JP3189626B2 - Display device - Google Patents
Display deviceInfo
- Publication number
- JP3189626B2 JP3189626B2 JP15192795A JP15192795A JP3189626B2 JP 3189626 B2 JP3189626 B2 JP 3189626B2 JP 15192795 A JP15192795 A JP 15192795A JP 15192795 A JP15192795 A JP 15192795A JP 3189626 B2 JP3189626 B2 JP 3189626B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- zno
- sulfide
- emission
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Luminescent Compositions (AREA)
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、2種類の蛍光体を発光
部に有する表示装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device having two kinds of phosphors in a light emitting portion.
【0002】[0002]
【従来の技術】蛍光表示管や、電子源に電界放出形素子
を用いた蛍光表示装置においては、例えば複数種類の発
光色で表示を行う等のためにZnS系、CaS系等の蛍
光体を陽極の発光部分に利用することがある。2. Description of the Related Art In a fluorescent display tube or a fluorescent display device using a field emission element as an electron source, for example, a phosphor of ZnS type, CaS type or the like is used for displaying a plurality of kinds of emission colors. It may be used for the light emitting part of the anode.
【0003】例えば、赤色発光の蛍光体としては、(Z
nx ,Cd1-x )S:Ag,Cl(x=0.22)、Z
nS:Cu,Al、Y2 O2 S:Eu等が知られてお
り、また青色発光系の蛍光体としてはZnS:Znが知
られており、また緑色発光系の蛍光体としてはZnS:
Cu,Al、(Znx ,Cd1-x )S:Ag,Cl(x
=0.6)が知られている。For example, as a red-emitting phosphor, (Z
nx , Cd1 -x ) S: Ag, Cl (x = 0.22), Z
nS: Cu, Al, Y 2 O 2 S: Eu and the like are known, and ZnS: Zn is known as a blue light emitting phosphor, and ZnS: Zn is used as a green light emitting phosphor.
Cu, Al, (Zn x , Cd 1-x ) S: Ag, Cl (x
= 0.6) is known.
【0004】上記硫化物の蛍光体は、蛍光表示管内で電
子の射突を受けることにより徐々に表面から分解してい
く。分解した蛍光体は周囲に飛散し、電子の放出部分で
あるフィラメント状の陰極や電界放出形素子の表面に被
着し、その電子放出能力を低下させてしまう。The sulfide phosphor is gradually decomposed from the surface by receiving electron bombardment in the fluorescent display tube. The decomposed phosphor scatters around and adheres to the surface of a filament-shaped cathode or a field emission element, which is an electron emission portion, and reduces the electron emission ability.
【0005】このような問題を回避するために、前記蛍
光体層の上にBaSi2 O5 :Pb等の紫外線発光蛍光
体を積層し、下層の蛍光体を保護するという手段が提案
されている。このような2層構造の蛍光体を有する蛍光
表示管では、電子は上層のBaSi2 O5 :Pb蛍光体
に射突し、電子が直接射突しない下層の硫化物蛍光体が
分解して飛散することはない。電子が射突したBaSi
2 O5 :Pb蛍光体は紫外線を放出し、この紫外線によ
って下層の硫化物蛍光体が励起されて発光する。In order to avoid such a problem, a means has been proposed in which an ultraviolet light emitting phosphor such as BaSi 2 O 5 : Pb is laminated on the phosphor layer to protect the lower phosphor. . In such a fluorescent display tube having a phosphor of a two-layer structure, electrons impinge on the upper BaSi 2 O 5 : Pb phosphor, and the lower sulfide phosphor on which the electrons do not directly strike decompose and scatter. I will not do it. BaSi struck by electrons
The 2 O 5 : Pb phosphor emits ultraviolet rays, and the ultraviolet rays excite the lower sulfide phosphor to emit light.
【0006】[0006]
【発明が解決しようとする課題】従来の蛍光表示管等で
は、電子の加速電圧は一般に1kV以下であり、この駆
動条件で蛍光体を実用的な輝度で発光させるには蛍光体
層の抵抗がある程度低いことが必要である。前述した従
来の2層構造の蛍光体によれば、BaSi2 O5:Pb
蛍光体の抵抗が高く、1kV以下の加速電圧では十分な
輝度が得られなかった。In a conventional fluorescent display tube or the like, the electron acceleration voltage is generally 1 kV or less. In order to make the phosphor emit light with practical luminance under this driving condition, the resistance of the phosphor layer is reduced. It needs to be low to some extent. According to the above-described conventional phosphor having a two-layer structure, BaSi 2 O 5 : Pb
The resistance of the phosphor was high and sufficient luminance could not be obtained with an acceleration voltage of 1 kV or less.
【0007】また、硫化物の蛍光体はBaSi2 O5 :
Pb蛍光体に保護されるが、電子が直接射突するBaS
i2 O5 :Pb蛍光体の寿命が短いという問題があっ
た。[0007] The sulfide phosphor is BaSi 2 O 5 :
BaS, protected by Pb phosphor, but directly hit by electrons
There was a problem that the life of the i 2 O 5 : Pb phosphor was short.
【0008】本発明は、前述した従来の2層構造の蛍光
体のような硫化物の蛍光体と他の蛍光体からなる蛍光体
において、例えば1kV以下の低電圧で加速した電子の
射突によっても十分な輝度で発光し、寿命を長くするこ
とを目的としている。The present invention relates to a phosphor comprising a sulfide phosphor, such as the above-mentioned conventional phosphor having a two-layer structure, and another phosphor, which is irradiated with electrons accelerated at a low voltage of, for example, 1 kV or less. It also aims to emit light with sufficient luminance and prolong the life.
【0009】[0009]
【課題を解決するための手段】請求項1に記載された表
示装置は、陽極基板上の透光性電極に被着された硫化物
蛍光体の層と、前記硫化物蛍光体の層の表面を覆うよう
に被着されて1kV以下の電子線による励起により紫外
線を発する電子線励起紫外線発光蛍光体の層を有する表
示装置において、前記電子線励起紫外線発光蛍光体が、
385nmのみに発光のピークを有するZnOと、38
5nmと505nmの2点に発光のピークを有するZn
Oとの混合からなり、その385nmをピークとする紫
外線成分と505nmをピークとする可視光線成分の強
度比が100/0〜10/90の範囲で選択されたこと
を特徴としている。According to a first aspect of the present invention, there is provided a display device comprising: a sulfide phosphor layer attached to a light-transmitting electrode on an anode substrate; and a surface of the sulfide phosphor layer. A display device having a layer of an electron beam-excited ultraviolet light-emitting phosphor that is applied so as to cover and emits ultraviolet light by excitation with an electron beam of 1 kV or less,
ZnO having an emission peak only at 385 nm;
Zn having emission peaks at two points of 5 nm and 505 nm
O, and the intensity ratio between the ultraviolet component having a peak at 385 nm and the visible component having a peak at 505 nm is selected in the range of 100/0 to 10/90.
【0010】請求項2に記載された表示装置は、請求項
1記載の表示装置において、385nmのみに発光のピ
ークを有する前記ZnOは、還元処理で製造されたZn
O蛍光体をO2 雰囲気内で焼成して得られたことを特徴
としている。According to a second aspect of the present invention, in the display device of the first aspect, the ZnO having an emission peak only at 385 nm is Zn produced by a reduction treatment.
It is characterized by being obtained by firing an O phosphor in an O 2 atmosphere.
【0011】[0011]
【0012】[0012]
【0013】[0013]
【0028】[0028]
【作用】電子源から放出された電子は、電子線励起紫外
線発光蛍光体に射突する。電子線励起紫外線発光蛍光体
は、400nmよりも波長の短い紫外線を発生する。電
子線励起紫外線発光蛍光体の下にある硫化物蛍光体は電
子線励起紫外線発光蛍光体の発生する紫外光によって励
起されて発光する。硫化物蛍光体は、電子が直接射突し
ないので分解飛散しにくい。The electrons emitted from the electron source strike the phosphor excited by the electron beam. The electron beam excited ultraviolet light emitting phosphor generates ultraviolet light having a wavelength shorter than 400 nm. The sulfide phosphor beneath the electron beam excited ultraviolet light emitting phosphor emits light when excited by the ultraviolet light generated by the electron beam excited ultraviolet light emitting phosphor. Sulfide phosphors are not easily decomposed and scattered because electrons do not strike directly.
【0029】[0029]
【実施例】本発明者等は上記の目的を達成するために種
々の蛍光体を用いて実験を行った。その結果、抵抗の低
いZnO蛍光体で硫化物蛍光体を覆えば、1kV以下の
低電圧で加速した電子の射突によっても十分な輝度で硫
化物蛍光体を発光させられるという認識を得た。EXAMPLES The present inventors conducted experiments using various phosphors to achieve the above object. As a result, it has been recognized that if the sulfide phosphor is covered with the ZnO phosphor having low resistance, the sulfide phosphor can emit light with sufficient luminance even by the electron bombardment accelerated at a low voltage of 1 kV or less.
【0030】本発明者等は、抵抗の低い蛍光体であるZ
nO蛍光体で硫化物蛍光体を被覆した蛍光体についてさ
らに研究を進めた結果、次のような事実を見いだすに至
った。即ち、通常ZnO蛍光体の発光スペクトルは40
0nm〜700nmの範囲にあるので、この波長領域に
励起のピークを有する硫化物蛍光体、例えばZnCd
S:Ag蛍光体のような黄〜赤色に発光する蛍光体と前
記ZnO蛍光体とを組み合わせると、上述したように良
好な結果が得られる。The inventors of the present invention have proposed a low-resistance phosphor Z
As a result of further research on the phosphor coated with the sulfide phosphor with the nO phosphor, the following facts have been found. That is, the emission spectrum of the normal ZnO phosphor is 40
Since it is in the range of 0 nm to 700 nm, a sulfide phosphor having an excitation peak in this wavelength region, for example, ZnCd
When the phosphor that emits yellow to red light, such as the S: Ag phosphor, is combined with the ZnO phosphor, good results can be obtained as described above.
【0031】しかしながら、ZnS:AgやZnS:C
u,Al等のように400nmよりも短い波長領域に励
起のピークを持つ青色発光系の硫化物蛍光体に関して
は、その上に前記ZnO蛍光体を積層しても、該硫化物
蛍光体を発光させることはできない。これは、電子が射
突したZnO蛍光体から400nmよりも短い波長の光
が殆ど出ないため、下層の硫化物蛍光体を励起発光させ
ることができないからである。However, ZnS: Ag and ZnS: C
With respect to a blue light emitting sulfide phosphor having an excitation peak in a wavelength region shorter than 400 nm, such as u or Al, the sulfide phosphor emits light even when the ZnO phosphor is laminated thereon. I can't let that happen. This is because almost no light having a wavelength shorter than 400 nm is emitted from the ZnO phosphor onto which electrons have hit, so that the lower-layer sulfide phosphor cannot be excited to emit light.
【0032】そこで、本発明者等は、硫化物蛍光体をZ
nO蛍光体で被覆した蛍光体の研究において、黄、赤色
のみならず青色の発光も得られるようにすることを目的
として、ZnO蛍光体の発光スペクトルに注目しながら
その製造方法を種々試みたところ、次のような事実を発
見した。即ち、通常のZnO蛍光体は505nm付近に
発光のピークを有しているが、ZnO蛍光体の中には、
特定の製造方法によって385nm付近に発光のピーク
を有しているものも得られる。Therefore, the present inventors set the sulfide phosphor to Z
In the study of phosphors coated with nO phosphors, various attempts were made on the production method of ZnO phosphors, focusing on the emission spectrum of the phosphors, with the aim of obtaining not only yellow and red emission but also blue emission. Found the following facts. That is, a normal ZnO phosphor has an emission peak near 505 nm, but some ZnO phosphors include:
Depending on the specific production method, a compound having an emission peak at around 385 nm can be obtained.
【0033】図1は、実施例の方法によって得られたZ
nO蛍光体の発光スペクトルと、ZnS:Ag蛍光体、
ZnS:Cu,Al蛍光体、Zn,CdS:Ag蛍光体
の各励起(吸収)スペクトルを示したものである。この
ようにZnO蛍光体が可視波長の光線と共に400nm
よりも短い波長の紫外線を発生すれば、ZnCdS:A
g蛍光体による赤色発光と共に、ZnS:Ag蛍光体・
ZnS:Cu,Al蛍光体等による青色及び緑色発光も
可能となる。FIG. 1 shows the Z obtained by the method of the embodiment.
an emission spectrum of the nO phosphor, a ZnS: Ag phosphor,
It shows each excitation (absorption) spectrum of ZnS: Cu, Al phosphor and Zn, CdS: Ag phosphor. Thus, the ZnO phosphor is 400 nm together with the visible wavelength light.
If ultraviolet light having a shorter wavelength is generated, ZnCdS: A
g red phosphor and ZnS: Ag phosphor.
Blue and green light emission by ZnS: Cu, Al phosphor and the like is also possible.
【0034】本発明者等の知見によれば、ZnO蛍光体
の発光スペクトルにおける385nmのピークは、バン
ド間発光によって生じる。そして、このような発光のピ
ークを有するZnO蛍光体は、還元処理で製造される通
常のZnO蛍光体を、O2 雰囲気内で焼成することによ
り得られる。このようにして得られた385nmのピー
クを有するZnO蛍光体は、従来のZnO蛍光体よりも
母体抵抗がやや高いが、蛍光表示管の表示部に用いる蛍
光体としては実用上殆ど問題はない。According to the findings of the present inventors, the peak at 385 nm in the emission spectrum of the ZnO phosphor is caused by interband emission. The ZnO phosphor having such a light emission peak is obtained by firing a normal ZnO phosphor produced by a reduction treatment in an O 2 atmosphere. The ZnO phosphor having a peak of 385 nm obtained in this way has a slightly higher matrix resistance than the conventional ZnO phosphor, but has almost no practical problem as a phosphor used for the display section of a fluorescent display tube.
【0035】次に、本実施例の表示装置に適用するZn
O蛍光体で硫化物蛍光体を被覆した2層構造の蛍光体層
とその製造方法について説明する。酸素を有する雰囲気
中(例えば空気中)でZn粉末を焼成してZnOを得
る。この蛍光体をアニール処理し、385nmのみに発
光のピークを有する試料と、385nmと505nmの
2点に発光のピークを有する試料とを作製した。なお、
このアニール処理によって蛍光体自体の抵抗値は減少す
る。Next, Zn applied to the display device of the present embodiment will be described.
A phosphor layer having a two-layer structure in which a sulfide phosphor is coated with an O phosphor and a manufacturing method thereof will be described. The Zn powder is fired in an atmosphere containing oxygen (for example, in the air) to obtain ZnO. This phosphor was annealed to prepare a sample having an emission peak only at 385 nm and a sample having emission peaks at two points of 385 nm and 505 nm. In addition,
This annealing reduces the resistance value of the phosphor itself.
【0036】ZnOのアニールは、通常の炉を用いて行
ってもよいし、ランプアニールでもよい。ランプアニー
ルの場合、電流はZnO粒子の表面を伝って流れるので
蛍光体粒子の表面層のみが処理される。発光は蛍光体粒
子の表面の他、内部からもでてくるため、ランプアニー
ルによれば紫外線成分を減衰させることなく蛍光体の導
電性を向上させることができる。The annealing of ZnO may be performed using a normal furnace or lamp annealing. In the case of lamp annealing, current flows along the surface of the ZnO particles, so that only the surface layer of the phosphor particles is processed. Since light emission is emitted not only from the surface of the phosphor particles but also from the inside, lamp annealing can improve the conductivity of the phosphor without attenuating ultraviolet components.
【0037】図2に示すように、絶縁性のガラス基板で
ある陽極基板1の上に、陽極導体として透光性電極であ
るITO電極2を形成する。その上に硫化物の蛍光体3
を被着する。硫化物の蛍光体3には、抵抗を低下させる
ためにIn2 O3 等の導電性物質を混合してもよい。こ
の硫化物の蛍光体3の表面を覆うように、可視光線発光
蛍光体としてのZnO蛍光体4を被着する。この陽極基
板1を400〜500℃で焼成し、蛍光表示管等の陽極
基板1として完成する。As shown in FIG. 2, an ITO electrode 2 which is a translucent electrode is formed as an anode conductor on an anode substrate 1 which is an insulating glass substrate. Sulfide phosphor 3
To adhere. The sulfide phosphor 3 may be mixed with a conductive substance such as In 2 O 3 to reduce the resistance. A ZnO phosphor 4 as a visible light emitting phosphor is applied so as to cover the surface of the sulfide phosphor 3. The anode substrate 1 is fired at 400 to 500 ° C. to complete the anode substrate 1 such as a fluorescent display tube.
【0038】なお、図2には単一の硫化物蛍光体3の層
しか表示されていないが、具体的な硫化物の蛍光体とし
ては、青色発光のZnS:Ag蛍光体、緑色発光のZn
S:Cu,Al蛍光体、赤色発光のZn0.2 Cd
0.8 S:Ag蛍光体をそれぞれ別々に用い、前記陽極基
板上にそれぞれ独立した発光表示部である陽極を構成し
た。Although only a single layer of the sulfide phosphor 3 is shown in FIG. 2, specific phosphors of the sulfide include a ZnS: Ag phosphor emitting blue light and a Zn phosphor emitting green light.
S: Cu, Al phosphor, Zn 0.2 Cd for red emission
0.8 S: Ag phosphors were separately used, and anodes as independent light emitting display portions were formed on the anode substrate.
【0039】また、電子線励起紫外線発光蛍光体である
ZnO蛍光体は、波長385nmをピークとする紫外線
成分と、波長505nmをピークとする可視光線成分の
強度比が、紫外線成分/可視光線成分=100/0〜0
/100であるような多種類の試料を用意した。なお、
上記紫外線成分と可視光線成分の強度比を、本説明では
単に波長成分強度比と称する。The ZnO phosphor, which is an ultraviolet ray emitting phosphor excited by an electron beam, has an intensity ratio of an ultraviolet component having a peak at a wavelength of 385 nm to a visible light component having a peak at a wavelength of 505 nm, ie, ultraviolet component / visible light component = 100 / 0-0
/ 100 kinds of samples were prepared. In addition,
The intensity ratio between the ultraviolet component and the visible light component is simply referred to as a wavelength component intensity ratio in this description.
【0040】前記陽極基板を用いて蛍光表示管を構成す
る。該蛍光表示管の陽極基板のITO電極に、100〜
1000Vの電圧を印加して10〜100mA/cm2
の電流を流す。その時の各陽極の蛍光体層の発光輝度及
び寿命特性を測定し、その結果を用いて評価を行った。
各発光色の前記硫化物蛍光体毎の評価を図3〜図5を参
照して以下に説明する。A fluorescent display tube is formed using the anode substrate. The ITO electrode on the anode substrate of the fluorescent display tube has a thickness of 100 to
Applying a voltage of 1000 V and applying 10 to 100 mA / cm 2
Of current. At that time, the emission luminance and life characteristics of the phosphor layer of each anode were measured, and evaluation was performed using the results.
The evaluation of each luminescent color for each of the sulfide phosphors will be described below with reference to FIGS.
【0041】なお、比較のために、上記赤・青・緑の各
色に発光する硫化物蛍光体のみを蛍光体として有する試
料と、波長505nmのみに発光のピークを有するZn
O蛍光体のみを蛍光体として有する試料も作製した。For comparison, a sample having only a sulfide phosphor emitting in each of the red, blue and green colors as a phosphor and a Zn having an emission peak only at a wavelength of 505 nm were used.
A sample having only the O phosphor as the phosphor was also prepared.
【0042】(1) 青色発光のZnS:Ag蛍光体の場合 ZnS:Ag蛍光体上に設けたZnO蛍光体の波長成分
強度比と、蛍光体層全体の相対輝度との関係を図3に示
す。評価は陽極電圧200Vにおいて行った。ZnO蛍
光体において505nmの成分が多い場合には、ZnO
蛍光体において青色成分以外の割合が増えて青色の色純
度が悪くなるため、青色のフィルタを通して評価した。
比較例として、発光スペクトルのピークが505nmの
みのZnO蛍光体にフィルタを併用した場合の輝度を同
図中に示す。(1) In the case of ZnS: Ag phosphor emitting blue light The relationship between the wavelength component intensity ratio of the ZnO phosphor provided on the ZnS: Ag phosphor and the relative luminance of the entire phosphor layer is shown in FIG. . The evaluation was performed at an anode voltage of 200V. When the component of 505 nm is large in the ZnO phosphor, ZnO
Since the ratio of components other than the blue component in the phosphor increased and the color purity of blue deteriorated, evaluation was performed through a blue filter.
As a comparative example, the luminance in the case where a filter is used in combination with a ZnO phosphor whose emission spectrum peak is only 505 nm is shown in FIG.
【0043】本例では、波長成分強度比が、385nm
/505nn=100/0〜10/90の範囲において
相対輝度が50を越え、比較例よりも良好な実用に耐え
る結果が得られた。この範囲内において、波長成分強度
比が97/3〜40/60であればさらに好ましい結果
が得られる。この範囲内において、波長成分強度比が9
0/10〜75/25であればさらに一層好ましい結果
が得られる。In this example, the wavelength component intensity ratio is 385 nm
In the range of / 505nn = 100/0 to 10/90, the relative luminance exceeded 50, and a better result for practical use than the comparative example was obtained. Within this range, a more preferable result can be obtained if the wavelength component intensity ratio is 97/3 to 40/60. Within this range, the wavelength component intensity ratio is 9
If it is 0/10 to 75/25, still more preferable results can be obtained.
【0044】なお、波長成分強度比が5/95よりも小
さい範囲では、ZnO蛍光体の505nm成分の青色成
分が下層のZnS:Ag蛍光体層で乱反射されて減衰す
るため、ZnOとフィルタを組み合わせた試料よりも特
性が劣るようになる。また、波長成分強度比が99/1
より大きいとZnO蛍光体の母体抵抗が高くなり、輝度
の低下を生じる。In the range where the wavelength component intensity ratio is smaller than 5/95, the blue component of the 505 nm component of the ZnO phosphor is irregularly reflected by the lower ZnS: Ag phosphor layer and attenuated. The characteristics are inferior to those of the sample. Further, the wavelength component intensity ratio is 99/1.
If it is larger, the matrix resistance of the ZnO phosphor becomes high, and the luminance is reduced.
【0045】(2) 緑色発光のZnS:Cu,Al蛍光体
の場合 前記ZnS:Ag蛍光体の場合と同様に行った実験の結
果を図4に示す。本例においては、ZnO蛍光体が発生
する光の内、青色成分乃至波長385nmを中心とする
紫外線の他、波長505nmを中心とする成分の一部も
硫化物蛍光体の励起に利用されるので、好ましい波長成
分強度比は100/0〜7/93に拡大した。この範囲
内において、波長成分強度比が90/10〜40/60
であればさらに好ましい結果が得られる。この範囲内に
おいて、波長成分強度比が75/25〜55/45であ
ればさらに一層好ましい結果が得られる。CaS:Ce
蛍光体についても同様な結果が得られた。(2) In the case of ZnS: Cu, Al phosphor emitting green light FIG. 4 shows the results of an experiment performed in the same manner as in the case of the ZnS: Ag phosphor. In this example, among the light generated by the ZnO phosphor, in addition to the blue component or ultraviolet light having a wavelength of 385 nm, a part of the component having a wavelength of 505 nm is also used for exciting the sulfide phosphor. The preferred wavelength component intensity ratio was expanded from 100/0 to 7/93. Within this range, the wavelength component intensity ratio is 90/10 to 40/60.
If so, more preferable results can be obtained. Within this range, even more favorable results can be obtained if the wavelength component intensity ratio is 75/25 to 55/45. CaS: Ce
Similar results were obtained for the phosphor.
【0046】(3) 赤色発光のZn0.2 Cd0.8 S:Ag
蛍光体の場合 前記ZnS:Ag蛍光体の場合と同様に行った実験の結
果を図5に示す。本例においては、好ましい波長成分強
度比は100/0〜0/100となった。これは、図1
に示すように、赤色発光の蛍光体の励起帯が、ZnO蛍
光体の発光スペクトルの505nm成分である可視域に
まで及んでいるためである。なお、本例の上記硫化物蛍
光体ではCdを80%としたが、Cd量が80%以下で
あるとバンドギャップの構造がZnS蛍光体の構造に近
づくため、ZnO蛍光体が出す紫外線による効果はより
大きくなる。逆にCdが80%より大きいと、主として
可視領域の光線によって励起されるようになる。(3) Red-emitting Zn 0.2 Cd 0.8 S: Ag
In the case of a phosphor FIG. 5 shows the results of an experiment performed in the same manner as in the case of the ZnS: Ag phosphor. In this example, the preferred wavelength component intensity ratio was 100/0 to 0/100. This is shown in FIG.
This is because the excitation band of the red light emitting phosphor extends to the visible region, which is the 505 nm component of the emission spectrum of the ZnO phosphor, as shown in FIG. In the sulfide phosphor of the present example, Cd was set to 80%. However, if the Cd content is 80% or less, the band gap structure approaches the structure of the ZnS phosphor, and the effect of the ultraviolet light emitted by the ZnO phosphor is obtained. Will be larger. Conversely, when Cd is larger than 80%, the light is mainly excited by light in the visible region.
【0047】電子が蛍光体に射突してこれを励起発光さ
せる場合、電子のエネルギの大半は熱になり、蛍光体を
発熱させて蛍光体の発光輝度を低下させる。このような
蛍光体の温度と発光輝度の関係を温度消光特性と呼ぶ。
以上説明した各例において、ZnO蛍光体の385nm
をピークとする発光は、温度消光特性が良好である。従
来のZnO蛍光体における波長505nmを中心とした
発光のように温度消光特性の劣る発光を利用し、これに
フィルタを併用して赤青緑の各色を得る場合に比べ、図
6に示すように本実施例の蛍光体は温度消光特性が優れ
ている。When electrons impinge on the phosphor to excite it and emit light, most of the energy of the electrons is converted to heat, causing the phosphor to generate heat and reduce the emission luminance of the phosphor. Such a relationship between the temperature of the phosphor and the emission luminance is called a temperature quenching characteristic.
In each of the examples described above, the 385 nm
The light emission having a peak of has good temperature quenching characteristics. Compared to the case where a conventional ZnO phosphor uses light emission having inferior temperature quenching characteristics such as light emission centered at a wavelength of 505 nm and uses filters in combination with each other to obtain red, green and blue colors, as shown in FIG. The phosphor of this embodiment has excellent temperature quenching characteristics.
【0048】以上説明した実験結果から見て、本実施例
の表示装置の蛍光体におけるZnOは、その波長成分強
度比を、385nm/505nn=100/0〜10/
90の範囲で選択することが実用上有効であると考えら
れる。From the experimental results described above, ZnO in the phosphor of the display device of this embodiment has a wavelength component intensity ratio of 385 nm / 505nn = 100/0 to 10/0.
It is considered that selection within the range of 90 is practically effective.
【0049】以上説明したZnO蛍光体によって下層の
硫化物蛍光体の分解劣化が抑制されることを確認するた
めに寿命試験を行った。図7(a)はZnS:Agのみ
の場合、図7(b)はZnS:Agの表面をZnOで被
覆した前記例(1) の場合である。これらの図に示すグラ
フにおいて、横軸は時間、縦軸はアノード電流の残存率
である。硫化物蛍光体層の上層をZnOで覆った場合に
はアノード電流の減少が認められず、カソード乃至エミ
ッタの汚染を防止するエミッション対策として効果があ
ることが確認された。A life test was conducted to confirm that the decomposition and degradation of the lower sulfide phosphor were suppressed by the ZnO phosphor described above. FIG. 7A shows the case of ZnS: Ag alone, and FIG. 7B shows the case of the above example (1) in which the surface of ZnS: Ag is coated with ZnO. In the graphs shown in these figures, the horizontal axis represents time, and the vertical axis represents the residual ratio of the anode current. When the upper layer of the sulfide phosphor layer was covered with ZnO, no reduction in the anode current was observed, and it was confirmed that this was effective as an emission measure for preventing contamination of the cathode and the emitter.
【0051】以上説明した実施例によれば、可視光線と
共に400nmよりも波長の短い紫外線を発する蛍光体
によって硫化物の蛍光体を覆ったので、1kV以下の比
較的低い電圧で加速された電子の射突によって、赤青緑
のいずれの発光色の硫化物蛍光体でも効率よく高輝度で
発光させることができる。また、硫化物蛍光体は他の蛍
光体に被覆され、電子の直接の射突による硫化物蛍光体
の分解飛散が防止できるので、表示装置の電子源を汚染
するおそれがなく、表示装置としての信頼性及び寿命が
向上する。According to the embodiment described above, since the sulfide phosphor is covered with the phosphor that emits ultraviolet light having a wavelength shorter than 400 nm together with the visible light, the electrons accelerated at a relatively low voltage of 1 kV or less. By the collision, sulfide phosphors of any of red, blue and green emission colors can be efficiently emitted with high luminance. In addition, the sulfide phosphor is coated on another phosphor, and decomposition and scattering of the sulfide phosphor due to direct impact of electrons can be prevented, so that there is no risk of contaminating the electron source of the display device, and the sulfide phosphor is used as a display device. Reliability and life are improved.
【0061】以上説明した実施例では、硫化物蛍光体と
してZnS:Ag蛍光体、ZnS:Cu,Al蛍光体、
(Zn0.2 ,Cd0.8 )S:Ag蛍光体を挙げたが、こ
れは例示にすぎない。前記ZnO蛍光体と組み合わせて
前述のような効果が得られる硫化物蛍光体としては、
(Zn1-x Cdx )S:M,N(但しx=0〜0.8、
M=Ag,Cu又はAu、N=Cl,I,P,Al又は
In)、CaS:Eu、CaS:Ce、CaS:Cu,
Na、Ln2 O2 S:Re(但しLnは、Y,Gd,L
aから選ばれた1種、Re=Eu又はTb)等の蛍光体
を挙げることができる。In the embodiment described above, ZnS: Ag phosphor, ZnS: Cu, Al phosphor, and sulfide phosphor are used.
The (Zn 0.2 , Cd 0.8 ) S: Ag phosphor has been described, but this is merely an example. Examples of the sulfide phosphor that achieves the above-described effects in combination with the ZnO phosphor include:
(Zn 1-x Cd x ) S: M, N (where x = 0 to 0.8,
M = Ag, Cu or Au, N = Cl, I, P, Al or In), CaS: Eu, CaS: Ce, CaS: Cu,
Na, Ln 2 O 2 S: Re (where Ln is Y, Gd, L
a selected from a, and a phosphor such as Re = Eu or Tb).
【0062】[0062]
【発明の効果】本発明によれば、400nmよりも波長
の短い紫外線を発する電子線励起紫外線発光蛍光体によ
って硫化物の蛍光体を覆ったので、例えば1kV以下と
いった比較的低い電圧で加速された電子の射突によっ
て、赤青緑のいずれの発光色の硫化物蛍光体でも効率よ
く高輝度で発光させることができる。また、硫化物蛍光
体は電子線励起紫外線発光蛍光体に被覆され、電子の直
接の射突による硫化物蛍光体の分解飛散が防止できるの
で、表示装置の電子源を汚染するおそれがなく、表示装
置としての信頼性及び寿命が向上する。このため高電圧
駆動のカラーグラフィック表示管や電界放出素子等に硫
化物蛍光体を使用することができるようになった。According to the present invention, since the sulfide phosphor is covered with the electron-beam-excited ultraviolet-emitting phosphor that emits ultraviolet light having a wavelength shorter than 400 nm, the phosphor is accelerated at a relatively low voltage of, for example, 1 kV or less. By the electron bombardment, sulfide phosphors of any of red, blue, and green emission colors can be efficiently emitted with high luminance. In addition, since the sulfide phosphor is coated with the electron-beam-excited ultraviolet light-emitting phosphor and the decomposition and scattering of the sulfide phosphor due to the direct impact of electrons can be prevented, there is no risk of contaminating the electron source of the display device, and the display is not performed. The reliability and life of the device are improved. For this reason, a sulfide phosphor can be used for a high-voltage driven color graphic display tube, a field emission device, and the like.
【図1】本発明の一実施例において用いられる各蛍光体
の発光スペクトルを示す図である。FIG. 1 is a diagram showing an emission spectrum of each phosphor used in one embodiment of the present invention.
【図2】本発明の一実施例における陽極基板の断面図で
ある。FIG. 2 is a cross-sectional view of an anode substrate according to one embodiment of the present invention.
【図3】ZnS:Ag蛍光体をZnO蛍光体で被覆した
本発明の一実施例において、波長385nmをピークと
する紫外線成分及び波長505nmをピークとする可視
光線成分の強度比と、蛍光体層全体の相対輝度との関係
を示したグラフである。FIG. 3 shows an intensity ratio between an ultraviolet component having a peak at a wavelength of 385 nm and a visible light component having a peak at a wavelength of 505 nm in one embodiment of the present invention in which a ZnS: Ag phosphor is coated with a ZnO phosphor; 5 is a graph showing a relationship with the relative brightness of the whole.
【図4】ZnS:Cu,Al蛍光体をZnO蛍光体で被
覆した本発明の一実施例において、波長385nmをピ
ークとする紫外線成分及び波長505nmをピークとす
る可視光線成分の強度比と、蛍光体層全体の相対輝度と
の関係を示したグラフである。FIG. 4 shows an embodiment of the present invention in which a ZnS: Cu, Al phosphor is coated with a ZnO phosphor, and an intensity ratio between an ultraviolet component having a peak at a wavelength of 385 nm and a visible light component having a peak at a wavelength of 505 nm; 5 is a graph showing the relationship between the relative brightness of the entire body layer.
【図5】Zn0.2 Cd0.8 S:Ag蛍光体をZnO蛍光
体で被覆した本発明の一実施例において、波長385n
mをピークとする紫外線成分及び波長505nmをピー
クとする可視光線成分の強度比と、蛍光体層全体の相対
輝度との関係を示したグラフである。FIG. 5 shows an example of the present invention in which a Zn 0.2 Cd 0.8 S: Ag phosphor is coated with a ZnO phosphor;
5 is a graph showing the relationship between the intensity ratio of an ultraviolet component having a peak at m and a visible light component having a peak at a wavelength of 505 nm, and the relative luminance of the entire phosphor layer.
【図6】本発明の一実施例と比較例の温度消光特性を比
較して示すグラフである。FIG. 6 is a graph showing a comparison between temperature quenching characteristics of one example of the present invention and a comparative example.
【図7】(a)は比較例の寿命試験におけるアノード電
流の残存率と連続点灯時間との関係を示すグラフ、
(b)は本発明の一実施例の寿命試験におけるアノード
電流の残存率と連続点灯時間との関係を示すグラフであ
る。FIG. 7A is a graph showing a relationship between a remaining rate of an anode current and a continuous lighting time in a life test of a comparative example;
(B) is a graph showing the relationship between the residual ratio of the anode current and the continuous lighting time in the life test of one embodiment of the present invention.
【図8】従来のZnO蛍光体と、他の実施例における紫
外線を出すZnO蛍光体のスペクトルを示す図である。FIG. 8 is a diagram illustrating spectra of a conventional ZnO phosphor and a ZnO phosphor that emits ultraviolet light according to another embodiment.
【符号の説明】 2 透光性電極である陽極導体としてのITO電極 3 硫化物蛍光体 4 電子線励起紫外線発光蛍光体としてのZnO蛍光体 13 蛍光体[Explanation of References] 2 ITO electrode as an anode conductor which is a translucent electrode 3 Sulfide phosphor 4 ZnO phosphor as electron beam excited ultraviolet light emitting phosphor 13 Phosphor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01J 1/30 H01J 29/20 29/20 29/89 29/89 31/15 E 31/15 1/30 Z (56)参考文献 特開 昭63−19737(JP,A) 特開 昭63−8457(JP,A) 特開 昭52−19964(JP,A) 特開 昭50−146580(JP,A) 特開 昭58−204087(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09K 11/00 - 11/89 H01J 29/10 - 29/34 H01J 31/00 - 31/24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI H01J 1/30 H01J 29/20 29/20 29/89 29/89 31/15 E 31/15 1/30 Z (56) Reference Document JP-A-63-19737 (JP, A) JP-A-63-8457 (JP, A) JP-A-52-19964 (JP, A) JP-A-50-146580 (JP, A) JP-A-58-1996 204087 (JP, A) (58) Fields surveyed (Int. Cl. 7 , DB name) C09K 11/00-11/89 H01J 29/10-29/34 H01J 31/00-31/24
Claims (2)
化物蛍光体の層と、前記硫化物蛍光体の層の表面を覆う
ように被着されて1kV以下の電子線による励起により
紫外線を発する電子線励起紫外線発光蛍光体の層を有す
る表示装置において、 前記電子線励起紫外線発光蛍光体が、385nmのみに
発光のピークを有するZnOと、385nmと505n
mの2点に発光のピークを有するZnOとの混合からな
り、その385nmをピークとする紫外線成分と505
nmをピークとする可視光線成分の強度比が100/0
〜10/90の範囲で選択された請求項1記載の表示装
置。1. A sulfide phosphor layer applied to a light-transmitting electrode on an anode substrate, and excitation by an electron beam of 1 kV or less applied so as to cover a surface of the sulfide phosphor layer. A display device having a layer of an electron beam-excited ultraviolet light-emitting phosphor that emits ultraviolet rays according to the invention, wherein the electron beam-excited ultraviolet light-emitting phosphor has ZnO having an emission peak only at 385 nm;
m, an ultraviolet component having a peak at 385 nm, and a mixture of ZnO having emission peaks at two points of m.
The intensity ratio of the visible light component having a peak at nm is 100/0.
The display device according to claim 1, wherein the display device is selected in a range of 10 to 90.
前記ZnOは、還元処理で製造されたZnO蛍光体をO
2 雰囲気内で焼成して得られたことを特徴とする請求項
1記載の表示装置。2. The ZnO having an emission peak only at 385 nm is a ZnO phosphor produced by a reduction treatment.
2. The display device according to claim 1, wherein the display device is obtained by firing in two atmospheres.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15192795A JP3189626B2 (en) | 1994-09-09 | 1995-06-19 | Display device |
KR1019950029122A KR100204253B1 (en) | 1994-09-09 | 1995-09-06 | Phosphor and display device |
TW084109498A TW369662B (en) | 1994-09-09 | 1995-09-12 | Fluorescent element and fluorescent display device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-216031 | 1994-09-09 | ||
JP21603194 | 1994-09-09 | ||
JP15192795A JP3189626B2 (en) | 1994-09-09 | 1995-06-19 | Display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08127769A JPH08127769A (en) | 1996-05-21 |
JP3189626B2 true JP3189626B2 (en) | 2001-07-16 |
Family
ID=26481001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15192795A Expired - Fee Related JP3189626B2 (en) | 1994-09-09 | 1995-06-19 | Display device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3189626B2 (en) |
KR (1) | KR100204253B1 (en) |
TW (1) | TW369662B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353244B1 (en) | 1995-03-23 | 2002-03-05 | Semiconductor Energy Laboratory, Co., Ltd. | Semiconductor device and manufacturing method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001107041A (en) * | 1999-10-04 | 2001-04-17 | Futaba Corp | Phosphor and fluorescent display tube |
KR100392363B1 (en) * | 2000-12-26 | 2003-07-22 | 한국전자통신연구원 | Phosphor and method for fabricating the same |
JP2004043568A (en) | 2002-07-10 | 2004-02-12 | Hitachi Ltd | Image display device |
KR100494843B1 (en) * | 2002-11-01 | 2005-06-14 | 한국전자통신연구원 | Processing method of Ⅱ family sulfide phosphor doped with lanthanide ion |
DE112005002127T5 (en) * | 2004-09-03 | 2007-10-04 | Sumitomo Electric Industries, Ltd. | Phosphor, process for producing the same, and light-emitting device using the same |
JP2006140001A (en) * | 2004-11-11 | 2006-06-01 | Futaba Corp | Fluorescent display tube |
ATE488860T1 (en) * | 2005-06-30 | 2010-12-15 | Lightlab Sweden Ab | ELECTRON AND PHOTON SOURCE WITH MUTUAL AMPLIFICATION |
WO2007023410A2 (en) * | 2005-08-24 | 2007-03-01 | Philips Intellectual Property & Standards Gmbh | Formation of solid carbon dioxide objects |
KR101072162B1 (en) | 2009-12-04 | 2011-10-10 | 엘지이노텍 주식회사 | Method for manufacturing phosphor and light emitting device comprising the phosphor |
-
1995
- 1995-06-19 JP JP15192795A patent/JP3189626B2/en not_active Expired - Fee Related
- 1995-09-06 KR KR1019950029122A patent/KR100204253B1/en not_active IP Right Cessation
- 1995-09-12 TW TW084109498A patent/TW369662B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353244B1 (en) | 1995-03-23 | 2002-03-05 | Semiconductor Energy Laboratory, Co., Ltd. | Semiconductor device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR960010821A (en) | 1996-04-20 |
KR100204253B1 (en) | 1999-06-15 |
JPH08127769A (en) | 1996-05-21 |
TW369662B (en) | 1999-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2729190B2 (en) | Phosphor | |
JP3425465B2 (en) | Green light emitting phosphor and cathode ray tube using the same | |
KR970706370A (en) | Phosphor, and cathode ray tube and display device using the phosphor and display device | |
JP2809084B2 (en) | Field emission fluorescent display | |
US4791336A (en) | Fluorescent composition and fluorescent luminous device | |
JP3189626B2 (en) | Display device | |
US20110316452A1 (en) | Method for generating white light and lighting device | |
US4105909A (en) | Penetration phosphors for display devices | |
US3939377A (en) | Penetration phosphors and display devices | |
EP0120453B1 (en) | Monochrome display cathode ray tube | |
KR0164442B1 (en) | Element phosphorescent | |
JP2002226847A (en) | Fluorescent substance for display device and field emission type display device using thereof | |
JP3648929B2 (en) | Fluorescent light emitting device | |
JP2001303042A (en) | Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same | |
JP2921402B2 (en) | Anode substrate | |
JPH039580B2 (en) | ||
JP3631299B2 (en) | Green light emitting phosphor and cathode ray tube using the same | |
JP3503517B2 (en) | Field emission device | |
JP3867555B2 (en) | Fluorescent display tube | |
JPH0892551A (en) | Fluorescent display tube | |
JPS63304555A (en) | Fluorescent light emitting device | |
JPH0747733B2 (en) | Blue light emitting phosphor | |
JPS6319737A (en) | Fluorescent device | |
JP3681792B2 (en) | Fluorescent display tube | |
JPS638475A (en) | Fluorescent body excitable with electron beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |