JP3104242B2 - Lighting shared power generator with unbalance compensation - Google Patents

Lighting shared power generator with unbalance compensation

Info

Publication number
JP3104242B2
JP3104242B2 JP02169560A JP16956090A JP3104242B2 JP 3104242 B2 JP3104242 B2 JP 3104242B2 JP 02169560 A JP02169560 A JP 02169560A JP 16956090 A JP16956090 A JP 16956090A JP 3104242 B2 JP3104242 B2 JP 3104242B2
Authority
JP
Japan
Prior art keywords
phase
current
generator
distribution line
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02169560A
Other languages
Japanese (ja)
Other versions
JPH0458797A (en
Inventor
敬一 田中
光 江南
▲吉▼晴 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP02169560A priority Critical patent/JP3104242B2/en
Publication of JPH0458797A publication Critical patent/JPH0458797A/en
Application granted granted Critical
Publication of JP3104242B2 publication Critical patent/JP3104242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、三相4線式灯動共用低圧配電線に電力を供
給する発電機の出力電流が正相分電流のみとなるように
した不平衡補償付灯動共用発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of the Invention The present invention is configured such that the output current of a generator that supplies power to a three-phase four-wire system for low-voltage distribution line for lighting is limited to a positive-phase current. The present invention relates to a common light generator with unbalance compensation.

B.発明の概要 本発明は、Y結線非接地三相発電機とこの三相発電機
の2相間に接続された中間タップを有する単巻変圧器又
は一相に中間タップを有するΔ結線発電機とを移動電源
車に搭載して灯動共用三相4線式低圧配電線に接続して
使用する灯動共用発電装置において、 前記三相発電機の出力側にリアクタを介して接続さ
れ、その直流側にコンデンサを接続したインバータと、
前記発電機より流出する電流を検出し、この検出電流よ
り逆相分電流を抽出し、この逆相分電流に応じた電流を
前記配電線に流すべくインバータを制御するための補償
電流信号形成手段とで不平衡補償ユニットを構成し、こ
の不平衡補償ユニットを前記移動用電源車に搭載し、こ
のインバータを発電機の負荷電流が正相分のみとなるよ
うに制御し、発電機側電流,電圧を平衡化させて負荷し
得る単相負荷容量が増大するようにしたものである。
B. Summary of the Invention The present invention relates to an autotransformer having a Y-connection ungrounded three-phase generator and an intermediate tap connected between two phases of the three-phase generator, or a Δ-connection generator having an intermediate tap in one phase. And a light source for use in connection with a three-phase four-wire low-voltage power distribution line mounted on a mobile power supply vehicle. The three-phase generator is connected to the output side of the three-phase generator via a reactor. An inverter with a capacitor connected to the DC side,
Compensation current signal forming means for detecting a current flowing from the generator, extracting a negative phase component current from the detected current, and controlling an inverter to flow a current corresponding to the negative phase component current to the distribution line. Constitutes an unbalance compensation unit, the unbalance compensation unit is mounted on the mobile power supply vehicle, and the inverter is controlled so that the load current of the generator is only for the positive phase. The single-phase load capacity that can be loaded by balancing the voltage is increased.

C.従来の技術 低圧配電線の配電方式と配電電圧には、単相2線式10
0V,単相2線式200V,単相3線式100/200V,単相3線式200
V,三相4線式100/200V等があり、中でも灯動共用負荷に
配電するための三相4線式が最も一般的である。
C. Conventional technology The distribution system and distribution voltage of low-voltage distribution lines include single-phase two-wire systems.
0V, single-phase two-wire 200V, single-phase three-wire 100 / 200V, single-phase three-wire 200
V, three-phase four-wire system 100 / 200V, etc., and among them, the three-phase four-wire system for distributing power to a lighting shared load is the most common.

この灯動共用三相4線式低圧配電線は、柱上変圧器が
異容量Δ結線又は異容量V結線で構成されている。第10
図に異容量V結線変圧器から成る三相4線式低圧配電線
と接続されている需要家群の様子を示す。第10図の場合
は、R−S相間の単相変圧器に比し、S−T相間の単相
容量を大きく(異容量)し、かつ巻線の中間から中性線
を引き出し単相3線回路を構成している。
In this three-phase four-wire low-voltage distribution line shared by lights, the pole transformer is configured with a different capacity Δ connection or a different capacity V connection. Tenth
The figure shows the state of a group of consumers connected to a three-phase four-wire low-voltage distribution line composed of V-connection transformers with different capacities. In the case of FIG. 10, the single-phase transformer between the S and T phases is made larger (different capacity) than the single-phase transformer between the R and S phases, and the neutral wire is drawn out from the middle of the winding to obtain a single-phase transformer. It constitutes a line circuit.

この三相4線式低圧配電線に接続される負荷は、S−
N−T相間の単相3線回路に単相100V又は200V負荷(電
灯負荷群)が集中し、R−S−T相間の三相回路に三相
200V負荷(動力負荷群)が混在している。このような低
圧配電方式は、一般には樹枝式が多く、第10図のような
1バンクの柱上変圧器2次側をみると、三相不平衡負荷
(単相負荷+三相負荷群)である。
The load connected to the three-phase four-wire low-voltage distribution line is S-
A single-phase 100V or 200V load (light load group) concentrates on a single-phase three-wire circuit between the N and T phases, and a three-phase circuit on the three-phase circuit between the R and S phases
200V load (power load group) is mixed. Such a low-voltage distribution system generally has a tree-type distribution system. Looking at the secondary side of a pole transformer in one bank as shown in Fig. 10, three-phase unbalanced load (single-phase load + three-phase load group) It is.

ここで、例えば、第11図の配電線路で柱上変圧器の交
換を始めとする低圧配電線路の改修時、一時的に低圧配
電線側を常用電源(高圧配電線)側から切り離す必要が
生じる。
Here, for example, when repairing the low-voltage distribution line such as replacing the pole transformer in the distribution line of FIG. 11, it is necessary to temporarily disconnect the low-voltage distribution line from the service power supply (high-voltage distribution line) side. .

この場合、配電線路の工事中、該当する低圧需要家の
工事停電を防ぐため、一つの手段として原動機駆動の三
相交流同期発電機からなる移動用発電装置又は車両搭載
の電源車等を用い、柱上変圧器2次側を開放して一時的
に該当する低圧需要家群に電源車等から給電する場合が
ある。
In this case, during the construction of the distribution line, in order to prevent the power outage of the construction work of the corresponding low-voltage customer, as one means, a mobile power generation device including a three-phase AC synchronous generator driven by a prime mover or a power vehicle mounted on a vehicle is used. There is a case where the secondary side of the pole transformer is opened to supply power to a corresponding group of low-voltage consumers temporarily from a power supply vehicle or the like.

D.発明が解決しようとする課題 ところで、上記従来の電源車の発電機巻線に流れる三
相不平衡電流に着目すると、等価的に発電機出力の二線
間にある単相負荷群が接続されているところに、三相負
荷が重畳されているとみなせる。
D. Problems to be Solved by the Invention By the way, focusing on the three-phase unbalanced current flowing through the generator winding of the conventional power-supply vehicle, a single-phase load group equivalently between two lines of the generator output is connected. Where the three-phase load is superimposed.

従って、発電機には等価的に正相電流と逆相電流が流
れることになり、発電機はその逆相電流による逆相回転
磁界や、2次的に派生する高調波回転磁界により、逆相
電流の値如何によっては、下記のような弊害が発生し、
実用上支障を生じる。
Therefore, a positive-phase current and a negative-phase current flow in the generator equivalently, and the generator uses the negative-phase rotating magnetic field due to the negative-phase current and the secondary rotating harmonic rotating magnetic field to generate a negative-phase current. Depending on the value of the current, the following adverse effects occur,
It causes practical problems.

発電機回転子の制動巻線や界磁磁極表面等に異常加
熱を生じる。
Abnormal heating occurs on the braking winding of the generator rotor, the surface of the field pole, and the like.

発電機誘起電圧は、基本波分に高調波分が重畳され
出力電圧波形歪を生じる。
In the generator induced voltage, a harmonic component is superimposed on a fundamental component to cause output voltage waveform distortion.

高調波トルクにより回転系に脈動を生じることがあ
る。
Pulsation may occur in the rotating system due to the harmonic torque.

発電機内部誘起電圧に逆相分が生じるため、発電機
出力電圧が三相不平衡を生じ、自動電圧調整器では補正
できない。
Since a negative phase component is generated in the generator internal induced voltage, the generator output voltage causes three-phase imbalance, and cannot be corrected by the automatic voltage regulator.

このような弊害を規制するために、例えば、発電機の
異常加熱現象を規制する観点からは、逆相電流は許容値
以下に制限されている。交流同期発電機に関する国内の
規格類で定められた許容値としては、例えば、JEM1354
(1982)「ディーゼルエンジン駆動陸用同期発電機」で
は逆相電流15%以下に規定されている。
In order to regulate such adverse effects, for example, from the viewpoint of regulating the abnormal heating phenomenon of the generator, the negative-sequence current is limited to an allowable value or less. Examples of allowable values defined in domestic standards for AC synchronous generators include, for example, JEM1354
(1982) "Diesel engine driven land-based synchronous generator" specifies that the reverse phase current is 15% or less.

また、発電機出力電圧の三相不平衡が生じた場合は、
接続された負荷に不平衡電圧が印加されるため、その値
如何によっては負荷側の障害が生じる可能性がある。
If a three-phase imbalance of the generator output voltage occurs,
Since an unbalanced voltage is applied to the connected load, a load-side failure may occur depending on the value.

例えば、灯動共用発電機出力二線間に単相負荷が接続
され、この線間電圧が一定電圧になるよう自動電圧調整
器により自動電圧調整しても、他の二線間電圧は不平衡
になるため、これらに接続される三相負荷は、不平衡電
圧が印加されることになる。
For example, even if a single-phase load is connected between the two lines of the shared lamp generator and the voltage is automatically adjusted by an automatic voltage regulator so that the line voltage becomes constant, the other two-line voltages are unbalanced. Therefore, an unbalanced voltage is applied to the three-phase loads connected thereto.

この場合の三相動力用負荷として最も一般的なものに
三相誘導電動機がある。三相誘導電動機に三相不平衡電
圧を加えると各相の電流値は大幅に異なってきて、例え
ば、電動機焼損等の障害を生じることになる。
The most common three-phase power load in this case is a three-phase induction motor. When a three-phase unbalanced voltage is applied to a three-phase induction motor, the current value of each phase is significantly different, and for example, a failure such as motor burnout occurs.

この三相誘導電動機の三相不平衡電圧に対する許容値
としては、例えば、BS規格では正相分電圧に対する逆相
分電圧の割合(電圧不平衡率)は2%以下と定められて
いて、国内においても規制する場合の一つの指標として
用いられる場合が多い。
As an allowable value for the three-phase unbalanced voltage of this three-phase induction motor, for example, the ratio of the negative-phase divided voltage to the positive-phase divided voltage (voltage unbalance rate) is set to 2% or less in the BS standard. Is often used as one index for regulation.

逆相分電流を15%以下に制限し、かつ、三相電圧不平
衡率を2%以下に制限した場合、実際の灯動共用低圧配
電線においては、相対的に単相負荷が多いのが一般的な
ため、その分見掛け上定格容量の大きな発電機を用意す
る等の対策を要していたが、例えば、電源車の場合、車
両搭載の制約から、発電機体格をあまり大きくすること
はできず、結果として、負荷制限をする等の不都合がし
いられている。
If the negative-sequence component current is limited to 15% or less and the three-phase voltage imbalance rate is limited to 2% or less, the actual single-phase load is relatively large in the actual lighting and low-voltage distribution line. Because it is general, measures such as preparing a generator with an apparently larger rated capacity were required, but for example, in the case of a power supply vehicle, it is not possible to make the generator size too large due to restrictions on mounting on the vehicle. As a result, inconveniences such as load limitation are made.

本発明は、従来のこのような問題点に鑑みてなされた
ものであり、その目的とするところは、発電機負荷電流
の逆相分,不平衡分をなくし従来と同一定格の発電機に
より負荷しうる単相負荷容量を大幅に増大することがで
きる不平衡補償付灯動共用発電装置を提供することにあ
る。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to eliminate a negative-phase component and an unbalance component of a generator load current and to reduce a load by a generator having the same rating as the conventional one. It is an object of the present invention to provide a lighting shared power generation apparatus with unbalance compensation that can greatly increase a possible single-phase load capacity.

E.課題を解決するための手段 上記目的を達成するために、本発明の不平衡補償付灯
動共用発電装置は、Y結線非接地三相発電機と、この三
相発電機の2相間に接続された中間タップを有する単巻
変圧器とを移動電源車に搭載して灯動共用三相4線式低
圧配電線に接続して使用する灯動共用発電装置におい
て、 前記三相発電機の出力側にリアクトルを介して接続さ
れ、その直流側にコンデンサを接続したインバータと、
前記発電機より流出する電流を検出し、この検出電流よ
り逆相分電流を抽出し、この逆相分電流に応じた電流を
下記配電線に流すべく前記インバータを制御するための
補償電流信号形成手段とで不平衡補償ユニットを構成
し、この不平衡補償ユニットを前記移動用電源車に搭載
したものである。
E. Means for Solving the Problems In order to achieve the above-mentioned object, an unbalanced-compensated lighting shared power generator of the present invention comprises a Y-connection non-grounded three-phase generator and a two-phase generator of the three-phase generator. An auto-ignition transformer having an intermediate tap connected thereto and mounted on a mobile power supply vehicle and connected to an illuminated three-phase four-wire low-voltage distribution line for use, wherein the three-phase generator An inverter connected to the output side via a reactor and a capacitor connected to its DC side;
A current flowing out of the generator is detected, a negative-phase current is extracted from the detected current, and a compensation current signal for controlling the inverter to flow a current corresponding to the negative-phase current to the following distribution line. The means constitutes an unbalance compensation unit, and the unbalance compensation unit is mounted on the mobile power supply vehicle.

または、一相の巻線に中間タップが設けられたΔ結線
三相発電機を移動電源車に搭載して灯動共用三相4線式
低圧配電線に接続して使用する灯動共用発電装置におい
て、 前記三相発電機の三相出力側と中間タップ出力側にリ
アクトルを介して接続され、その直流側にコンデンサを
接続したインバータと、前記発電機より流出する電流を
検出し、この検出電流から単相負荷電流を演算し、この
単相負荷電流に基づいて三相平衡化する電流を前記配電
線に流すべく前記インバータを制御するための補償電流
信号形成手段とで不平衡補償ユニットを構成し、この不
平衡補償ユニットを前記移動用電源車に搭載したもので
ある。
Alternatively, a light-sharing power generator in which a Δ-connection three-phase generator having a one-phase winding provided with an intermediate tap is mounted on a mobile power supply vehicle and connected to a light-sharing three-phase four-wire low-voltage distribution line for use An inverter connected to a three-phase output side and an intermediate tap output side of the three-phase generator via a reactor, and a capacitor connected to a DC side thereof, and a current flowing out of the generator is detected. And a compensating current signal forming means for controlling the inverter so that a current to be three-phase balanced based on the single-phase load current flows through the distribution line. The unbalance compensation unit is mounted on the moving power supply vehicle.

F.作用 Y結線非接地三相発電機には、インバータが機能して
いない場合、単相負荷による不平衡分を含む負荷電流が
流れる。発電機の中性点は非接地であるので、零相電流
は含まれていないため、この負荷電流は正相分と逆相分
に分解できる。補償電流信号形成回路は発電機の負荷電
流に基づいてこの逆相分電流を演算し、インバータを逆
相分電流が出力するように制御する。このインバータの
逆相分電流は前記負荷電流の逆相分電流を相殺する。従
って、発電機には正相分電流のみが流れる。
F. Operation When the inverter is not functioning, a load current including an unbalanced component due to a single-phase load flows through the Y-connection ungrounded three-phase generator. Since the neutral point of the generator is not grounded, the zero-phase current is not included, so that this load current can be decomposed into a positive phase component and a negative phase component. The compensation current signal forming circuit calculates the negative phase current based on the load current of the generator, and controls the inverter to output the negative phase current. The negative phase current of the inverter cancels the negative phase current of the load current. Therefore, only the positive-phase current flows through the generator.

また、Δ結線三相4線発電機には、インバータが機能
していない場合、単相負荷による不平衡分が発電機の中
間タップを有する巻線に流れる。この巻線の単相分電流
を減少させると共に中間タップ電流及び単相分電流が流
れない相電流を増加させることにより単相分電流を三相
平衡化させることができる。補償電流信号形成回路は単
相分電流を三相平衡化する演算を行いインバータを制御
する。インバータは単相の相に補償電流を送出し、中性
点相及び単相電流の流れない相から補償電流を吸収して
発電機の不平衡電流を平衡化する。
When the inverter is not functioning in the Δ-connection three-phase four-wire generator, an unbalanced component due to the single-phase load flows through the winding having the intermediate tap of the generator. The single-phase current can be three-phase balanced by reducing the single-phase current of the winding and increasing the intermediate tap current and the phase current through which the single-phase current does not flow. The compensation current signal forming circuit performs an operation for three-phase balancing of the single-phase current and controls the inverter. The inverter sends a compensation current to the single phase and absorbs the compensation current from the neutral phase and the phase where no single phase current flows to balance the unbalanced current of the generator.

G.実施例 本発明の実施例について図面を参照して説明する。G. Embodiment An embodiment of the present invention will be described with reference to the drawings.

第1実施例 第1図は第1実施例にかかる灯動共用発電装置の回路
を示す。第1図において、1は灯動共用発電装置、2は
該発電装置より電力が供給される灯動共用三相4線低圧
配電線である。
First Embodiment FIG. 1 shows a circuit of a shared power generator according to a first embodiment. In FIG. 1, reference numeral 1 denotes a common light generator, and reference numeral 2 denotes a common three-phase four-wire low-voltage power distribution line to which power is supplied from the power generator.

灯動共用発電装置1は、原動機と直結されたY結線非
接地の三相発電機Gと、不平衡補償ユニット3と、発電
機GのV−W相間に接続され中間タップを有する単巻変
圧器6及び相電流を検出する変流器CTを備えている。
The power generator 1 includes a three-phase generator G, which is directly connected to the prime mover, and is not connected to the ground, a Y-connection, an unbalance compensation unit 3, and an autotransformer connected between the V-W phases of the generator G and having an intermediate tap. And a current transformer CT for detecting a phase current.

発電機GのU,V,W相は配電線2のR,S,T相に接続され、
単巻変圧器6の中間タップは配電線2の接地された中性
線Nに接続されている。
The U, V, W phases of the generator G are connected to the R, S, T phases of the distribution line 2,
The intermediate tap of the autotransformer 6 is connected to the grounded neutral line N of the distribution line 2.

不平衡補償ユニット3は、発電機Gの各相にリアクタ
ACLを介して接続されたインバータ4と、発電機GのU
相及びW相負荷電流を検出する変流器CTからの検出負荷
電流より逆相分電流を演算し、インバータ制御回路4の
ゲートを制御する補償電流信号形成回路5とからなり、
上記インバータ4は直流側に接続されたコンデンサCが
発電機Gよりスイッチング素子と逆並列に接続されたダ
イオードDを介して充電され直流電源として機能するよ
うになっている。
The unbalance compensation unit 3 includes a reactor for each phase of the generator G.
Inverter 4 connected via ACL and U of generator G
A compensation current signal forming circuit 5 for calculating a negative phase component current from the detected load current from the current transformer CT for detecting the phase and W phase load currents and controlling the gate of the inverter control circuit 4;
In the inverter 4, a capacitor C connected to the DC side is charged by a generator G via a diode D connected in anti-parallel to the switching element and functions as a DC power supply.

次に、第1実施例の動作について説明する。 Next, the operation of the first embodiment will be described.

第1図において、単相(100V及び200V)負荷並びに三
相負荷が混在して負荷されている場合、単巻変圧器6よ
り電源側(発電機側)各相には、三相不平衡電流
′,′,′が流れる。
In FIG. 1, when a single-phase (100 V and 200 V) load and a three-phase load are mixedly loaded, a three-phase unbalanced current is supplied to each phase on the power supply side (generator side) from the autotransformer 6.
R ′, S ′, and T ′ flow.

発電機Gの中性点は接地されていないため、三相不平
衡電流′,′,′には、零相分電流は含ま
れないので、正相分電流1R,1S,1T,及び逆相分電
2R,2S,2Tに分解することができる。
Since the neutral point of the generator G is not grounded, the three-phase unbalanced currents R ′, S ′, and T ′ do not include the zero-phase current, and therefore the positive-phase currents 1R , 1S , 1T , And can be decomposed into the negative phase currents 2R , 2S , and 2T .

この三相不平衡電流′,′,′を変流器
CTで検出し、不平衡補償ユニット3内の補償電流信号形
成回路5により逆相分電流を演算し、インバータ4を高
速スイッチングさせてインバータ4から逆相分電流
2R,2S,2Tを送出する制御を行う。
This three-phase unbalanced current R ', S ', T '
The current is detected by CT, and the negative phase current is calculated by the compensating current signal forming circuit 5 in the unbalance compensating unit 3.
Control to send 2R , 2S , 2T .

従って、この場合、発電機Gの各相巻線に流れる電流
U,V,は正相分電流1R,1S,1Tのみが流れる
ため、発電機自体は三相平衡負荷が負荷されているのと
等価となり、逆相電流に起因する発電機使用上の種々の
弊害から解放されることになる。
Therefore, in this case, the current flowing through each phase winding of the generator G
Since U , V , and W flow only the positive-phase currents 1R , 1S , and 1T , the generator itself is equivalent to a three-phase balanced load. Will be released from the evils of

簡単のため、第1図において、配電線2のS−T相間
に力率1.0の単相負荷のみが負荷された場合の各相負荷
電流、不平衡補償ユニット出力電流,発電巻線電流のベ
クトル図を第2図に示す。
For simplicity, in FIG. 1, vectors of each phase load current, unbalance compensation unit output current, and power generation winding current when only a single-phase load with a power factor of 1.0 is applied between the ST phases of the distribution line 2 are shown. The figure is shown in FIG.

第2図より、不平衡補償ユニット3を接続しない場合
は、発電機Gには不平衡電流LS,LTのみが流れる
が、不平衡補償ユニット3を接続すれば、発電機Gに
は、単相負荷にも拘わらず、三相平衡電流を流すことが
できる。
2, when the unbalance compensation unit 3 is not connected, only the unbalanced currents LS and LT flow through the generator G. However, when the unbalance compensation unit 3 is connected, the single-phase A three-phase balanced current can flow regardless of the load.

第3図(a)及び(b)は第1図における不平衡補償
ユニット3を使用した場合(入)と、使用しない場合
(切)の発電機相電圧と各相電流波形の実測例を示すも
ので、不平衡補償ユニット3を使用した場合、発電機の
各相電流値は等しくなり、不平衡電流が無くなっている
ことがわかる。
3 (a) and 3 (b) show actual measurement examples of the generator phase voltage and each phase current waveform when the unbalance compensation unit 3 in FIG. 1 is used (on) and when it is not used (off). When the unbalance compensation unit 3 is used, it can be seen that the phase current values of the generator become equal, and the unbalance current is eliminated.

第4図は不平衡ユニット使用(本発明)と不平衡ユニ
ット無し(従来)の特性例を比較したもので、(a)は
単相負荷入力容量−発電機三相電圧不平衡率特性例を示
し、(b)は単相負荷入力容量−許容三相送電容量特性
例を示す。
FIG. 4 is a comparison of the characteristic examples of the use of the unbalanced unit (the present invention) and the absence of the unbalanced unit (conventional). FIG. 4A shows an example of the single-phase load input capacity-generator three-phase voltage unbalance rate characteristic example. (B) shows an example of single-phase load input capacity-allowable three-phase power transmission capacity characteristics.

発電機は許容逆相電流耐量から通常逆相電流15%以下
に制限されるので、単相負荷入力容量は第4図(b)に
示すように、従来装置に比し本発明のものは大きくとる
ことができる。
Since the generator is normally limited to 15% or less of the reverse phase current from the permissible reverse phase current withstand capability, the single phase load input capacity of the present invention is larger than that of the conventional apparatus as shown in FIG. 4 (b). Can be taken.

第2実施例 第5図は第2実施例にかかる灯動共用発電装置の回路
を示す。なお、前記第1図に示したものと同一構成部分
は、同一符号を付してその重複する説明を省略する。
Second Embodiment FIG. 5 shows a circuit of a shared power generation device according to a second embodiment. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.

第5図において、G2は原動機と直結されたV−W相間
巻線に中間タップを有するΔ結線の三相4線発電機、32
は不平衡補償ユニットで、発電機G2の三相4線にリアク
タACLを介して接続されたインバータ42と発電機G2の各
相電流を検出するCTの2次側に補助変流器AUX−CTを接
続し、配電線のS相電流とT相電流の差電流からR相電
流を差し引き、三相平衡負荷電流に重畳されているS
相,T相単相負荷電流の差分を検出しインバータ回路42
単相負荷電流の差分を基準にした補償電流を入出力させ
る補償電流信号形成回路52とから構成されている。
In FIG. 5, G 2 is a Δ-connected three-phase four-wire generator having an intermediate tap in the VW interphase winding directly connected to the prime mover, 3 2
In imbalance compensation unit, the auxiliary current transformer on the secondary side of the CT for detecting the phase currents of the generator G 2 and the generator inverter 4 2 connected via a reactor ACL to the three-phase 4-wire G 2 AUX-CT is connected, the R-phase current is subtracted from the difference current between the S-phase current and the T-phase current of the distribution line, and the S-phase current is superimposed on the three-phase balanced load current.
Phase, and a compensation current signal forming circuit 5 2 which to output the compensation current with respect to the difference between the single-phase load current to the inverter circuit 4 2 detects the difference between T The phase-phase load currents.

次に、この第2実施例の動作について説明する。簡単
のため、配電線2には第6図のように、S−N−T相間
に単相負荷のみが接続されているものとして説明する。
Next, the operation of the second embodiment will be described. For simplicity, the description will be made assuming that only a single-phase load is connected to the distribution line 2 between the S-N-T phases as shown in FIG.

第6図において、単相3線負荷群によりS相,N相,T相
には負荷電流′,N,′が流れているものと
し、負荷電流′を基準ベクトルにした場合の単相負
荷電流のベクトル図は第7図(a)のように流れたとす
る。
In FIG. 6, it is assumed that load currents S ′, N , and T ′ are flowing through the S-phase, N-phase, and T-phase by a single-phase three-wire load group, and the load current S ′ is used as a reference vector. It is assumed that the vector diagram of the phase load current flows as shown in FIG.

次に、S相,T相に流れる′,′は、第7図
(b)に示すように、中性線Nを共通帰路とする同相分
と、180゜位相反転分が重畳したものと考えることがで
きる。
Next, as shown in FIG. 7 (b), S 'and T ' flowing in the S phase and the T phase are, as shown in FIG. Can be considered.

上記のうち、同相分電流 は、中性線Nを共通帰路とするため、発電機GのV−W
相間巻線を中性点振り分けで負荷との間を循環する。
Of the above, in-phase current Is the VW of the generator G to make the neutral line N a common return.
The interphase winding is circulated between the load and the neutral point.

この場合、発電機巻線の一相(V−W相間)を中性点
振り分けで同一の同相電流が反対方向に流れるため、同
一磁路からなる同一巻線全体でみると、起磁力は0とな
り、発電機三相出力電圧の不平衡には特に影響を与えな
い。
In this case, the same in-phase current flows in one direction (between the V and W phases) of the generator winding in the opposite direction due to the neutral point distribution. This does not particularly affect the unbalance of the three-phase output voltage of the generator.

又、V−N,N−W相間の電圧も僅少の漏れインピーダ
ンス分だけ差異が生じるが実用上無視できる範囲であ
る。
In addition, the voltage between the VN and NW phases also differs by a small amount of leakage impedance, but is in a practically negligible range.

従って、発電機出力電圧の平衡化対策の観点からは、
中性線Nを共通帰路とする同相分(第8図)は無視でき
る。
Therefore, from the viewpoint of countermeasures for balancing the generator output voltage,
The in-phase component (FIG. 8) having the neutral line N as a common return can be ignored.

一方、第7図(b)の180゜位相反転分は、 で表されるが、発電機のV−W相間巻線にのみ起磁力を
生じるため、この電流の三相平衡化が必要になる。
On the other hand, the 180 ° phase inversion in FIG. However, since a magnetomotive force is generated only in the V-W phase winding of the generator, three-phase balancing of this current is required.

以下にこの単相電流(180゜位相反転分)の三相平衡
化の動作について説明する。
The operation of three-phase balancing of the single-phase current (180 ° phase inversion) will be described below.

第6図において、発電機出力回路に不平衡補償ユニッ
トを接続し、R相及びN相から補償電流RC,NCを取
り込み(吸収側)S相及びT相に別の補償電流SC,
TCを送り出す(送出側)ものとする(第7図(c))。
In the sixth view, connecting the imbalance compensation unit to the generator output circuit, R-phase and N-phase of the compensation current RC, captures NC (absorption side) S phase and another in the T-phase of the compensation current SC,
It is assumed that TC is sent (sending side) (FIG. 7 (c)).

吸収側の補償電流は、第9図の経路で流れる。 The compensation current on the absorption side flows through the path shown in FIG.

発電機出力側に不平衡補償ユニットを接続し上記の補
償電流を吸収,送出した場合、Δ接続された発電機本体
各相巻線の結線点からの仮想出力電流(中性点Nを共通
帰路とする単相負荷電流は、発電機の三相出力電圧不平
衡に対してはほとんど寄与しないため、この分は除く)
U,V,は、単相負荷だけの場合、第7図(d)に
示すようになる。
When the unbalance compensation unit is connected to the generator output side and the above compensation current is absorbed and transmitted, the virtual output current from the connection point of each phase winding of the generator body connected in Δ (neutral point N is set to the common return path) The single-phase load current does not contribute to the three-phase output voltage imbalance of the generator.
U , V , and W are as shown in FIG. 7D when only a single-phase load is used.

以上より、同相分を除く単相負荷電流分は三相平衡化
することができる。
As described above, the single-phase load current excluding the in-phase component can be three-phase balanced.

従って、単相負荷に三相負荷が混在していても、2線
の単相負荷電流分の差分を検出し、その差分を基準に補
償電流を流すことにより、同相分を除く単相負荷電流分
を三相平衡化でき、結果として発電機三相出力電圧の不
平衡を抑制することができる。
Therefore, even if a three-phase load is mixed with a single-phase load, the difference between the two-wire single-phase load currents is detected, and a compensation current is applied based on the difference, so that the single-phase load current excluding the in-phase load is detected. The three-phase balance can be achieved, and as a result, the unbalance of the generator three-phase output voltage can be suppressed.

即ち、第5図において、補償電流信号形成回路52は、
S相とT相の補助変流器AUX−CTとからのS相とT
相負荷電流の差とR相の補助変流器AUX−CTの三相負
荷電流分を取り込んで、インバータ42により補償電流
RC,NCを吸収させると共に補償電流SC,TCを送出さ
せるように制御するゲート信号でインバータ42を制御す
ることにより発電機G2の負荷電流を平衡化することがで
きる。
That is, in FIG. 5, the compensation current signal forming circuit 5 2,
S and T from S and T auxiliary current transformers AUX-CT
Incorporating a three-phase load current component of the phase load current differential and R-phase auxiliary current transformer AUX-CT, the compensation current by the inverter 4 2
RC, it is possible to balance the load current of the generator G 2 compensation current SC, by controlling the inverter 4 2 by the gate signal for controlling so as to sent the TC with to absorb the NC.

H.発明の効果 本発明は、上述のとおり構成されているので、次に記
載する効果を奏する。
H. Effects of the Invention Since the present invention is configured as described above, the following effects can be obtained.

(1)従来方式と同一体格(同一定格容量)の発電機を
用いた場合、負荷し得る単相負荷容量を大幅に増大する
ことができる。不平衡補償ユニットを発電機定格容量に
した場合は、単相負荷入力容量と三相負荷入力容量合計
値が、発電機定格容量まで負荷することができる。
(1) When a generator having the same size (same rated capacity) as the conventional system is used, the load capacity of a single-phase load that can be loaded can be greatly increased. When the unbalance compensation unit is set to the generator rated capacity, the total value of the single-phase load input capacity and the three-phase load input capacity can be loaded up to the generator rated capacity.

(2)許容の不平衡負荷範囲内では、負荷側電流の不平
衡に拘わらず発電機側電流及び三相出力電圧とも平衡化
されるため、発電装置の保護装置(例えば過電圧や過負
荷保護)を、使用全範囲で適切に機能させることができ
る。
(2) Within the permissible unbalanced load range, the generator-side current and the three-phase output voltage are also balanced regardless of the load-side current imbalance, so the protection device of the power generation device (for example, overvoltage or overload protection) Can function properly over the entire range of use.

(3)同様に、発電機側電流,電圧が平衡化されている
ため、発電機同士の並列接続が容易に行え、有効,無効
電力分担が不平衡負荷状態でも行うことができる。
(3) Similarly, since the generator-side current and voltage are balanced, the generators can be easily connected in parallel, and active and reactive power can be shared even in an unbalanced load state.

(4)低圧配電方式が灯動共用三相4線100/200V以外
の、単相100V,単相200V,単相3線100/200V,三相3線200
V回路にも適用できる。
(4) Single-phase 100V, single-phase 200V, single-phase three-wire 100 / 200V, three-phase three-wire 200, except low-voltage power distribution method other than light / light three-phase four-wire 100 / 200V
Applicable to V circuit.

(5)低圧配電線負荷以外の不平衡負荷に給電される発
電設備にも適用できる。
(5) The present invention can also be applied to power generation equipment that supplies power to unbalanced loads other than low-voltage distribution line loads.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第4図は本発明の第1実施例に関するもので、
第1図は灯動共用発電装置のブロック回路図、第2図は
同装置の動作説明用のベクトル図、第3図(a)及び
(b)は不平衡補償ユニットの効果説明用の電圧,電流
波形図、第4図(a)及び(b)は不平衡率及び送電容
量特性を示す線図である。第5図〜第8図は第2実施例
に関するもので、第5図は灯動共用発電装置のブロック
回路図、第6図は同装置の単相負荷のみの場合の電流説
明図、第7図は同装置の動作説明用ベクトル図、第8図
は同装置の同相分電流経路説明図、第9図は同装置の補
償電流経路説明図である。第10図及び第11図は従来例に
関するもので、第10図は灯動共用三相4線低圧配電線の
回路図、第11図は灯動共用低圧電源車の使用概略図であ
る。 1……灯動共用発電装置、2……配電線、3,32……不平
衡補償ユニット、4,42……インバータ、5,52……補償電
流信号形成回路、6……単巻変圧器、G,G2……発電機。
1 to 4 relate to a first embodiment of the present invention.
FIG. 1 is a block circuit diagram of a common light generator, FIG. 2 is a vector diagram for explaining the operation of the lamp generator, and FIGS. 3 (a) and (b) are voltages for explaining the effect of the unbalance compensation unit. FIG. 4 (a) and (b) are current waveform diagrams, and are diagrams showing the unbalance rate and the transmission capacity characteristics. 5 to 8 relate to the second embodiment, FIG. 5 is a block circuit diagram of a common lamp generator, FIG. 6 is a current explanatory diagram of the same device when only a single-phase load is used, and FIG. FIG. 8 is a vector diagram for explaining the operation of the device, FIG. 8 is an explanatory diagram of an in-phase current path of the device, and FIG. 9 is an explanatory diagram of a compensation current path of the device. 10 and 11 relate to a conventional example. FIG. 10 is a circuit diagram of a three-phase four-wire low-voltage power distribution line shared by lights, and FIG. 11 is a schematic diagram of use of a low-voltage power supply vehicle shared by lights. Reference numeral 1 denotes a common power generation device for lighting, 2 ... distribution line, 3,3 2 ... unbalance compensation unit, 4,4 2 ... inverter, 5,5 2 ... compensation current signal forming circuit, 6 ... single Winding transformer, G, G 2 …… Generator.

フロントページの続き (56)参考文献 特開 昭53−106431(JP,A) 特開 昭56−159936(JP,A) 特開 昭59−44934(JP,A) 実開 昭60−180443(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02P 9/00 Continuation of the front page (56) References JP-A-53-106431 (JP, A) JP-A-56-159936 (JP, A) JP-A-59-44934 (JP, A) , U) (58) Field surveyed (Int. Cl. 7 , DB name) H02P 9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力系統の柱上変圧器が異容量△結線又は
異容量V結線で構成されている灯動共用三相4線式配電
線に使用される移動電源車であって、この移動電源車
に、Y結線非接地三相発電機と、この三相発電機の2相
間に接続された中間タップを有する単巻変圧器とを搭載
して灯動共用三相4線式低圧配電線に接続して使用する
灯動共用発電装置において、前記三相発電機の出力側に
リアクトルを介して接続され、その直流側にコンデンサ
を接続したインバータと、前記発電機より流出する電流
を検出し、この検出電流より逆相分電流を抽出し、この
逆相分電流電流に応じた電流を前記配電線に流すべく前
記インバータを制御するための補償電流信号形成手段と
で不平衡補償ユニットを構成し、この不平衡補償ユニッ
トを前記移動用電源車に搭載したことを特徴とする不平
衡補償付灯動共用発電装置。
1. A mobile power supply vehicle for use in a three-phase four-wire distribution line shared by lights, in which a pole transformer of a power system is configured with different capacity △ connection or different capacity V connection. A three-phase four-wire low-voltage power distribution line for lighting is mounted on a power vehicle equipped with a Y-connected ungrounded three-phase generator and an autotransformer having an intermediate tap connected between two phases of the three-phase generator. In the lamp-sharing power generator used by connecting to the three-phase generator, an inverter connected to the output side of the three-phase generator via a reactor and a capacitor connected to the DC side thereof, and detecting the current flowing out of the generator. An unbalance compensation unit is configured by extracting a negative phase component current from the detected current, and compensating current signal forming means for controlling the inverter to flow a current corresponding to the negative phase component current through the distribution line. The unbalance compensation unit is connected to the Imbalance compensation with Akarido shared power generation apparatus characterized by mounted to.
【請求項2】電力系統の柱上変圧器が異容量△結線又は
異容量V結線で構成されている灯動共用三相4線式配電
線に使用される移動電源車であって、この移動電源車
に、一相の巻線に中間タップが設けられた△結線三相発
電機を搭載して灯動共用三相4線式低圧配電線に接続し
て使用する灯動共用発電装置において、前記三相発電機
の三相出力側と中間タップ出力側にリアクトルをを介し
て接続され、その直流側にコンデンサを接続したインバ
ータと、前記発電機より流出する電流を検出し、この検
出電流から単相負荷電流を演算し、この単相負荷電流に
基づいて三相平衡化する電流を前記配電線に流すべく前
記インバータを制御するための補償電流信号形成手段と
で不平衡補償ユニットを構成し、この不平衡補償ユニッ
トを前記移動用電源車に搭載したことを特徴とする不平
衡補償付灯動共用発電装置。
2. A mobile power supply vehicle used for a three-phase four-wire distribution line shared by lights, wherein a pole transformer of a power system is configured with different capacity △ connection or different capacity V connection. A power shared vehicle is equipped with a △ connection three-phase generator in which an intermediate tap is provided in a one-phase winding, and is connected to a three-phase four-wire low-voltage distribution line for lighting and used for lighting. An inverter connected to the three-phase output side and the intermediate tap output side of the three-phase generator via a reactor, and a capacitor connected to the DC side thereof, and a current flowing out of the generator is detected. A single-phase load current is calculated, and an unbalance compensation unit is configured by compensation current signal forming means for controlling the inverter so that a current to be three-phase balanced based on the single-phase load current flows through the distribution line. The unbalance compensation unit is connected to the power supply Imbalance compensation with Akarido shared power generation apparatus characterized by mounted to.
JP02169560A 1990-06-27 1990-06-27 Lighting shared power generator with unbalance compensation Expired - Lifetime JP3104242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02169560A JP3104242B2 (en) 1990-06-27 1990-06-27 Lighting shared power generator with unbalance compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02169560A JP3104242B2 (en) 1990-06-27 1990-06-27 Lighting shared power generator with unbalance compensation

Publications (2)

Publication Number Publication Date
JPH0458797A JPH0458797A (en) 1992-02-25
JP3104242B2 true JP3104242B2 (en) 2000-10-30

Family

ID=15888731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02169560A Expired - Lifetime JP3104242B2 (en) 1990-06-27 1990-06-27 Lighting shared power generator with unbalance compensation

Country Status (1)

Country Link
JP (1) JP3104242B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932698A (en) * 2016-05-31 2016-09-07 湖南远成能源科技股份有限公司 Low-voltage power grid three-phase balance system
CN105939019A (en) * 2016-05-31 2016-09-14 湖南远成能源科技股份有限公司 Three-phase balance system power saver
KR200491110Y1 (en) * 2018-01-25 2020-02-20 오충근 Muffler
RU2788078C1 (en) * 2022-01-11 2023-01-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный аграрный университет имени А.А. Ежевского" Phase converter with adjustable power

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163831A1 (en) * 2016-03-24 2017-09-28 パナソニックIpマネジメント株式会社 Power supply system and control method
CN110601620B (en) * 2019-09-25 2021-10-01 国网电力科学研究院有限公司 Phase sequence self-adaptive control system and method for three-phase full-control rectifier bridge trigger pulse

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932698A (en) * 2016-05-31 2016-09-07 湖南远成能源科技股份有限公司 Low-voltage power grid three-phase balance system
CN105939019A (en) * 2016-05-31 2016-09-14 湖南远成能源科技股份有限公司 Three-phase balance system power saver
CN105932698B (en) * 2016-05-31 2019-04-05 湖南远成能源科技股份有限公司 A kind of low voltage electric network three-phase balanced system
KR200491110Y1 (en) * 2018-01-25 2020-02-20 오충근 Muffler
RU2788078C1 (en) * 2022-01-11 2023-01-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный аграрный университет имени А.А. Ежевского" Phase converter with adjustable power

Also Published As

Publication number Publication date
JPH0458797A (en) 1992-02-25

Similar Documents

Publication Publication Date Title
Von Jouanne et al. Assessment of voltage unbalance
Thomas et al. Design and performance of active power filters
Bhavaraju et al. An active line conditioner to balance voltages in a three-phase system
Hannan et al. PSCAD/EMTDC simulation of unified series-shunt compensator for power quality improvement
Zhuang et al. Dynamic performance of a STATCON at an HVDC inverter feeding a very weak AC system
GB2148624A (en) Source inverter
Jung et al. Analysis and control of DSTATCOM for a line voltage regulation
JP3104242B2 (en) Lighting shared power generator with unbalance compensation
US11056883B1 (en) System and method for implementing a zero-sequence current filter for a three-phase power system
US5107410A (en) Multi-phase and shifted phase power distribution systems
JP3263281B2 (en) Control method of inverter device
JPH09135570A (en) Multiple rectifier
JP3189398B2 (en) Lighting shared power generator with unbalance compensation
Chen et al. Rating issues of unified power quality conditioners for load bus voltage control in distribution systems
Agustoni et al. Proposal for a high quality dc network with distributed generation
Chatterjee et al. Voltage Balancing of Grid-Forming Inverters in Unbalanced, Islanded Microgrids
US5537309A (en) Multi-phase and shifted phase power distribution systems
Audring et al. Operating stationary fuel cells on power system and microgrids
Aredes et al. Multipulse converters and controls for HVDC and FACTS systems
Bésanger et al. Improvement of power system performance by inserting FACTS devices
JP3480123B2 (en) Compensation method for reactive power etc. of power supply system with power generation equipment
Robertson Spot Network Operation With an Induction Generator
O'Kelly Differential firing-angle control of series-connected HVDC bridges
Ishiguro et al. HVDC rectifier control coordinated with generator station in radial operation
Ziyat et al. Impact of Level 2 EV Charging on Phase Unbalance in Distribution Networks

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

EXPY Cancellation because of completion of term