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25304998A priority Critical patent/JP3189970B2/en
Publication of JP2000091425A publication Critical patent/JP2000091425A/en
Application granted granted Critical
Publication of JP3189970B2 publication Critical patent/JP3189970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関し、特にデュアルダマシン法により、多層配線を
形成する半導体装置の製造方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device in which a multilayer wiring is formed by a dual damascene method.

【0002】[0002]

【従来の技術】半導体集積回路の集積度の向上に伴い、
多層配線の形成が不可欠となっている。この多層配線を
形成する方法として、デュアルダマシン法が知られてい
る。この方法は、図12に示すように、下層配線20を
形成した後、下層配線20と同一の材料で上層配線に接
続するヴィアプラグを形成する方法である。
2. Description of the Related Art As the degree of integration of semiconductor integrated circuits increases,
The formation of multilayer wiring has become indispensable. As a method of forming this multilayer wiring, a dual damascene method is known. In this method, as shown in FIG. 12, after the lower wiring 20 is formed, a via plug connected to the upper wiring is formed using the same material as the lower wiring 20.

【0003】図12に示すように、デュアルダマシン法
においては、まず、下層配線20たとえばCu配線をダ
マシン法で作製した後、下層配線20の上に、第1エッ
チストッパ膜3たとえば窒化シリコンを堆積し、その上
にヴィアレベルの層間絶縁膜4を堆積し、その上に第2
エッチストッパ膜5たとえば酸化シリコンを堆積する。
ここに、層間絶縁膜4はSiNとSiO2から成る膜で
あってもよい。そして、更に、第2エッチストッパ膜5
の上に上層層間絶縁膜6を堆積し、その上にバリア膜8
たとえばTiNを堆積する。
As shown in FIG. 12, in the dual damascene method, first, a lower wiring 20 such as a Cu wiring is formed by a damascene method, and then a first etch stopper film 3 such as silicon nitride is deposited on the lower wiring 20. Then, a via-level interlayer insulating film 4 is deposited thereon, and a second
An etch stopper film 5, for example, silicon oxide is deposited.
Here, the interlayer insulating film 4 may be a film made of SiN and SiO 2 . Further, the second etch stopper film 5
An upper interlayer insulating film 6 is deposited on the substrate, and a barrier film 8 is formed thereon.
For example, TiN is deposited.

【0004】次に、図13に示すように、フォトレジス
ト7をマスクとして、第2エッチストッパー膜5が抜け
るところまでエッチングして、ヴィアホールを形成す
る。
[0004] Next, as shown in FIG. 13, using the photoresist 7 as a mask, etching is performed until the second etch stopper film 5 comes off to form a via hole.

【0005】次に、図14に示すように、フォトレジス
ト膜7を除去して新たにフォトレジスト膜71を配線溝
パターンに形成した後、高選択比エッチング(Si
2:SiN=20:1)によりデュアルダマシン形状
にエッチングする。
Next, as shown in FIG. 14, after removing the photoresist film 7 and newly forming a photoresist film 71 in a wiring groove pattern, a high selectivity etching (Si
Etch into a dual damascene shape by O 2 : SiN = 20: 1).

【0006】次に、図15に示すように、下層配線20
上の第1エッチストッパ膜3を下層配線20の表面まで
エッチングする。以上のようにして、デュアルダマシン
形状が形成される。
[0006] Next, as shown in FIG.
The upper first etch stopper film 3 is etched to the surface of the lower wiring 20. As described above, a dual damascene shape is formed.

【0007】上述した従来の技術では、あらかじめ上層
層間絶縁膜6を堆積した直後にバリア膜8を堆積してあ
る。この理由は、下層配線20の表面すなわちヴィア底
部からバリア膜を除去するためのエッチバック工程で上
層層間絶縁膜6表面のバリア膜8も除去され、この後の
Cu−CVDで上層層間絶縁膜6表面にCuが直接堆積
することになり、堆積したCu膜の剥がれや上層層間絶
縁膜6中へのCuの拡散など問題を生じることを回避す
ベく、エッチバック後にも層間絶縁膜6表面にバリア膜
8が残存させるためである。
In the conventional technique described above, the barrier film 8 is deposited immediately after the upper interlayer insulating film 6 is deposited in advance. The reason is that the barrier film 8 on the surface of the upper interlayer insulating film 6 is also removed by an etch-back process for removing the barrier film from the surface of the lower wiring 20, that is, the bottom of the via. Cu is directly deposited on the surface to avoid problems such as peeling of the deposited Cu film and diffusion of Cu into the upper interlayer insulating film 6. This is because the barrier film 8 remains.

【0008】[0008]

【発明が解決しようとする課題】しかし、図15に示す
高選択比エッチングの際にバリア膜8としての例えばT
iNは第1エッチストッパ膜3たとえばSiN膜との選
択比が少なくエッチングされにくい。従って、多くのデ
ポ物を生じ、デポ物が付着した第2ストッパ膜5たとえ
ば酸化膜がエッチングされないなどの問題から高選択比
エッチングによるデュアルダマシン溝のエッチング形状
が崩れる。
However, at the time of high selectivity etching shown in FIG.
iN has a low selectivity to the first etch stopper film 3, for example, a SiN film, and is hardly etched. Therefore, the etched shape of the dual damascene trench by the high selectivity etching is broken due to the problem that many deposits are generated and the second stopper film 5 to which the deposits adhere, for example, the oxide film is not etched.

【0009】これを回避するためには、デュアルダマシ
ン溝を形成した後にバリア膜8を堆積することも考えら
れる。
In order to avoid this, it is conceivable to deposit the barrier film 8 after forming the dual damascene groove.

【0010】しかし、通常のスパッタ法やCVD法では
下層配線20表面にもバリア膜8が堆積してしまう。
However, the barrier film 8 is deposited on the surface of the lower wiring 20 by the ordinary sputtering method or CVD method.

【0011】そこで、本発明は、形状の崩れのないデュ
アルダマシン溝を形成し、下層配線と上層配線とをヴィ
アプラグで接続することを課題としている。
Accordingly, an object of the present invention is to form a dual damascene groove having no deformation in shape and to connect a lower wiring and an upper wiring with a via plug.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めの本発明は、下層層間絶縁膜と、前記下層層間絶縁膜
に設けたエッチング溝と、前記エッチング溝に形成した
下層バリア膜と、前記エッチング溝を埋め込む下層配線
と、前記下層層間絶縁膜上に形成した第1エッチストッ
パ膜と、前記第1エッチストッパ膜上に形成したヴィア
レベル層間絶縁膜と、前記ヴィアレベル層間絶縁膜上に
形成した第2エッチストッパ膜と、第2エッチストッパ
膜上に形成した上層層間絶縁膜とを含む半導体装置の製
造方法であって、前記エッチング溝上にデュアルダマシ
ン形状の溝を形成し、前記上層層間絶縁膜の表面と前記
下層配線表面と前記デュアルダマシン形状の溝の側壁と
にバリア膜を形成し、前記バリア膜をエッチバックし
て、前記上層層間絶縁膜の表面及び前記下層配線表面か
ら前記バリア膜を除去し、前記デュアルダマシン形状の
溝を清浄化して前記バリア層を除去し、前記デュアルダ
マシン形状の溝の側壁に上層バリア膜を形成し、前記デ
ュアルダマシン形状の溝を上層配線材料で埋め込むよう
にしている。
According to the present invention, there is provided a lower interlayer insulating film, an etching groove provided in the lower interlayer insulating film, a lower barrier film formed in the etching groove, A lower wiring for filling the etching groove; a first etch stopper film formed on the lower interlayer insulating film; a via level interlayer insulating film formed on the first etch stopper film; A method of manufacturing a semiconductor device, comprising: a formed second etch stopper film; and an upper interlayer insulating film formed on the second etch stopper film, wherein a dual damascene-shaped groove is formed on the etching groove, and A barrier film is formed on the surface of an insulating film, the surface of the lower wiring, and the side wall of the dual damascene trench, and the barrier film is etched back to form the upper interlayer insulation. Removing the barrier film from the surface of the film and the lower wiring surface, cleaning the dual damascene-shaped groove to remove the barrier layer, forming an upper barrier film on the side wall of the dual damascene-shaped groove, The dual damascene trench is filled with an upper wiring material.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の半導体装置の製造方法で
製造したヴィアプラグの断面図である。図1に示すよう
に、下層層間絶縁膜1中の下層配線20と上層配線層間
絶縁膜6中の上層配線10とが下層配線20と同一の材
料たとえばCuのヴィアプラグにより接続されている。
ここで、下層バリア膜2はヴィアプラグの下地である。
又、第1エッチストッパ膜3、ヴィアレベルの層間絶縁
膜4、及び第2エッチストッパ膜5の各材料は、デュア
ルダマシン溝を形成するために、エッチングレートが大
きく異なる材料から選択されている。
FIG. 1 is a sectional view of a via plug manufactured by the method of manufacturing a semiconductor device according to the present invention. As shown in FIG. 1, the lower wiring 20 in the lower interlayer insulating film 1 and the upper wiring 10 in the upper wiring interlayer insulating film 6 are connected by the same material as the lower wiring 20, for example, via plug of Cu.
Here, the lower barrier film 2 is a base of the via plug.
The materials of the first etch stopper film 3, the via-level interlayer insulating film 4, and the second etch stopper film 5 are selected from materials having greatly different etching rates in order to form a dual damascene groove.

【0015】図2乃至図10は、本発明のヴィアプラグ
の形成方法の工程図である。
2 to 10 are process diagrams of a method for forming a via plug according to the present invention.

【0016】図2に示すように、まず、下層配線20例
えばCu配線をダマシン法で作製した後、下層配線20
の上に、第1エッチストッパ膜3たとえば窒化シリコン
を堆積し、その上にヴィアレベルの層間絶縁膜4を堆積
し、その上に第2エッチストッパ膜5たとえば酸化シリ
コンを堆積する。ここに、ヴィアレベルの下層層間絶縁
膜4はSiNとSiO2から成る膜であってもよい。そ
して、更に、第2エッチストッパ膜5の上に上層層間絶
縁膜6を堆積する。
As shown in FIG. 2, first, a lower wiring 20 such as a Cu wiring is formed by a damascene method, and then the lower wiring 20 is formed.
A first etch stopper film 3 such as silicon nitride is deposited thereon, a via-level interlayer insulating film 4 is deposited thereon, and a second etch stopper film 5 such as silicon oxide is deposited thereon. Here, the via-level lower interlayer insulating film 4 may be a film made of SiN and SiO 2 . Then, an upper interlayer insulating film 6 is further deposited on the second etch stopper film 5.

【0017】第1エッチストッパ層3は例えばSiN層
であり、第2エッチストッパ層は例えば、SiO2層で
あり、プラズマCVD法により積層する。各層の膜厚は
第1エッチストッパ層3が1000Å、ヴィアレベルの
層間絶縁膜4が5000Å、 第2のエッチストッパーが
3000Åである。
The first etch stopper layer 3 is, for example, a SiN layer, and the second etch stopper layer is, for example, an SiO 2 layer, which is laminated by a plasma CVD method. The thickness of each layer is
The first etch stopper layer 3 has a thickness of 1000
The interlayer insulating film 4 is 5000Å, and the second etch stopper is
3000 $.

【0018】次に、図3に示すように、フォトレジスト
7を塗布し、ヴィアホールパターンに成形した後、ヴィ
アホールを上層の第2のエッチストッパー膜5が抜ける
ところまでエッチングする。
Next, as shown in FIG. 3, a photoresist 7 is applied to form a via hole pattern, and then the via hole is etched until the upper second etch stopper film 5 is removed.

【0019】次に、図4に示すように、ヴィアホールパ
ターンのフォトレジスト7を除去した後、新たにフォト
レジスト71を塗布し、配線溝パターンに成形する。
Next, as shown in FIG. 4, after removing the photoresist 7 in the via hole pattern, a new photoresist 71 is applied to form a wiring groove pattern.

【0020】次に、図5に示すように、高選択比エッチ
ング(SiO2:SiN=20:1)によりデュアルダ
マシン形状にエッチングする。高選択比エッチングに
は、エッチングガスにCF4,CHF3,CO,O2を用
いた反応性イオンエッチング(RIE)を用いることが
できる。
Next, as shown in FIG. 5, a dual damascene shape is etched by high selectivity etching (SiO 2 : SiN = 20: 1). Reactive ion etching (RIE) using CF 4 , CHF 3 , CO, and O 2 as an etching gas can be used for the high selectivity etching.

【0021】次に、図6に示すように、レジスト剥離の
酸素プラズマにCu表面がさらされることを避けるた
め、前もってレジストを除去する。そして、その後、下
層配線20のCu上の第1エッチストッパ膜3のSiN
膜をCu表面まで通常のRIEによりエッチングする。
Next, as shown in FIG. 6, the resist is removed in advance in order to prevent the Cu surface from being exposed to oxygen plasma for stripping the resist. Then, thereafter, the SiN of the first etch stopper film 3 on Cu of the lower wiring 20 is formed.
The film is etched to the Cu surface by normal RIE.

【0022】次に、図7に示すように、テトラキスジエ
チルアミノチタン(TDEAT:tetrakisdi
ethyl−amino−titanium)を原料と
してバリア層8としてのMOCVD−TiN膜(500
Å)を300℃で成膜する。
Next, as shown in FIG. 7, tetrakisdiethylaminotitanium (TDEAT: tetrakisdi)
MOCVD-TiN film (500) as barrier layer 8 using ethyl-amino-titanium as a raw material.
Å) is formed at 300 ° C.

【0023】次に、図8に示すように、このバリア層8
としてのTiN膜をエッチバックにより下層配線20と
してのCu表面から除去する。又、ウェットおよびドラ
イクリーニングを行い、ヴィアホール内部を清浄化
る。そして、図示していないが、更に、ヴィアホール側
壁のバリア層8を除去する。
Next, as shown in FIG.
Is removed from the Cu surface as the lower wiring 20 by etch back. Further, by wet and dry cleaning, to clean the inside via hole
You. And, although not shown, the via hole side
The barrier layer 8 on the wall is removed.

【0024】次に、図9に示すように、斜めスパッタに
より絶縁層間膜上面に優先的に上層バリア層9としての
TiN膜を成膜する。ここで、斜めスパッタにおいて
は、図11に示すように、スパッタリングターゲットに
対して半導体ウエハを傾けて回転させる。こうすること
により、スパッタされた粒子は、ヴィアホール側壁に堆
積し、ヴィアホールの底部、すなわち、下層配線20の
表面には、スパッタされた粒子は到達しない。
Next, as shown in FIG. 9, a TiN film as an upper barrier layer 9 is formed preferentially on the upper surface of the insulating interlayer film by oblique sputtering. Here, in the oblique sputtering, as shown in FIG. 11, the semiconductor wafer is tilted and rotated with respect to the sputtering target. By doing so, the sputtered particles are deposited on the side wall of the via hole, and the sputtered particle does not reach the bottom of the via hole, that is, the surface of the lower wiring 20.

【0025】次に、図10に示すように、トリメチルヴ
ィニルシリルヘキサフルオロアセチルアセトネート銅
(Cu(hfac)(tmvs):trimethyl
vnilsilylhexafluoroacetyl
acetonato Copper(I)をプリカーサ
としたCVD法により170℃で上層配線10例えばC
uを8000Å成膜する。Cu膜の密着性向上、粒成長
のため窒素アニール(400℃×30min.)を行っ
た後、アルミナスラリーを用いたCMPにより図1に示
す配線形状を形成する。
Next, as shown in FIG. 10, copper trimethylvinylsilyl hexafluoroacetylacetonate (Cu (hfac) (tmvs): trimethyl)
vnilsilylhexafluoroacetyl
The upper wiring 10 such as C at 170 ° C. by the CVD method using acetonato copper (I) as a precursor.
u is deposited at 8000 °. After performing nitrogen annealing (400 ° C. × 30 min.) For improving the adhesion of the Cu film and growing grains, the wiring shape shown in FIG. 1 is formed by CMP using alumina slurry.

