JP3189398B2 - Lighting shared power generator with unbalance compensation - Google Patents

Lighting shared power generator with unbalance compensation

Info

Publication number
JP3189398B2
JP3189398B2 JP18559392A JP18559392A JP3189398B2 JP 3189398 B2 JP3189398 B2 JP 3189398B2 JP 18559392 A JP18559392 A JP 18559392A JP 18559392 A JP18559392 A JP 18559392A JP 3189398 B2 JP3189398 B2 JP 3189398B2
Authority
JP
Japan
Prior art keywords
phase
current
load
generator
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18559392A
Other languages
Japanese (ja)
Other versions
JPH0638383A (en
Inventor
敬一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP18559392A priority Critical patent/JP3189398B2/en
Publication of JPH0638383A publication Critical patent/JPH0638383A/en
Application granted granted Critical
Publication of JP3189398B2 publication Critical patent/JP3189398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は灯動共用三相4線出力
を得るために使用する、単相3線出力付△結線交流同期
発電機の不平衡負荷に対する許容値を増大するための不
平衡補償付灯動共用発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for increasing the allowable value of an unbalanced load of a single-phase three-wire output-connected AC synchronous generator used for obtaining a three-phase four-wire output shared by lights. The present invention relates to a lighting combined power generation device with balance compensation.

【0002】[0002]

【従来の技術】低圧配電線の配電方式と配電電圧には、
単相2線式100V,単相2線式200V,単相3線式
100/200V,単相3線式200V,三相4線式1
00/200V等があり、中でも灯動共用負荷に配電す
るための三相4線式が最も一般的である。この灯動共用
三相4線式低圧配電線は、柱上変圧器が異容量△結線又
は異容量V結線で構成されている。
2. Description of the Related Art The distribution system and distribution voltage of low-voltage distribution lines include:
Single-phase two-wire 100V, single-phase two-wire 200V, single-phase three-wire 100 / 200V, single-phase three-wire 200V, three-phase four-wire 1
00 / 200V, etc., and among them, a three-phase four-wire system for distributing power to a lighting shared load is the most common. In this three-phase four-wire low-voltage distribution line shared by lighting, the pole transformer is configured with different capacity △ connection or different capacity V connection.

【0003】図7は異容量V結線変圧器からなる三相4
線式低圧配電線と接続されている需要家群の様子を示す
ものである。図7の場合は、R−S相間の単相変圧器に
比し、S−T相間の単相容量を大きく(異容量)し、か
つ巻線の中間から中性線を引き出し、単相3線回路を構
成している。
FIG. 7 shows a three-phase four-phase transformer composed of V-connection transformers of different capacity.
It shows a state of a group of consumers connected to a wire-type low-voltage distribution line. In the case of FIG. 7, compared with the single-phase transformer between the R-S phases, the single-phase capacity between the S-T phases is made larger (different capacity), and the neutral line is drawn out from the middle of the winding to obtain the single-phase 3 It constitutes a line circuit.

【0004】この三相4線式低圧配電線に接続される負
荷は、S−N−T相間の単相3線回路に単相100V又
は200V負荷(電灯負荷群)が集中し、R−S−T相
間の三相回路に三相200V負荷(動力負荷群)が混在
している。このような低圧配電方式は、一般には樹枝式
が多く、図7のような1バンクの柱上変圧器2次側をみ
ると、三相不平衡負荷(単相負荷+三相負荷群)であ
る。
A load connected to this three-phase four-wire low-voltage distribution line is a single-phase 100 V or 200 V load (light load group) concentrated in a single-phase three-wire circuit between S-N-T phases. A three-phase 200V load (power load group) is mixed in the three-phase circuit between the -T phases. Such a low-voltage distribution system generally employs a tree-type system. Looking at the secondary side of a pole transformer in one bank as shown in FIG. 7, a three-phase unbalanced load (single-phase load + three-phase load group) is used. is there.

【0005】ここで、例えば、図7の配電線路で柱上変
圧器の交換を始めるとすると低圧配電線路の改修時、一
時的に低圧配電線側を常用電源(高圧配電線)側から切
り離す必要が生じる。この場合、配電線路の工事中、該
当する低圧需要家の工事停電を防ぐため、一つの手段と
して原動機駆動の三相交流同期発電機からなる移動用発
電装置又は車両搭載の電源車等を用い、柱上変圧器2次
側を開放して一時的に該当する低圧需要家群に電源車等
から給電する場合がある。
Here, for example, if the pole transformer is to be replaced in the distribution line shown in FIG. 7, it is necessary to temporarily disconnect the low voltage distribution line from the service power source (high voltage distribution line) when the low voltage distribution line is repaired. Occurs. In this case, during the construction of the distribution line, in order to prevent the power outage of the corresponding low-voltage customers during construction, as one means, use a mobile power generation device consisting of a three-phase AC synchronous generator driven by a motor or a power vehicle mounted on a vehicle, etc. There is a case where the secondary side of the pole transformer is opened to supply power to a corresponding group of low-voltage consumers temporarily from a power supply vehicle or the like.

【0006】[0006]

【発明が解決しようとする課題】上述した移動用発電装
置又は電源車の従来例として図8に示すような、単相3
線出力付△結線交流同期発電機と三相平衡装置を組み合
わせたものがある。図8において、GEは△結線発電機
で、この発電機GEのU,V,W各相は灯動共用不平衡
負荷となる三相3線負荷群UNLに接続され、また、
U,V,N各相は単相3線負荷群LOに接続される。P
BAは三相平衡装置で、この装置PBAにはU,V,W
各相の線路に設けられた負荷電流検出用変流器CTー
U,CTーV,CTーWで検出された負荷電流が供給さ
れる。この負荷電流は検出器DT1,DT2,DT3で検
出されて三相平衡装置PBAに設けられるインバータI
NVに与えられる。インバータINVは負荷電流に応じ
て補償電流を発電機側に送る。
As a conventional example of the above-mentioned mobile power generator or power supply vehicle, a single-phase three-phase generator as shown in FIG.
There is a combination of a 出力 connection AC synchronous generator with line output and a three-phase balancing device. In FIG. 8, GE is a 発 電 connection generator, and U, V, and W phases of the generator GE are connected to a three-phase three-wire load group UNL serving as an unbalanced load shared by lights.
The U, V, and N phases are connected to a single-phase three-wire load group LO. P
BA is a three-phase equilibrium device, and this device PBA has U, V, W
The load currents detected by the load current detection current transformers CT-U, CT-V, and CT-W provided on the lines of each phase are supplied. This load current is detected by the detectors DT 1 , DT 2 , DT 3 and the inverter I provided in the three-phase balancer PBA
NV. The inverter INV sends a compensation current to the generator according to the load current.

【0007】上記のように構成された三相平衡装置PB
AはU,V,W各相の負荷電流を検出し、そのうちの逆
相電流分を発電機側(電源側)に補償電流として供給し
て電源側電流から逆相分電流を除去する。この場合、主
に正相分電流を供給することにより、不平衡負荷許容限
度の増大を図るようにしている。
The three-phase balancer PB constructed as described above
A detects the load current of each phase of U, V, and W, and supplies the negative phase current as a compensation current to the generator side (power supply side) to remove the negative phase current from the power supply side current. In this case, an unbalanced load allowable limit is increased mainly by supplying a current for the positive phase.

【0008】しかし、従来の三相平衡装置PBAの負荷
電流検出方法では、N相電流が流れた場合、△結線発電
機内部巻線各相に、同相分電流が流れる。その結果、発
電機各相電流による電機子反作用磁界は不平衡になり、
磁気的アンバランスは発電機内部インピーダンスの不平
衡を起こし、結果として発電機各相電圧の不平衡を生じ
る欠点があった。
However, in the conventional load current detecting method of the three-phase balancer PBA, when an N-phase current flows, a current for the same phase flows in each phase of the internal winding of the △ connection generator. As a result, the armature reaction magnetic field due to the generator phase current becomes unbalanced,
The magnetic imbalance has a disadvantage in that the internal impedance of the generator is unbalanced, and as a result, the voltage of each phase of the generator is unbalanced.

【0009】この発明は上記の事情に鑑みてなされたも
ので、発電機に磁気的不平衡が生じないように、各相電
流及び各線間電圧の平衡化を図った不平衡補償付灯動共
用発電装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a light source with imbalance compensation for balancing each phase current and each line voltage so that no magnetic unbalance occurs in the generator. An object is to provide a power generator.

【0010】[0010]

【課題を解決するための手段】この発明は上記の目的を
達成するために、単相3線負荷群および三相3線負荷群
に電力を供給する△結線発電機と負荷電流を検出して発
電機に補償電流を供給する三相平衡装置とを設け、前記
△結線発電機から単相3線負荷群に電力を供給する線路
のU相,N相およびV相にそれぞれ負荷電流検出用変流
器を設け、N相には第1,第2の変流器を設けて、N相
の第1変流器とU相の変流器とを並列接続するとともに
N相の第2変流器とV相の変流器とを並列接続し、両並
列接続した変流器で検出した負荷電流を前記三相平衡装
置に供給したものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention detects a △ connection generator for supplying power to a single-phase three-wire load group and a three-phase three-wire load group, and detects a load current. A three-phase balancing device for supplying a compensation current to the generator; and a load current detecting transformer for each of the U-phase, N-phase and V-phase lines for supplying power from the △ connection generator to the single-phase three-wire load group. A current transformer is provided, a first current transformer and a second current transformer are provided for the N-phase, and the N-phase first current transformer and the U-phase current transformer are connected in parallel, and the N-phase second current transformer is provided. And a V-phase current transformer connected in parallel, and the load current detected by the current transformers connected in parallel is supplied to the three-phase balancer.

【0011】[0011]

【作用】三相3線負荷群が不平衡でN相電流が流れる
と、N相検出用変流器がこれを検出して三相平衡装置内
に供給する。すると、三相平衡装置からは逆相電流分を
補償するように動作する。また、N相電流が流れないと
きには通常の2つの変流器による三相電流検出手段と同
様に動作する。
When a three-phase three-wire load group is unbalanced and an N-phase current flows, the N-phase detection current transformer detects this and supplies it to the three-phase balancing device. Then, the three-phase balancer operates so as to compensate for the negative phase current. Also, when the N-phase current does not flow, it operates in the same manner as a normal three-phase current detecting means using two current transformers.

【0012】[0012]

【実施例】以下この発明の実施例を図面に基づいて説明
するに、図8と同一部分は同一符号を付して示す。図1
において、U相線路LuとV相線路Lvには負荷電流検出
用変流器CT−UとCT−Vがそれぞれ設けられる。N
相線路Lnには2個の変流器CT−N1,CT−N2が
設けられ、変流器CT−N1とCT−UおよびCT−N
2とCT−Vはそれぞれ並列接続されて、三相平衡装置
PBA内に設けられる負荷電流信号検出器DT1〜DT3
に接続される。特に、変流器CT−UとCT−N1は検
出器DT1とDT3に接続され、変流器CT−VとCT−
N2は検出器DT2とDT3に接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG.
, The U-phase line Lu and the V-phase line Lv are provided with load current detection current transformers CT-U and CT-V, respectively. N
Phase line L n 2 pieces of current transformers CT-N1, CT-N2 is provided in the current transformer CT-N1 and CT-U and CT-N
2 and CT-V are connected in parallel, respectively, and load current signal detectors DT 1 to DT 3 provided in the three-phase balancer PBA.
Connected to. In particular, the current transformer CT-U and CT-N1 is connected to the detector DT 1 and DT 3, the current transformer CT-V CT-
N2 is connected to the detector DT 2 and DT 3.

【0013】次に上記実施例の動作について述べる。い
ま、単相3線負荷群LOが不平衡でN相電流が流れた場
合でも、発電機GEの各相電流による電機子反作用磁界
を三相平衡化し、発電機内部インピーダンスの不平衡を
極力抑制する手段について以下述べる。負荷電流検出用
変流器CT−U,CT−Vは図1の実施例において、単
相3線200V出力側のU,V相からU相,V相電流を
検出する。また、単相3線出力のN相(中性相)から変
流器CT−N1,CT−N2によりN相電流を検出す
る。ただし、変流器CT−N1,CT−N2の変流比
は、変流器CT−U,CT−Vに対し2倍とする。(す
なわち、同一線路電流に対して、N相検出電流はU又は
V相検出電流の1/2になるようにする。例えば簡単化
してCT−U,CT−Vの変流比を1:1〔A〕とすれ
ば、CT−N1,CT−N2の変流比は1:0.5
〔A〕となる。)変流器CT−U,CT−V,CT−N
1,CT−N2を図1に示すように接続することによ
り、次のような効果がある。
Next, the operation of the above embodiment will be described. Even if the single-phase three-wire load group LO is unbalanced and an N-phase current flows, the armature reaction magnetic field due to each phase current of the generator GE is three-phase balanced to minimize the unbalance of the generator internal impedance. The means for performing this will be described below. The load current detecting current transformers CT-U and CT-V detect U-phase and V-phase currents from the U and V phases on the single-phase three-wire 200V output side in the embodiment of FIG. The N-phase current is detected from the N-phase (neutral phase) of the single-phase three-wire output by the current transformers CT-N1 and CT-N2. However, the current transformers CT-N1 and CT-N2 are twice as large as the current transformers CT-U and CT-V. (That is, for the same line current, the N-phase detection current is set to be の of the U- or V-phase detection current. For example, the current-transformation ratio of CT-U and CT-V is reduced to 1: 1. If [A], the current transformation ratio of CT-N1 and CT-N2 is 1: 0.5
[A] is obtained. ) Current transformers CT-U, CT-V, CT-N
1, CT-N2 has the following effects by connecting as shown in FIG.

【0014】(a)N相電流が流れないとき(単相3線負
荷群が中性相を基準に平衡化している。100V側負荷
が均等に振り分けされている場合)、N相電流は零のた
め、通常の2CTによる三相電流検出と全く同様の原理
で、三相平衡装置内の負荷電流信号検出器には、負荷側
U,V,W各相電流成分が検出できる。
(A) When the N-phase current does not flow (when the single-phase three-wire load group is balanced on the basis of the neutral phase and the 100 V-side load is equally distributed), the N-phase current becomes zero. Therefore, the load-side U, V, and W phase current components can be detected by the load current signal detector in the three-phase balancer using exactly the same principle as three-phase current detection by ordinary 2CT.

【0015】(b)N相電流が流れているとき(単相3線
負荷群の100V側負荷の振り分けが不均等の場合)、
次の図2に示す原理により、三相平衡装置内の負荷電流
検出用変流器には、N相電流成分の影響を受けないよう
になる。なお、図2では原理説明のため、単相3線出力
のうち片側100V回路側のみに、単位電流1Aが流れ
ている負荷があるものとした場合、図2に示した通り、
等価的にはU−V相を循環する電流と、N相電流がU−
V,V−N相の両100V回路側を循環する電流が合成
したものである。
(B) When an N-phase current is flowing (when the distribution of loads on the 100 V side of the single-phase three-wire load group is uneven)
According to the following principle shown in FIG. 2, the load current detecting current transformer in the three-phase balancing device is not affected by the N-phase current component. In FIG. 2, for explanation of the principle, assuming that there is a load in which a unit current 1A flows only on one side of the 100 V circuit side of the single-phase three-wire output, as shown in FIG.
Equivalently, the current circulating in the U-V phase and the N-phase current are U-
The currents circulating on both sides of the 100 V circuit of the V and V-N phases are combined.

【0016】ここで重要なことは以下の通りである。
(イ)図1による負荷電流検出用変流器の接続はN相電流
が流れているときは、あたかも、負荷電流が図2Bと等
価な電流が流れたものとして検出する。(ロ)零相分を含
んだ図2Aから零相分を含まない図2Bを等価的に、三
相平衡装置の負荷電流検出用変流器で作っているので、
三相平衡装置は図2B中の逆相電流分を補償するように
動作する。(ハ)従って、△結線発電機から供給する電流
は、図2Bの正相電流分に、図2CのN相電流をU−
N,V−Nに振り分けた電流を重畳した電流が流れる。
(ニ)ここで、発電機巻線から見た図2CのN相電流の発
電機電機子△結線中の一巻線(U−V間)を中間点N点
振り分けで、同一電流が逆向き(180°位相差)で流
れるため、同一巻線の結合係数を1.0と仮定した場合
には、磁気的不平衡は互いにキャンセルするため、磁気
回路的に三相平衡化を疎外する要因にはなりにくくな
る。
The important points here are as follows.
(A) The connection of the load current detecting current transformer shown in FIG. 1 detects that the load current is equivalent to the one shown in FIG. 2B when the N-phase current is flowing. (B) Since FIG. 2A including the zero-phase component is equivalently made from FIG. 2A including the zero-phase component using the load current detecting current transformer of the three-phase balanced device,
The three phase balancer operates to compensate for the negative phase current component in FIG. 2B. (C) Therefore, the current supplied from the 線 connection generator is obtained by adding the N-phase current of FIG.
A current in which the currents distributed to N and VN are superimposed flows.
(D) Here, one winding (between U and V) in the generator armature △ connection of the N-phase current of FIG. (180 ° phase difference), if the coupling coefficient of the same winding is assumed to be 1.0, the magnetic imbalance cancels out each other. Becomes difficult to be.

【0017】次に従来例とこの発明の装置を比較して見
る。比較を単純に判りやすくするため、従来例とこの発
明の装置とも負荷は単相100V(U−N相側)単位電
流(1.0A)負荷とし、負荷電流検出用変流器の変流
比は、CT−U,CT−V,CT−Wは1:1〔A〕、
CT−N1,CT−N2は1:0.5〔A〕とする。
Next, a comparison will be made between the conventional example and the apparatus of the present invention. In order to make the comparison simple and easy to understand, the load is a single-phase 100 V (UN-N phase side) unit current (1.0 A) load for both the conventional example and the apparatus of the present invention, and the current ratio of the current transformer for load current detection. Is 1: 1 [A] for CT-U, CT-V, and CT-W,
CT-N1 and CT-N2 are set to 1: 0.5 [A].

【0018】図3はこの発明装置のU相とN相間に1A
(アンペア)負荷を接続したときの回路図であり、電源
側各相電流は図4に示すようになり、また、電源側各相
電流の合成分展開のうち正相電流分は図5に示すように
なり、N相電流分流分は図6に示すようになる。
FIG. 3 shows 1A between the U phase and the N phase of the device of the present invention.
FIG. 5 is a circuit diagram when a (amp) load is connected, and FIG. 4 shows each phase current on the power supply side, and FIG. 5 shows a positive phase current in a combined development of each phase current on the power supply side. As a result, the N-phase current shunt is as shown in FIG.

【0019】図9は従来例のU相とN相間に1Aの負荷
を接続したときの回路図であり、電源側各相電流は図1
0に示すようになり、また、電源側各相電流の合成分展
開のうち正相電流分は図11に示すようになり、N相電
流分流分は図12に示すようになる。
FIG. 9 is a circuit diagram when a 1 A load is connected between the U-phase and the N-phase in the conventional example.
As shown in FIG. 11, the positive-phase current component becomes as shown in FIG. 11 and the N-phase current component component becomes as shown in FIG.

【0020】次表は従来例とこの発明装置における負荷
電流検出用変流器の2次電流CT、負荷電流信号検出器
電流DT、検出電流の対称分DTSおよび補償電流CM
Pを比較して示したものである。
The following table shows the secondary current CT, the load current signal detector current DT, the symmetrical DTS of the detected current and the compensation current CM of the load current detecting current transformer in the conventional example and the present invention.
P is shown by comparison.

【0021】[0021]

【表1】 [Table 1]

【0022】上記のように比較することにより、この発
明装置では発電機巻線(V−W)相、(W−U)相には
同相電流が重畳されないため、発電機の磁気的な不平衡
を生じる要因が除去できるのに対して、従来例では上記
相に同相電流が重畳されるため、発電機の磁気的不平衡
が生じる。
From the above comparison, it is found that in the device of the present invention, no in-phase current is superimposed on the generator winding (VW) phase and (WU) phase, so that the magnetic unbalance of the generator is Can be eliminated, whereas in the conventional example, the common-mode current is superimposed on the above-mentioned phase, so that magnetic imbalance of the generator occurs.

【0023】上述した実施例では△結線交流発電機、三
相平衡装置とも従来例のものが使用でき、また、次のよ
うな5種類の配線方式からなる負荷回路への給電が可能
となる。
In the above-described embodiment, the conventional one can be used for the (1) connection AC generator and the three-phase balancer, and the power can be supplied to the load circuit having the following five types of wiring systems.

【0024】 (イ)灯動共用三相4線200/100V回路 (ロ)三相3線200V回路 (ハ)単相3線200/100V回路 (ニ)単相2線200V回路 (ホ)単相2線100V回路 上記5配電方式に対して、移動電源車を使用すれば、発
電機だけでは許容し切れない範囲まで給電範囲が拡大さ
れるため、特に効果を発揮する。また、電圧が異なって
もこの発明の実施例は使用できる。
(A) Lighting shared three-phase four-wire 200 / 100V circuit (B) Three-phase three-wire 200V circuit (C) Single-phase three-wire 200 / 100V circuit (D) Single-phase two-wire 200V circuit (E) Single Phase 2 line 100V circuit In the case of the above-described five power distribution system, if a mobile power supply vehicle is used, the power supply range is expanded to a range that cannot be tolerated by the generator alone. Further, the embodiments of the present invention can be used even if the voltages are different.

【0025】[0025]

【発明の効果】以上述べたように、この発明によれば、
負荷電流検出用変流器の構成を従来のものに若干変更を
加えただけで、単相3線100V負荷不平衡負荷時の特
性改善(三相電圧平衡化)が図れる。また、不平衡負荷
時も電源として使用される発電機の磁気的不平衡が抑制
されれば、それだけ電圧波形歪も少なくなる利点があ
る。
As described above, according to the present invention,
By slightly changing the configuration of the load current detecting current transformer to the conventional one, it is possible to improve the characteristics (three-phase voltage balancing) at the time of a single-phase three-wire 100 V load unbalanced load. Further, even when an unbalanced load is applied, if the magnetic unbalance of the generator used as the power supply is suppressed, there is an advantage that the voltage waveform distortion is reduced accordingly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す構成説明図。FIG. 1 is a configuration explanatory view showing one embodiment of the present invention.

【図2】A,B,Cは実施例の動作を述べるための説明
図。
FIGS. 2A, 2B and 2C are explanatory diagrams for describing the operation of the embodiment.

【図3】従来例と比較するための具体的従来例の説明
図。
FIG. 3 is an explanatory diagram of a specific conventional example for comparison with the conventional example.

【図4】図3における電源側各相電流の説明図。4 is an explanatory diagram of each phase current on the power supply side in FIG. 3;

【図5】図3における正相電流分の説明図。FIG. 5 is an explanatory diagram of a positive-sequence current in FIG. 3;

【図6】図3におけるN相電流分の説明図。FIG. 6 is an explanatory diagram of an N-phase current in FIG. 3;

【図7】灯動共用三相4線低圧配電線の回路図。FIG. 7 is a circuit diagram of a three-phase four-wire low-voltage distribution line shared by lights.

【図8】従来例を示す構成説明図。FIG. 8 is a configuration explanatory view showing a conventional example.

【図9】この発明の実施例と比較するための従来例の説
明図。
FIG. 9 is an explanatory diagram of a conventional example for comparison with the embodiment of the present invention.

【図10】図9における電源側各相電流の説明図。FIG. 10 is an explanatory diagram of each phase current on the power supply side in FIG. 9;

【図11】図9における正相電流分の説明図。FIG. 11 is an explanatory diagram of a positive-sequence current in FIG. 9;

【図12】図9におけるN相電流分流分の説明図。FIG. 12 is an explanatory diagram of an N-phase current shunt in FIG. 9;

【符号の説明】[Explanation of symbols]

GE…△結線発電機 LO…単相3線負荷群 UNL…三相3線負荷群 PBA…三相平衡装置 CT−U,CT−V,CT−N1,CT−N2…負荷電
流検出用変流器
GE: Connection generator LO: Single-phase three-wire load group UNL: Three-phase three-wire load group PBA: Three-phase balancer CT-U, CT-V, CT-N1, CT-N2: Current for load current detection vessel

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単相3線負荷群および三相3線負荷群に
電力を供給する△結線発電機と負荷電流を検出して発電
機に補償電流を供給する三相平衡装置とを設け、 前記△結線発電機から単相3線負荷群に電力を供給する
線路のU相,N相およびV相にそれぞれ負荷電流検出用
変流器を設け、N相には第1,第2の変流器を設けて、
N相の第1変流器とU相の変流器とを並列接続するとと
もにN相の第2変流器とV相の変流器とを並列接続し、
両並列接続した変流器で検出した負荷電流を前記三相平
衡装置に供給したことを特徴とする不平衡補償付灯動共
用発電装置。
A power generator for supplying power to a single-phase three-wire load group and a three-phase three-wire load group; and a three-phase balancer for detecting a load current and supplying a compensation current to the generator. Load current detecting current transformers are provided in the U-phase, N-phase and V-phase of the line for supplying power from the 単 connection generator to the single-phase three-wire load group, and the first and second transformers are provided in the N-phase. Install a sink,
An N-phase first current transformer and a U-phase current transformer connected in parallel, and an N-phase second current transformer and a V-phase current transformer connected in parallel;
A light / sharing generator with unbalance compensation, wherein a load current detected by a current transformer connected in parallel to both is supplied to the three-phase balancer.
JP18559392A 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation Expired - Fee Related JP3189398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18559392A JP3189398B2 (en) 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18559392A JP3189398B2 (en) 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation

Publications (2)

Publication Number Publication Date
JPH0638383A JPH0638383A (en) 1994-02-10
JP3189398B2 true JP3189398B2 (en) 2001-07-16

Family

ID=16173520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18559392A Expired - Fee Related JP3189398B2 (en) 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation

Country Status (1)

Country Link
JP (1) JP3189398B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707419B1 (en) * 2004-12-03 2007-04-13 엘지전자 주식회사 Air Conditioner Enable of Preventing Phase Inequity and the Preventing Method for the Same
JP4687177B2 (en) * 2005-03-23 2011-05-25 日本電気株式会社 Power supply system and input current balancing control method
JP5164678B2 (en) * 2008-06-09 2013-03-21 中国電力株式会社 Compensation method for unbalanced current in microgrid power system and control device used in this method
CN102565518A (en) * 2010-12-16 2012-07-11 鸿富锦精密工业(深圳)有限公司 Current balance test system
JP5712043B2 (en) * 2011-04-27 2015-05-07 サンケン電気株式会社 Voltage regulator
CN103368442A (en) * 2013-07-16 2013-10-23 上海煦达新能源科技有限公司 Grid-connected inverter
JP6376997B2 (en) * 2015-03-13 2018-08-22 シャープ株式会社 Power system and control method of power system

Also Published As

Publication number Publication date
JPH0638383A (en) 1994-02-10

Similar Documents

Publication Publication Date Title
US9190846B2 (en) Power quality management system and methods of controlling phase unbalance
WO2010116806A1 (en) Power conversion device
EP2676351B1 (en) Uninterruptible power supply system
CN108183486A (en) A kind of flexibility multimode switch and its control method
US8964423B2 (en) Low weight 3-phase 5-output wire power conversion system for micro-grid
JP3189398B2 (en) Lighting shared power generator with unbalance compensation
US3683199A (en) Over-{11 and underexcitation protection circuit for alternating current power systems
Ebrahim et al. Power quality improvements for integration of hybrid AC/DC nanogrids to power systems
JP2004180363A (en) Reversed phase voltage compensation system for power grid system
JP3130234B2 (en) Inverter device
JP2006020409A (en) Unbalance compensating apparatus and method, power supply circuit
JPH11187576A (en) Distributed power supply
JP3104242B2 (en) Lighting shared power generator with unbalance compensation
JPH1132437A (en) Three-phase four-wire low voltage distribution system
JPH02133070A (en) Polyphase full-wave rectifier circuit
JP3272350B2 (en) Distribution line phase detector
JP2021145537A (en) Distributed power supply system and effective electric power estimation method
JP2000037078A (en) Multilevel power converter
JPH1020002A (en) Method for judging deterioration of storage battery of power source device
JPH09285014A (en) Inverter device
JP2003230284A (en) Inverter apparatus
JP3135600B2 (en) Unbalance compensator
JPH05111165A (en) Power converter for system interconnection
CN111492569B (en) Power conversion system
Kim Active zero-sequence cancellation technique in unbalanced commercial building power system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees