JP3188813B2 - Magnesia powder and method for producing the same - Google Patents

Magnesia powder and method for producing the same

Info

Publication number
JP3188813B2
JP3188813B2 JP16456694A JP16456694A JP3188813B2 JP 3188813 B2 JP3188813 B2 JP 3188813B2 JP 16456694 A JP16456694 A JP 16456694A JP 16456694 A JP16456694 A JP 16456694A JP 3188813 B2 JP3188813 B2 JP 3188813B2
Authority
JP
Japan
Prior art keywords
magnesia powder
magnesia
weight
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16456694A
Other languages
Japanese (ja)
Other versions
JPH0812321A (en
Inventor
彰 兼安
新一 山本
薫 高崎
克己 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP16456694A priority Critical patent/JP3188813B2/en
Priority to KR1019950016956A priority patent/KR100373561B1/en
Publication of JPH0812321A publication Critical patent/JPH0812321A/en
Application granted granted Critical
Publication of JP3188813B2 publication Critical patent/JP3188813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐消化性を必要とする塩
基性定形炉材及び不定形耐火物の原料として好適に使用
しうるマグネシア粉末及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesia powder which can be suitably used as a raw material for a basic fixed furnace material and an amorphous refractory requiring digestion resistance, and a method for producing the same.

【0002】[0002]

【従来技術及びその問題点】製鋼用不定形耐火物材料で
ある塩基性吹き付け材及び流し込み材は、近年添加水分
を低減し、材料密度の向上、高温物性の向上を図ること
が検討されている。水分低減に伴い材料の流動性も低下
するため、基材のマグネシア原料についても粒度配合を
変更し、微細粉末の割合を増加する必要が出てきた。
2. Description of the Related Art In recent years, basic spraying materials and casting materials, which are irregular refractory materials for steelmaking, have been studied to reduce the added moisture, improve the material density, and improve the high-temperature properties. . Since the fluidity of the material also decreases as the water content decreases, it is necessary to change the particle size composition of the magnesia raw material as the base material and increase the proportion of the fine powder.

【0003】しかし、マグネシア原料は主要構成鉱物で
あるペリクレースがや空気中の水蒸気と反応して消化す
る欠点を持っており、特に比表面積の大きな微細粉末で
はこの傾向がより顕著に現れる。このため、既存のマグ
ネシアクリンカーを粉砕したマグネシア微粉末は耐消化
性が極端に悪く使用できるレベルではなかった。
However, the raw material of magnesia has a drawback that periclase, which is a main constituent mineral, reacts with water vapor in the air to digest it, and this tendency is more remarkable particularly in a fine powder having a large specific surface area. For this reason, the magnesia fine powder obtained by pulverizing the existing magnesia clinker is extremely poor in digestion resistance and cannot be used.

【0004】そこで、マグネシア粉末の耐消化性を改善
するために、マグネシア粉末にシランなどの無機系カッ
プリング剤による表面処理を施す方法が既に提案されて
いる。しかし、この方法でも耐消化性は実用的なレベル
には至っていない。さらに表面処理後のマグネシア粉末
は顕著な撥水性が認められ、水系の不定形耐火物原料と
しては馴染みが悪く非常に使用しづらい欠点があった。
一方、特開平4−42808号公報には、マグネシア粉
末を1100℃以上に加熱することにより耐消化性を改
善する方法が提案されている。しかし、この方法でも耐
消化性は実用的なレベルには至っていない。
[0004] In order to improve the digestion resistance of magnesia powder, a method has been proposed in which magnesia powder is subjected to a surface treatment with an inorganic coupling agent such as silane. However, even with this method, the digestion resistance has not reached a practical level. Further, the magnesia powder after the surface treatment has a remarkable water repellency, and has a drawback that it is not easily used as a water-based raw material for amorphous refractories and is very difficult to use.
On the other hand, JP-A-4-42808 proposes a method of improving the digestion resistance by heating magnesia powder to 1100 ° C. or higher. However, even with this method, the digestion resistance has not reached a practical level.

【0005】このため、不定形耐火物の高品位化のため
には、不定形耐火物の原料であるマグネシア粉末の消化
反応をさらに抑制して耐消化性を、学振法4(マグネシ
アクリンカーの消化性試験方法)による重量増加率2.
0%以下にまで大幅に向上させ、併せて撥水性が少な
く、かつ流動性の優れた原料の開発が課題であった。
[0005] Therefore, in order to improve the quality of amorphous refractories, the digestion resistance of magnesia powder, which is a raw material of the amorphous refractories, is further suppressed to reduce the digestion resistance. 1. Weight increase rate by digestibility test method)
The challenge has been to develop a raw material that has been significantly improved to 0% or less, has low water repellency, and has excellent fluidity.

【0006】[0006]

【発明の目的】本発明の目的は、前記問題点を解決し、
耐消化性が大幅に向上しており、定形耐火物、不定形耐
火物の原料粉末として、特に流し込み材料用の原料とし
て十分使用が可能であり、しかも撥水性が少なく、水と
馴染みやすく、かつ流動性に優れ、流し込み材料として
使いやすいマグネシア粉末及び該マグネシア粉末を安価
に製造する方法を提供することにある。
An object of the present invention is to solve the above problems,
The digestion resistance has been greatly improved, and it can be used as a raw material powder for shaped refractories and irregular shaped refractories, especially as a material for casting materials. An object of the present invention is to provide a magnesia powder which has excellent fluidity and is easy to use as a pouring material, and a method for producing the magnesia powder at low cost.

【0007】[0007]

【問題点を解決するための手段】本発明者らはマグネシ
ア粉末の消化特性を改善する方法を種々検討した結果、
比表面積5m2/g以下、平均粒径50μm以下のマグ
ネシア粉末に有機珪素化合物を添加した後、加熱処理す
ることにより、耐消化性が大幅に向上し、しかも撥水性
も抑制できることを見い出した。即ち、本発明は、Mg
O含有量90重量%以上、比表面積5m2/g以下、平
均粒径50μm以下であり、学振法4(マグネシアクリ
ンカーの消化性試験方法)による重量増加率が2.0%
以下であることを特徴とするマグネシア粉末に関する。
このようなマグネシア粉末は、MgO含有量98重量%
以上、比表面積5m2/g以下、平均粒径50μm以下
のマグネシア粉末に有機珪素化合物を添加した後、35
0〜600℃で加熱処理することにより得られる。
Means for Solving the Problems The present inventors have studied various methods for improving the digestion characteristics of magnesia powder, and as a result,
It has been found that by adding an organosilicon compound to magnesia powder having a specific surface area of 5 m 2 / g or less and an average particle size of 50 μm or less, and then subjecting the magnesia powder to heat treatment, digestion resistance is significantly improved and water repellency can be suppressed. That is, the present invention relates to Mg
It has an O content of 90% by weight or more, a specific surface area of 5 m 2 / g or less, an average particle size of 50 μm or less, and a weight increase rate of 2.0% according to Gakushin method 4 (test method for digestibility of magnesia clinker).
The present invention relates to magnesia powder characterized by the following.
Such magnesia powder has an MgO content of 98% by weight.
After adding the organosilicon compound to magnesia powder having a specific surface area of 5 m 2 / g or less and an average particle diameter of 50 μm or less,
It is obtained by heat treatment at 0 to 600 ° C.

【0008】本発明のマグネシア粉末は、MgO含有量
90重量%以上、比表面積5m2/g以下、平均粒径5
0μm以下である。特に、耐消化性の面から、1800
℃以上の温度で焼成して得られる、いわゆる高温焼成マ
グネシアクリンカーを粉砕して得られるマグネシア粉末
であることが望ましい。また、耐火物した場合の特性の
面から、不純物中のCaO/SiO2比が2以上である
ことが好ましい。本発明のマグネシア粉末は、有機珪素
化合物を添加した後、加熱処理されているので、学振法
4(マグネシアクリンカーの消化性試験方法)による重
量増加率が2.0%以下、特に好ましくは1.0%以下
と耐消化性が著しく向上している。また、本発明のマグ
ネシア粉末は、流動性に優れており、ホソカワミクロン
製パウダーテスターによる流動性指数が60以上、好ま
しくは70以上である。
The magnesia powder of the present invention has an MgO content of 90% by weight or more, a specific surface area of 5 m 2 / g or less, and an average particle size of 5 m 2 / g.
0 μm or less. In particular, from the viewpoint of digestion resistance, 1800
Magnesia powder obtained by pulverizing a so-called high-temperature fired magnesia clinker obtained by firing at a temperature of not less than ° C is desirable. In addition, from the viewpoint of characteristics when a refractory is used, the CaO / SiO 2 ratio in the impurities is preferably 2 or more. Since the magnesia powder of the present invention is heat-treated after the addition of the organosilicon compound, the weight increase rate by Gakushin method 4 (test method for digestibility of magnesia clinker) is 2.0% or less, particularly preferably 1% or less. 0.0% or less, the digestion resistance is remarkably improved. The magnesia powder of the present invention is excellent in fluidity, and has a fluidity index of 60 or more, preferably 70 or more, by a powder tester manufactured by Hosokawa Micron.

【0009】本発明のマグネシア粉末は、MgO含有量
98重量%以上、比表面積5m2/g以下、平均粒径5
0μm以下のマグネシア粉末に有機珪素化合物を添加し
た後、350〜600℃、好ましくは400〜550℃
で加熱処理することにより製造することができる。出発
原料であるMgO含有量98重量%以上、比表面積5m
2/g以下、平均粒径50μm以下のマグネシア粉末と
しては、1800℃以上の温度で焼成して得られる、い
わゆる高温焼成マグネシアクリンカー粉末を破砕・整粒
したものが好ましく用いられる。
The magnesia powder of the present invention has an MgO content of 98% by weight or more, a specific surface area of 5 m 2 / g or less, and an average particle diameter of 5 m 2 / g.
After adding the organosilicon compound to magnesia powder of 0 μm or less, 350 to 600 ° C., preferably 400 to 550 ° C.
Can be produced by heat treatment. Starting material MgO content 98% by weight or more, specific surface area 5m
As the magnesia powder having a particle size of 2 / g or less and an average particle diameter of 50 μm or less, a material obtained by crushing and sizing a so-called high-temperature fired magnesia clinker powder obtained by firing at a temperature of 1800 ° C. or more is preferably used.

【0010】本発明において、酸化マグネシウム(マグ
ネシア)の被覆用の有機珪素化合物としてはシリコーン
が用いられる。シリコーンの例としては、メチル水素シ
リコーンオイル、ジメチルシリコーンオイルなどが挙げ
られる。マグネシア粉末に対する有機珪素化合物(シリ
コーン)の添加量は、通常は、0.2〜10.0重量
%、好ましくは、0.5〜3.0重量%である。
In the present invention, silicone is used as the organic silicon compound for coating magnesium oxide (magnesia). Examples of silicone include methyl hydrogen silicone oil, dimethyl silicone oil and the like. The amount of the organosilicon compound (silicone) added to the magnesia powder is usually 0.2 to 10.0% by weight, preferably 0.5 to 3.0% by weight.

【0011】本発明において、マグネシア粉末に有機珪
素化合物(シリコーン)を添加被覆したのち、350〜
600℃、好ましくは400〜550℃の温度で加熱処
理する。加熱処理用の装置としては、電気炉、ガス炉な
どの各種の工業炉が使用可能である。
In the present invention, after the magnesia powder is coated with an organosilicon compound (silicone),
The heat treatment is performed at a temperature of 600C, preferably 400 to 550C. As an apparatus for the heat treatment, various industrial furnaces such as an electric furnace and a gas furnace can be used.

【0012】[0012]

【実施例】以下、実施例及び比較例を示して本発明をさ
らに詳しく説明する。なお、耐消化性の評価は、学振法
4(マグネシアクリンカーの消化性試験方法)に従って
行った。また、粉末の流動性の評価は、ホソカワミクロ
ン製パウダーテスターの取扱説明書の「粉体の流動性お
よび噴流性の数的評価について」に従って行った。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. The digestion resistance was evaluated in accordance with Gakushin method 4 (test method for digestibility of magnesia clinker). The evaluation of the fluidity of the powder was performed according to “Numerical evaluation of fluidity and jetness of powder” in the instruction manual of the powder tester manufactured by Hosokawa Micron.

【0013】実施例1 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、シリコニット電気炉中で400℃で2時間保持
した。得られたマグネシア粉末の耐消化性は重量増加率
0.6%と大幅に向上し、併せて撥水性も認められなか
った。また、パウダーテスターによる流動性指数は73
とかなり良好であった。
Example 1 A magnesia clinker containing 98% by weight of MgO, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized by a ball mill to obtain an average particle size of 23.
A magnesia powder having a specific surface area of 1 m 2 / g was used as a raw material, and 1% by weight of methyl hydrogen silicone oil was added thereto. The mixture was kept at 400 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was remarkably improved at a weight increase rate of 0.6%, and no water repellency was observed. The liquidity index of the powder tester is 73
And was pretty good.

【0014】実施例2 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これにメ
チル水素シリコーンオイル1重量%を添加した後、シリ
コニット電気炉中で500℃で2時間保持した。得られ
たマグネシア粉末の耐消化性は重量増加率0.5%と大
幅に向上し、併せて撥水性も認められなかった。また、
パウダーテスターによる流動性指数は70とかなり良好
であった。
Example 2 Magnesia clinker having an MgO content of 99.5% by weight was pulverized by a ball mill to obtain a magnesia powder having an average particle diameter of 26 μm and a specific surface area of 1 m 2 / g. After adding 1% by weight, the mixture was kept at 500 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was remarkably improved with a weight increase rate of 0.5%, and no water repellency was observed. Also,
The fluidity index by powder tester was fairly good at 70.

【0015】実施例3 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、レトルトが200φ×1000lのSUS製の
外熱キルンで最高温度550℃に加熱した。得られたマ
グネシア粉末の耐消化性は重量増加率0.7%と大幅に
向上し、併せて撥水性も認められなかった。また、パウ
ダーテスターによる流動性指数は72とかなり良好であ
った。
Example 3 Magnesia clinker having a MgO content of 98% by weight, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized with a ball mill to obtain an average particle size of 23.
A magnesia powder having a specific surface area of 1 m 2 / g was added as a raw material, and 1% by weight of methyl hydrogen silicone oil was added thereto. The mixture was heated to a maximum temperature of 550 ° C. in an external heat kiln made of SUS having a retort of 200 × 1000 l. The digestion resistance of the obtained magnesia powder was remarkably improved to 0.7% by weight, and no water repellency was observed. The fluidity index of the powder tester was 72, which was quite good.

【0016】実施例4 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、シリコニット電気炉中で570℃で2時間保持
した。得られたマグネシア粉末の耐消化性は重量増加率
1.5%と向上し、併せて撥水性も認められなかった。
また、パウダーテスターによる流動性指数は63と良好
であった。
Example 4 A magnesia clinker having an MgO content of 98% by weight, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized in a ball mill to obtain an average particle size of 23.
A magnesia powder having a μm specific surface area of 1 m 2 / g was used as a raw material, and 1% by weight of methyl hydrogen silicone oil was added thereto. The mixture was kept at 570 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was improved to a weight increase rate of 1.5%, and no water repellency was observed.
Moreover, the fluidity index by the powder tester was as good as 63.

【0017】比較例1 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末について、
耐消化性を評価したところ、重量増加率は25.3%で
あった。また、パウダーテスターによる流動性指数は5
5であった。水性が顕著であった。
COMPARATIVE EXAMPLE 1 A magnesia clinker having a MgO content of 98% by weight, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized in a ball mill to obtain an average particle size of 23.
μm, magnesia powder having a specific surface area of 1 m 2 / g,
When the digestion resistance was evaluated, the rate of weight increase was 25.3%. The powder tester has a liquidity index of 5
It was 5. Aqueous was noticeable.

【0018】比較例2 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これをシ
リコニット電気炉中で1200℃で2時間保持した。得
られたマグネシア粉末の耐消化性は重量増加率5.2%
であった。また、パウダーテスターによる流動性指数は
54であった。
Comparative Example 2 Magnesia clinker having an MgO content of 99.5% by weight was pulverized with a ball mill to obtain a magnesia powder having an average particle size of 26 μm and a specific surface area of 1 m 2 / g. At 1200 ° C. for 2 hours. The digestion resistance of the obtained magnesia powder was 5.2% by weight.
Met. The fluidity index measured by a powder tester was 54.

【0019】比較例3 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これにメ
チル水素シリコーンオイル1重量%を添加した後、シリ
コニット電気炉中で700℃で2時間保持した。得られ
たマグネシア粉末の耐消化性は重量増加率15%であっ
た。また、パウダーテスターによる流動性指数は61で
あった。
Comparative Example 3 Magnesia clinker having an MgO content of 99.5% by weight was pulverized with a ball mill to obtain a magnesia powder having an average particle size of 26 μm and a specific surface area of 1 m 2 / g. After adding 1% by weight, it was kept at 700 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was 15% by weight. The fluidity index of the powder tester was 61.

【0020】比較例4 金属マグネシウムの加熱蒸気を気相酸化することにより
製造されたMgO含有量98重量%、平均粒径0.2μ
m、比表面積8m2/gのマグネシア粉末を原料とし、
メチル水素シリコーンオイル2重量%を添加した後、シ
リコニット電気炉中で500℃で2時間保持した。得ら
れたマグネシア粉末の耐消化性は重量増加率6.2%で
あった。また、パウダーテスターによる流動性指数は5
6であった。
Comparative Example 4 98% by weight of MgO produced by vapor-phase oxidation of heated steam of metallic magnesium, average particle size of 0.2 μm
m, magnesia powder having a specific surface area of 8 m 2 / g as a raw material,
After adding 2% by weight of methyl hydrogen silicone oil, the mixture was kept at 500 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was 6.2% by weight. The powder tester has a liquidity index of 5
It was 6.

【0021】[0021]

【発明の効果】本発明のマグネシア粉末は、耐消化性に
優れた性質を有し、水系の流し込み基材との馴染みも良
く、粉末の流動性に優れることから、定型、不定形耐火
物の原料として、特に塩基性流し込み材料の粉末原料と
して極めて有用である。
The magnesia powder of the present invention has excellent digestion resistance, has good compatibility with an aqueous casting base material, and has excellent fluidity of powder. It is extremely useful as a raw material, particularly as a powder raw material for a basic casting material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 克己 山口県宇部市大字小串1985番地 宇部化 学工業株式会社内 (56)参考文献 特開 昭63−45117(JP,A) 特開 昭61−36119(JP,A) 特開 昭61−270213(JP,A) 特開 平1−131021(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01F 5/02 C04B 35/626 C04B 35/66 ──────────────────────────────────────────────────続 き Continued on the front page (72) Katsumi Takeuchi Inventor Katsumi Takeuchi 1985, Kogushi, Obe, Ube City, Yamaguchi Prefecture (56) References JP-A-63-45117 (JP, A) JP-A-61- 36119 (JP, A) JP-A-61-270213 (JP, A) JP-A-1-131102 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01F 5/02 C04B 35 / 626 C04B 35/66

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 MgO含有量90重量%以上、比表面積
5m2/g以下、平均粒径50μm以下であり、シリコ
ーン被膜の加熱処理によって生成した珪素化合物被膜に
より被覆されてなることを特徴とする、学振法4(マグ
ネシアクリンカーの消化性試験方法)による重量増加率
が2.0%以下マグネシア粉末。
1. A MgO content of 90 wt% or more, a specific surface area of 5 m 2 / g or less, or less average particle size 50 [mu] m, silico
Silicon film formed by heat treatment
A magnesia powder having a weight increase rate of 2.0% or less by Gakushin Method 4 (test method for digestibility of magnesia clinker) , characterized in that the magnesia powder is coated .
【請求項2】 珪素化合物被膜がメチル水素シリコーン
被膜の加熱処理により生じた被膜である請求項1に記載
のマグネシア粉末
2. The silicon compound coating is methyl hydrogen silicone.
The film according to claim 1, wherein the film is formed by heat treatment of the film.
Magnesia powder .
【請求項3】 MgO含有量が90重量%以上、比表面
積5m2/g以上、平均粒径が50μm以下のマグネシ
ア粉末に、0.2〜10.0重量%のシリコーンを用い
てシリコーン被膜を形成した後、350〜600℃で加
熱処理することを特徴とする請求項1に記載のマグネシ
ア粉末の製造方法。
3. A magnesia powder having an MgO content of 90% by weight or more, a specific surface area of 5 m 2 / g or more and an average particle size of 50 μm or less , using 0.2 to 10.0% by weight of silicone.
The method for producing magnesia powder according to claim 1, wherein a heat treatment is performed at 350 to 600 ° C. after the silicone film is formed by the heat treatment.
【請求項4】 定形耐火物もしくは不定形耐火物の原料
用の請求項1もしくは2の記載のマグネシア粉末
4. A raw material for fixed refractories or irregular refractories
The magnesia powder according to claim 1 or 2 for use .
JP16456694A 1994-06-23 1994-06-23 Magnesia powder and method for producing the same Expired - Lifetime JP3188813B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16456694A JP3188813B2 (en) 1994-06-23 1994-06-23 Magnesia powder and method for producing the same
KR1019950016956A KR100373561B1 (en) 1994-06-23 1995-06-22 Magnesia powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16456694A JP3188813B2 (en) 1994-06-23 1994-06-23 Magnesia powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0812321A JPH0812321A (en) 1996-01-16
JP3188813B2 true JP3188813B2 (en) 2001-07-16

Family

ID=15795606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16456694A Expired - Lifetime JP3188813B2 (en) 1994-06-23 1994-06-23 Magnesia powder and method for producing the same

Country Status (2)

Country Link
JP (1) JP3188813B2 (en)
KR (1) KR100373561B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016373B2 (en) 2007-05-15 2012-09-05 ペンタックスリコーイメージング株式会社 Optical system of focus detection device
JP4884318B2 (en) 2007-06-29 2012-02-29 オリンパスイメージング株式会社 Focus detection optical system and imaging apparatus using the same
JP6356435B2 (en) * 2014-02-28 2018-07-11 神島化学工業株式会社 Highly acid-resistant surface-treated magnesium oxide thermal conductive agent and resin composition using the same
WO2023157683A1 (en) * 2022-02-17 2023-08-24 デンカ株式会社 Coated magnesia particle, filler for heat dissipation material, resin composition, and method for producing coated magnesia particle
KR102581342B1 (en) * 2023-05-31 2023-09-21 주식회사 이연이앤디 Eco-friendly Grout Material and Grouting Method Using the Same

Also Published As

Publication number Publication date
JPH0812321A (en) 1996-01-16
KR960000772A (en) 1996-01-25
KR100373561B1 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP3188813B2 (en) Magnesia powder and method for producing the same
CN109534700A (en) A kind of steel slag modifying agent and preparation method thereof
JPS63384B2 (en)
CN108409343B (en) Refractory material with anti-erosion effect for calcining furnace and preparation method thereof
JP2022105725A (en) Castable refractory and method for producing the same
JPS5874579A (en) Carbon-containing refractories
US4988649A (en) Silica bricks and process for production thereof
JP2010173913A (en) Magnesia clinker
JP4143135B2 (en) Magnesia refractory particles
JPS6024072B2 (en) Blast furnace gutter material
JPH07277819A (en) Aluminum titanate clinker and refractory using the same
JP2004050196A (en) High-heat resistant impact property sliding nozzle plate brick
JPH02175638A (en) Alumina cement and low-cement castable binder
JPH05117019A (en) Basic refractory brick
KR100468448B1 (en) Mg-Cr castable composition with residual expansion
JPS5927731B2 (en) Method for producing calcia clinker
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JPS5913457B2 (en) Production method of calcia clinker
JP3308902B2 (en) Raw material for carbon-containing refractories and method for producing the same
JP3290297B2 (en) High purity magnesia clinker
SU730661A1 (en) Refractory mass
RU2094407C1 (en) Unroasted lime-silicate-periclase refractory
JP2013053052A (en) Castable refractory
JPH06191908A (en) Alumina cement and alumina cement composition
CN118619691A (en) Microporous corundum brick and preparation method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010410

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term