【0026】以上、本発明の実施形態について説明した
が、本発明はこれに限らず、上層配線膜10としての8
000ÅのCVD−Cu膜に替えて、CVD−Cu膜を
1000Å以下とし、その上に、銅めっきを施してもよ
い。
Although the embodiment of the present invention has been described above, the present invention is not limited to this.
Instead of the 2,000-cm CVD-Cu film, the thickness of the CVD-Cu film may be 1000 mm or less, and copper plating may be applied thereon.

【0027】又、第1エッチストッパ膜3としてSiN
膜を用い、第2エッチストッパ膜5としてエッチングの
選択比が大きいSiO2膜を用いたが、SiO2膜に替え
て、酸化弗化シリコンSiOF膜やシルセスキオクサン
水素(HSQ(Hydrogen Silsesqui
oxane)膜を用いてもよい。
The first etch stopper film 3 is made of SiN.
Although a SiO 2 film having a large etching selectivity was used as the second etch stopper film 5 instead of the SiO 2 film, a silicon oxyfluoride SiOF film or a silsesquioxane hydrogen (HSQ) was used instead of the SiO 2 film.
oxane) film may be used.

【0028】[0028]

【発明の効果】以上説明した本発明によれば、デュアル
ダマシン法における配線溝およびヴィアホールのパター
ンニング(エッチング)を窒化膜(SiN)ストッパー
を用いた高選択比エッチングが良好に行えるので、ヴィ
アプラグが上下層配線とバリア膜を介さないホモ接合構
造の低抵抗多層配線の形成が可能となる。
According to the present invention described above, patterning (etching) of wiring trenches and via holes in the dual damascene method can be favorably performed by high selectivity etching using a nitride film (SiN) stopper. It is possible to form a low-resistance multilayer wiring having a homojunction structure in which the plug does not pass through the upper and lower wiring layers and the barrier film.

【0029】又、本発明によれば、斜めスパッタで成膜
したバリア膜が配線溝側壁に逆テーパー(溝の出口方向
に厚い)に堆積しているため、化学的機械研磨(CM
P)による配線の配線溝からの抜けを起こりにくくして
いる。
According to the present invention, since the barrier film formed by oblique sputtering is deposited on the side wall of the wiring groove in a reverse taper (thick in the direction of the groove exit), chemical mechanical polishing (CM) is performed.
P) makes it difficult for the wiring to come off from the wiring groove.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の製造方法による多層配線
の断面図。
FIG. 1 is a cross-sectional view of a multilayer wiring according to a method for manufacturing a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法の工程図。FIG. 2 is a process chart of a method for manufacturing a semiconductor device of the present invention.

【図3】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 3 is a process chart of a method for manufacturing a semiconductor device of the present invention (continued).

【図4】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 4 is a process diagram (continued) of the method for manufacturing a semiconductor device of the present invention.

【図5】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 5 is a process chart of the method for manufacturing a semiconductor device of the present invention (continued).

【図6】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 6 is a process diagram (continued) of the method for manufacturing a semiconductor device of the present invention.

【図7】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 7 is a process chart of the method for manufacturing a semiconductor device of the present invention (continued).

【図8】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 8 is a process chart (continued) of the method for manufacturing a semiconductor device of the present invention.

【図9】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 9 is a process chart (continued) of the method for manufacturing a semiconductor device according to the present invention.

【図10】本発明の半導体装置の製造方法の工程図(続
き)。
FIG. 10 is a process chart of the method for manufacturing a semiconductor device of the present invention (continued).

【図11】斜めスパッタの概念図。FIG. 11 is a conceptual diagram of oblique sputtering.

【図12】従来の多層配線形成工程の工程図。FIG. 12 is a process diagram of a conventional multilayer wiring forming process.

【図13】従来の多層配線形成工程の工程図(続き)。FIG. 13 is a process diagram of a conventional multilayer wiring forming process (continued).

【図14】従来の多層配線形成工程の工程図(続き)。FIG. 14 is a process diagram of a conventional multilayer wiring forming process (continued).

【図15】従来の多層配線形成工程の工程図(続き)。FIG. 15 is a process diagram of a conventional multilayer wiring forming process (continued).

【符号の説明】[Explanation of symbols]

1 下層層間絶縁膜 2 下層バリア膜 3 第1エッチストッパ膜 4 ヴィアレベルの層間絶縁膜 5 第2エッチストッパ膜 6 上層層間絶縁膜 7,71 フォトレジスト膜 8 バリア膜 9 上層バリア層 10 上層配線 20 下層配線 Reference Signs List 1 lower interlayer insulating film 2 lower barrier film 3 first etch stopper film 4 via-level interlayer insulating film 5 second etch stopper film 6 upper interlayer insulating film 7, 71 photoresist film 8 barrier film 9 upper barrier layer 10 upper wiring 20 Lower layer wiring

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下層層間絶縁膜と、前記下層層間絶縁膜
に設けたエッチング溝と、前記エッチング溝に形成した
下層バリア膜と、前記エッチング溝を埋め込む下層配線
と、前記下層層間絶縁膜上に形成した第1エッチストッ
パ膜と、前記第1エッチストッパ膜上に形成したヴィア
レベル層間絶縁膜と、前記ヴィアレベル層間絶縁膜上に
形成した第2エッチストッパ膜と、第2エッチストッパ
膜上に形成した上層層間絶縁膜とを含む半導体装置の製
造方法であって、 前記エッチング溝上にデュアルダマシン形状の溝を形成
し、 前記上層層間絶縁膜の表面と前記下層配線表面と前記デ
ュアルダマシン形状の溝の側壁とにバリア膜を形成し、 前記バリア膜をエッチバックして、前記上層層間絶縁膜
の表面及び前記下層配線表面から前記バリア膜を除去
し、 前記デュアルダマシン形状の溝を清浄化して前記バリア
層を除去し、 前記デュアルダマシン形状の溝の側壁に上層バリア膜を
形成し、 前記デュアルダマシン形状の溝を上層配線で埋め込むこ
とを特徴とする半導体装置の製造方法。
A lower interlayer insulating film; an etching groove provided in the lower interlayer insulating film; a lower barrier film formed in the etching groove; a lower wiring filling the etching groove; A first etch stopper film formed, a via level interlayer insulating film formed on the first etch stopper film, a second etch stopper film formed on the via level interlayer insulating film, and a second etch stopper film on the second etch stopper film. A method of manufacturing a semiconductor device, comprising: a formed upper interlayer insulating film; a dual damascene-shaped groove formed on the etching groove; and a surface of the upper interlayer insulating film, a lower wiring surface, and the dual damascene-shaped groove. A barrier film is formed on the side wall of the substrate and the barrier film is etched back to remove the barrier film from the surface of the upper interlayer insulating film and the surface of the lower wiring. Removing the barrier layer by cleaning the dual damascene-shaped groove, forming an upper barrier film on a side wall of the dual damascene-shaped groove, and filling the dual damascene-shaped groove with an upper wiring. Manufacturing method of a semiconductor device.
【請求項2】 前記上層バリア膜を、斜めスパッタ法で
形成することを特徴とする請求項1記載の半導体装置の
製造方法。
2. The method according to claim 1, wherein the upper barrier film is formed by an oblique sputtering method.
【請求項3】 前記上層バリア膜は、前記下層バリア膜
と同一の成分元素を含み、前記上層配線は、前記下層配
線と同一の成分元素を含むことを特徴とする請求項1記
載の半導体装置の製造方法。
3. The semiconductor device according to claim 1, wherein the upper barrier film contains the same component element as the lower barrier film, and the upper wiring contains the same component element as the lower wiring. Manufacturing method.
JP25304998A 1998-09-07 1998-09-07 Method for manufacturing semiconductor device Expired - Fee Related JP3189970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25304998A JP3189970B2 (en) 1998-09-07 1998-09-07 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25304998A JP3189970B2 (en) 1998-09-07 1998-09-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000091425A JP2000091425A (en) 2000-03-31
JP3189970B2 true JP3189970B2 (en) 2001-07-16

Family

ID=17245781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25304998A Expired - Fee Related JP3189970B2 (en) 1998-09-07 1998-09-07 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3189970B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858895B2 (en) * 2000-07-21 2012-01-18 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP3540302B2 (en) 2001-10-19 2004-07-07 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP3877613B2 (en) 2002-03-05 2007-02-07 三洋電機株式会社 Method for manufacturing organic electroluminescence display device
JP2004128074A (en) 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
JP2004140198A (en) 2002-10-18 2004-05-13 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
WO2005027223A1 (en) 2003-09-09 2005-03-24 Sanyo Electric Co., Ltd Semiconductor module including circuit device and insulating film, method for manufacturing same, and application of same
US9076821B2 (en) 2007-04-30 2015-07-07 Infineon Technologies Ag Anchoring structure and intermeshing structure
DE102007020263B4 (en) * 2007-04-30 2013-12-12 Infineon Technologies Ag Verkrallungsstruktur
FR2917893B1 (en) * 2007-06-22 2009-08-28 Commissariat Energie Atomique METHOD FOR MANUFACTURING AN ELECTRICAL CONNECTION BASED ON CARBON NANOTUBES
JP5407340B2 (en) * 2009-01-07 2014-02-05 富士通セミコンダクター株式会社 Wiring formation method
JP5104924B2 (en) * 2010-08-23 2012-12-19 富士通セミコンダクター株式会社 Semiconductor device
WO2012127861A1 (en) * 2011-03-22 2012-09-27 パナソニック株式会社 Method for manufacturing nonvolatile storage device
CN103390628B (en) * 2012-05-08 2016-08-03 复旦大学 Resistor-type memory of rear end structure being integrated in integrated circuit and preparation method thereof

Also Published As

Publication number Publication date
JP2000091425A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
US7727888B2 (en) Interconnect structure and method for forming the same
US6297554B1 (en) Dual damascene interconnect structure with reduced parasitic capacitance
JP4492947B2 (en) Manufacturing method of semiconductor device
US6734096B2 (en) Fine-pitch device lithography using a sacrificial hardmask
US7964966B2 (en) Via gouged interconnect structure and method of fabricating same
JP2001338978A (en) Semiconductor device and its manufacturing method
JP3189970B2 (en) Method for manufacturing semiconductor device
US6686273B2 (en) Method of fabricating copper interconnects with very low-k inter-level insulator
US6429119B1 (en) Dual damascene process to reduce etch barrier thickness
JP2003179136A (en) Mask layer and interconnection structure for manufacturing dual damascene semiconductor
JP2000188330A (en) Formation of dual-damascene wire
JP2003508896A (en) Method of manufacturing an integrated circuit having at least one metallization surface
JP3391933B2 (en) Semiconductor device and manufacturing method thereof
JP2004014901A (en) Semiconductor device and its manufacturing method
JPH07263589A (en) Multilayer interconnection structure and manufacture thereof
JP2006517059A (en) Metal etching method for interconnect structure and metal interconnect structure obtained by such method
KR100399909B1 (en) Method of forming inter-metal dielectric in a semiconductor device
KR100591179B1 (en) Metal line formation method of semiconductor device
US20040142554A1 (en) Underlayer protection for the dual damascene etching
JP4207113B2 (en) Method for forming wiring structure
US8048799B2 (en) Method for forming copper wiring in semiconductor device
KR100774642B1 (en) Manufacturing method of copper metalization for semiconductor device
JP2004031638A (en) Method of forming wiring structure
JP2000294636A (en) Semiconductor device and manufacture of the same
KR100447322B1 (en) Method of forming a metal line in semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees