JP3188813B2 - Magnesia powder and method for producing the same - Google Patents
Magnesia powder and method for producing the sameInfo
- Publication number
- JP3188813B2 JP3188813B2 JP16456694A JP16456694A JP3188813B2 JP 3188813 B2 JP3188813 B2 JP 3188813B2 JP 16456694 A JP16456694 A JP 16456694A JP 16456694 A JP16456694 A JP 16456694A JP 3188813 B2 JP3188813 B2 JP 3188813B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesia powder
- magnesia
- weight
- powder
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims description 159
- 239000000395 magnesium oxide Substances 0.000 title claims description 80
- 239000000843 powder Substances 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000002245 particle Substances 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000011819 refractory material Substances 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- -1 methyl hydrogen Chemical class 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 6
- 235000019621 digestibility Nutrition 0.000 claims description 5
- 238000010998 test method Methods 0.000 claims description 5
- 230000001788 irregular Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 150000003377 silicon compounds Chemical class 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 229920006268 silicone film Polymers 0.000 claims 1
- 235000012245 magnesium oxide Nutrition 0.000 description 70
- 230000029087 digestion Effects 0.000 description 23
- 239000000463 material Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 6
- 150000003961 organosilicon compounds Chemical class 0.000 description 6
- 229920002545 silicone oil Polymers 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/02—Magnesia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/03—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
- C04B35/04—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
- C04B35/043—Refractories from grain sized mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は耐消化性を必要とする塩
基性定形炉材及び不定形耐火物の原料として好適に使用
しうるマグネシア粉末及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesia powder which can be suitably used as a raw material for a basic fixed furnace material and an amorphous refractory requiring digestion resistance, and a method for producing the same.
【0002】[0002]
【従来技術及びその問題点】製鋼用不定形耐火物材料で
ある塩基性吹き付け材及び流し込み材は、近年添加水分
を低減し、材料密度の向上、高温物性の向上を図ること
が検討されている。水分低減に伴い材料の流動性も低下
するため、基材のマグネシア原料についても粒度配合を
変更し、微細粉末の割合を増加する必要が出てきた。2. Description of the Related Art In recent years, basic spraying materials and casting materials, which are irregular refractory materials for steelmaking, have been studied to reduce the added moisture, improve the material density, and improve the high-temperature properties. . Since the fluidity of the material also decreases as the water content decreases, it is necessary to change the particle size composition of the magnesia raw material as the base material and increase the proportion of the fine powder.
【0003】しかし、マグネシア原料は主要構成鉱物で
あるペリクレースがや空気中の水蒸気と反応して消化す
る欠点を持っており、特に比表面積の大きな微細粉末で
はこの傾向がより顕著に現れる。このため、既存のマグ
ネシアクリンカーを粉砕したマグネシア微粉末は耐消化
性が極端に悪く使用できるレベルではなかった。However, the raw material of magnesia has a drawback that periclase, which is a main constituent mineral, reacts with water vapor in the air to digest it, and this tendency is more remarkable particularly in a fine powder having a large specific surface area. For this reason, the magnesia fine powder obtained by pulverizing the existing magnesia clinker is extremely poor in digestion resistance and cannot be used.
【0004】そこで、マグネシア粉末の耐消化性を改善
するために、マグネシア粉末にシランなどの無機系カッ
プリング剤による表面処理を施す方法が既に提案されて
いる。しかし、この方法でも耐消化性は実用的なレベル
には至っていない。さらに表面処理後のマグネシア粉末
は顕著な撥水性が認められ、水系の不定形耐火物原料と
しては馴染みが悪く非常に使用しづらい欠点があった。
一方、特開平4−42808号公報には、マグネシア粉
末を1100℃以上に加熱することにより耐消化性を改
善する方法が提案されている。しかし、この方法でも耐
消化性は実用的なレベルには至っていない。[0004] In order to improve the digestion resistance of magnesia powder, a method has been proposed in which magnesia powder is subjected to a surface treatment with an inorganic coupling agent such as silane. However, even with this method, the digestion resistance has not reached a practical level. Further, the magnesia powder after the surface treatment has a remarkable water repellency, and has a drawback that it is not easily used as a water-based raw material for amorphous refractories and is very difficult to use.
On the other hand, JP-A-4-42808 proposes a method of improving the digestion resistance by heating magnesia powder to 1100 ° C. or higher. However, even with this method, the digestion resistance has not reached a practical level.
【0005】このため、不定形耐火物の高品位化のため
には、不定形耐火物の原料であるマグネシア粉末の消化
反応をさらに抑制して耐消化性を、学振法4(マグネシ
アクリンカーの消化性試験方法)による重量増加率2.
0%以下にまで大幅に向上させ、併せて撥水性が少な
く、かつ流動性の優れた原料の開発が課題であった。[0005] Therefore, in order to improve the quality of amorphous refractories, the digestion resistance of magnesia powder, which is a raw material of the amorphous refractories, is further suppressed to reduce the digestion resistance. 1. Weight increase rate by digestibility test method)
The challenge has been to develop a raw material that has been significantly improved to 0% or less, has low water repellency, and has excellent fluidity.
【0006】[0006]
【発明の目的】本発明の目的は、前記問題点を解決し、
耐消化性が大幅に向上しており、定形耐火物、不定形耐
火物の原料粉末として、特に流し込み材料用の原料とし
て十分使用が可能であり、しかも撥水性が少なく、水と
馴染みやすく、かつ流動性に優れ、流し込み材料として
使いやすいマグネシア粉末及び該マグネシア粉末を安価
に製造する方法を提供することにある。An object of the present invention is to solve the above problems,
The digestion resistance has been greatly improved, and it can be used as a raw material powder for shaped refractories and irregular shaped refractories, especially as a material for casting materials. An object of the present invention is to provide a magnesia powder which has excellent fluidity and is easy to use as a pouring material, and a method for producing the magnesia powder at low cost.
【0007】[0007]
【問題点を解決するための手段】本発明者らはマグネシ
ア粉末の消化特性を改善する方法を種々検討した結果、
比表面積5m2/g以下、平均粒径50μm以下のマグ
ネシア粉末に有機珪素化合物を添加した後、加熱処理す
ることにより、耐消化性が大幅に向上し、しかも撥水性
も抑制できることを見い出した。即ち、本発明は、Mg
O含有量90重量%以上、比表面積5m2/g以下、平
均粒径50μm以下であり、学振法4(マグネシアクリ
ンカーの消化性試験方法)による重量増加率が2.0%
以下であることを特徴とするマグネシア粉末に関する。
このようなマグネシア粉末は、MgO含有量98重量%
以上、比表面積5m2/g以下、平均粒径50μm以下
のマグネシア粉末に有機珪素化合物を添加した後、35
0〜600℃で加熱処理することにより得られる。Means for Solving the Problems The present inventors have studied various methods for improving the digestion characteristics of magnesia powder, and as a result,
It has been found that by adding an organosilicon compound to magnesia powder having a specific surface area of 5 m 2 / g or less and an average particle size of 50 μm or less, and then subjecting the magnesia powder to heat treatment, digestion resistance is significantly improved and water repellency can be suppressed. That is, the present invention relates to Mg
It has an O content of 90% by weight or more, a specific surface area of 5 m 2 / g or less, an average particle size of 50 μm or less, and a weight increase rate of 2.0% according to Gakushin method 4 (test method for digestibility of magnesia clinker).
The present invention relates to magnesia powder characterized by the following.
Such magnesia powder has an MgO content of 98% by weight.
After adding the organosilicon compound to magnesia powder having a specific surface area of 5 m 2 / g or less and an average particle diameter of 50 μm or less,
It is obtained by heat treatment at 0 to 600 ° C.
【0008】本発明のマグネシア粉末は、MgO含有量
90重量%以上、比表面積5m2/g以下、平均粒径5
0μm以下である。特に、耐消化性の面から、1800
℃以上の温度で焼成して得られる、いわゆる高温焼成マ
グネシアクリンカーを粉砕して得られるマグネシア粉末
であることが望ましい。また、耐火物した場合の特性の
面から、不純物中のCaO/SiO2比が2以上である
ことが好ましい。本発明のマグネシア粉末は、有機珪素
化合物を添加した後、加熱処理されているので、学振法
4(マグネシアクリンカーの消化性試験方法)による重
量増加率が2.0%以下、特に好ましくは1.0%以下
と耐消化性が著しく向上している。また、本発明のマグ
ネシア粉末は、流動性に優れており、ホソカワミクロン
製パウダーテスターによる流動性指数が60以上、好ま
しくは70以上である。The magnesia powder of the present invention has an MgO content of 90% by weight or more, a specific surface area of 5 m 2 / g or less, and an average particle size of 5 m 2 / g.
0 μm or less. In particular, from the viewpoint of digestion resistance, 1800
Magnesia powder obtained by pulverizing a so-called high-temperature fired magnesia clinker obtained by firing at a temperature of not less than ° C is desirable. In addition, from the viewpoint of characteristics when a refractory is used, the CaO / SiO 2 ratio in the impurities is preferably 2 or more. Since the magnesia powder of the present invention is heat-treated after the addition of the organosilicon compound, the weight increase rate by Gakushin method 4 (test method for digestibility of magnesia clinker) is 2.0% or less, particularly preferably 1% or less. 0.0% or less, the digestion resistance is remarkably improved. The magnesia powder of the present invention is excellent in fluidity, and has a fluidity index of 60 or more, preferably 70 or more, by a powder tester manufactured by Hosokawa Micron.
【0009】本発明のマグネシア粉末は、MgO含有量
98重量%以上、比表面積5m2/g以下、平均粒径5
0μm以下のマグネシア粉末に有機珪素化合物を添加し
た後、350〜600℃、好ましくは400〜550℃
で加熱処理することにより製造することができる。出発
原料であるMgO含有量98重量%以上、比表面積5m
2/g以下、平均粒径50μm以下のマグネシア粉末と
しては、1800℃以上の温度で焼成して得られる、い
わゆる高温焼成マグネシアクリンカー粉末を破砕・整粒
したものが好ましく用いられる。The magnesia powder of the present invention has an MgO content of 98% by weight or more, a specific surface area of 5 m 2 / g or less, and an average particle diameter of 5 m 2 / g.
After adding the organosilicon compound to magnesia powder of 0 μm or less, 350 to 600 ° C., preferably 400 to 550 ° C.
Can be produced by heat treatment. Starting material MgO content 98% by weight or more, specific surface area 5m
As the magnesia powder having a particle size of 2 / g or less and an average particle diameter of 50 μm or less, a material obtained by crushing and sizing a so-called high-temperature fired magnesia clinker powder obtained by firing at a temperature of 1800 ° C. or more is preferably used.
【0010】本発明において、酸化マグネシウム(マグ
ネシア)の被覆用の有機珪素化合物としてはシリコーン
が用いられる。シリコーンの例としては、メチル水素シ
リコーンオイル、ジメチルシリコーンオイルなどが挙げ
られる。マグネシア粉末に対する有機珪素化合物(シリ
コーン)の添加量は、通常は、0.2〜10.0重量
%、好ましくは、0.5〜3.0重量%である。In the present invention, silicone is used as the organic silicon compound for coating magnesium oxide (magnesia). Examples of silicone include methyl hydrogen silicone oil, dimethyl silicone oil and the like. The amount of the organosilicon compound (silicone) added to the magnesia powder is usually 0.2 to 10.0% by weight, preferably 0.5 to 3.0% by weight.
【0011】本発明において、マグネシア粉末に有機珪
素化合物(シリコーン)を添加被覆したのち、350〜
600℃、好ましくは400〜550℃の温度で加熱処
理する。加熱処理用の装置としては、電気炉、ガス炉な
どの各種の工業炉が使用可能である。In the present invention, after the magnesia powder is coated with an organosilicon compound (silicone),
The heat treatment is performed at a temperature of 600C, preferably 400 to 550C. As an apparatus for the heat treatment, various industrial furnaces such as an electric furnace and a gas furnace can be used.
【0012】[0012]
【実施例】以下、実施例及び比較例を示して本発明をさ
らに詳しく説明する。なお、耐消化性の評価は、学振法
4(マグネシアクリンカーの消化性試験方法)に従って
行った。また、粉末の流動性の評価は、ホソカワミクロ
ン製パウダーテスターの取扱説明書の「粉体の流動性お
よび噴流性の数的評価について」に従って行った。The present invention will be described below in more detail with reference to Examples and Comparative Examples. The digestion resistance was evaluated in accordance with Gakushin method 4 (test method for digestibility of magnesia clinker). The evaluation of the fluidity of the powder was performed according to “Numerical evaluation of fluidity and jetness of powder” in the instruction manual of the powder tester manufactured by Hosokawa Micron.
【0013】実施例1 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、シリコニット電気炉中で400℃で2時間保持
した。得られたマグネシア粉末の耐消化性は重量増加率
0.6%と大幅に向上し、併せて撥水性も認められなか
った。また、パウダーテスターによる流動性指数は73
とかなり良好であった。Example 1 A magnesia clinker containing 98% by weight of MgO, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized by a ball mill to obtain an average particle size of 23.
A magnesia powder having a specific surface area of 1 m 2 / g was used as a raw material, and 1% by weight of methyl hydrogen silicone oil was added thereto. The mixture was kept at 400 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was remarkably improved at a weight increase rate of 0.6%, and no water repellency was observed. The liquidity index of the powder tester is 73
And was pretty good.
【0014】実施例2 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これにメ
チル水素シリコーンオイル1重量%を添加した後、シリ
コニット電気炉中で500℃で2時間保持した。得られ
たマグネシア粉末の耐消化性は重量増加率0.5%と大
幅に向上し、併せて撥水性も認められなかった。また、
パウダーテスターによる流動性指数は70とかなり良好
であった。Example 2 Magnesia clinker having an MgO content of 99.5% by weight was pulverized by a ball mill to obtain a magnesia powder having an average particle diameter of 26 μm and a specific surface area of 1 m 2 / g. After adding 1% by weight, the mixture was kept at 500 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was remarkably improved with a weight increase rate of 0.5%, and no water repellency was observed. Also,
The fluidity index by powder tester was fairly good at 70.
【0015】実施例3 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、レトルトが200φ×1000lのSUS製の
外熱キルンで最高温度550℃に加熱した。得られたマ
グネシア粉末の耐消化性は重量増加率0.7%と大幅に
向上し、併せて撥水性も認められなかった。また、パウ
ダーテスターによる流動性指数は72とかなり良好であ
った。Example 3 Magnesia clinker having a MgO content of 98% by weight, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized with a ball mill to obtain an average particle size of 23.
A magnesia powder having a specific surface area of 1 m 2 / g was added as a raw material, and 1% by weight of methyl hydrogen silicone oil was added thereto. The mixture was heated to a maximum temperature of 550 ° C. in an external heat kiln made of SUS having a retort of 200 × 1000 l. The digestion resistance of the obtained magnesia powder was remarkably improved to 0.7% by weight, and no water repellency was observed. The fluidity index of the powder tester was 72, which was quite good.
【0016】実施例4 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末を原料と
し、これにメチル水素シリコーンオイル1重量%を添加
した後、シリコニット電気炉中で570℃で2時間保持
した。得られたマグネシア粉末の耐消化性は重量増加率
1.5%と向上し、併せて撥水性も認められなかった。
また、パウダーテスターによる流動性指数は63と良好
であった。Example 4 A magnesia clinker having an MgO content of 98% by weight, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized in a ball mill to obtain an average particle size of 23.
A magnesia powder having a μm specific surface area of 1 m 2 / g was used as a raw material, and 1% by weight of methyl hydrogen silicone oil was added thereto. The mixture was kept at 570 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was improved to a weight increase rate of 1.5%, and no water repellency was observed.
Moreover, the fluidity index by the powder tester was as good as 63.
【0017】比較例1 鉱化剤としてSiO2を1重量%添加してロータリーキ
ルンで焼成したMgO含有量98重量%のマグネシアク
リンカーをボールミルで粉砕して得られた平均粒径23
μm、比表面積1m2/gのマグネシア粉末について、
耐消化性を評価したところ、重量増加率は25.3%で
あった。また、パウダーテスターによる流動性指数は5
5であった。水性が顕著であった。COMPARATIVE EXAMPLE 1 A magnesia clinker having a MgO content of 98% by weight, which was calcined in a rotary kiln and added with 1% by weight of SiO 2 as a mineralizer, was pulverized in a ball mill to obtain an average particle size of 23.
μm, magnesia powder having a specific surface area of 1 m 2 / g,
When the digestion resistance was evaluated, the rate of weight increase was 25.3%. The powder tester has a liquidity index of 5
It was 5. Aqueous was noticeable.
【0018】比較例2 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これをシ
リコニット電気炉中で1200℃で2時間保持した。得
られたマグネシア粉末の耐消化性は重量増加率5.2%
であった。また、パウダーテスターによる流動性指数は
54であった。Comparative Example 2 Magnesia clinker having an MgO content of 99.5% by weight was pulverized with a ball mill to obtain a magnesia powder having an average particle size of 26 μm and a specific surface area of 1 m 2 / g. At 1200 ° C. for 2 hours. The digestion resistance of the obtained magnesia powder was 5.2% by weight.
Met. The fluidity index measured by a powder tester was 54.
【0019】比較例3 MgO含有量99.5重量%のマグネシアクリンカーを
ボールミルで粉砕して得られた平均粒径26μm、比表
面積1m2/gのマグネシア粉末を原料とし、これにメ
チル水素シリコーンオイル1重量%を添加した後、シリ
コニット電気炉中で700℃で2時間保持した。得られ
たマグネシア粉末の耐消化性は重量増加率15%であっ
た。また、パウダーテスターによる流動性指数は61で
あった。Comparative Example 3 Magnesia clinker having an MgO content of 99.5% by weight was pulverized with a ball mill to obtain a magnesia powder having an average particle size of 26 μm and a specific surface area of 1 m 2 / g. After adding 1% by weight, it was kept at 700 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was 15% by weight. The fluidity index of the powder tester was 61.
【0020】比較例4 金属マグネシウムの加熱蒸気を気相酸化することにより
製造されたMgO含有量98重量%、平均粒径0.2μ
m、比表面積8m2/gのマグネシア粉末を原料とし、
メチル水素シリコーンオイル2重量%を添加した後、シ
リコニット電気炉中で500℃で2時間保持した。得ら
れたマグネシア粉末の耐消化性は重量増加率6.2%で
あった。また、パウダーテスターによる流動性指数は5
6であった。Comparative Example 4 98% by weight of MgO produced by vapor-phase oxidation of heated steam of metallic magnesium, average particle size of 0.2 μm
m, magnesia powder having a specific surface area of 8 m 2 / g as a raw material,
After adding 2% by weight of methyl hydrogen silicone oil, the mixture was kept at 500 ° C. for 2 hours in a siliconite electric furnace. The digestion resistance of the obtained magnesia powder was 6.2% by weight. The powder tester has a liquidity index of 5
It was 6.
【0021】[0021]
【発明の効果】本発明のマグネシア粉末は、耐消化性に
優れた性質を有し、水系の流し込み基材との馴染みも良
く、粉末の流動性に優れることから、定型、不定形耐火
物の原料として、特に塩基性流し込み材料の粉末原料と
して極めて有用である。The magnesia powder of the present invention has excellent digestion resistance, has good compatibility with an aqueous casting base material, and has excellent fluidity of powder. It is extremely useful as a raw material, particularly as a powder raw material for a basic casting material.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 克己 山口県宇部市大字小串1985番地 宇部化 学工業株式会社内 (56)参考文献 特開 昭63−45117(JP,A) 特開 昭61−36119(JP,A) 特開 昭61−270213(JP,A) 特開 平1−131021(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01F 5/02 C04B 35/626 C04B 35/66 ──────────────────────────────────────────────────続 き Continued on the front page (72) Katsumi Takeuchi Inventor Katsumi Takeuchi 1985, Kogushi, Obe, Ube City, Yamaguchi Prefecture (56) References JP-A-63-45117 (JP, A) JP-A-61- 36119 (JP, A) JP-A-61-270213 (JP, A) JP-A-1-131102 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01F 5/02 C04B 35 / 626 C04B 35/66
Claims (4)
5m2/g以下、平均粒径50μm以下であり、シリコ
ーン被膜の加熱処理によって生成した珪素化合物被膜に
より被覆されてなることを特徴とする、学振法4(マグ
ネシアクリンカーの消化性試験方法)による重量増加率
が2.0%以下のマグネシア粉末。1. A MgO content of 90 wt% or more, a specific surface area of 5 m 2 / g or less, or less average particle size 50 [mu] m, silico
Silicon film formed by heat treatment
A magnesia powder having a weight increase rate of 2.0% or less by Gakushin Method 4 (test method for digestibility of magnesia clinker) , characterized in that the magnesia powder is coated .
被膜の加熱処理により生じた被膜である請求項1に記載
のマグネシア粉末。2. The silicon compound coating is methyl hydrogen silicone.
The film according to claim 1, wherein the film is formed by heat treatment of the film.
Magnesia powder .
積5m2/g以上、平均粒径が50μm以下のマグネシ
ア粉末に、0.2〜10.0重量%のシリコーンを用い
てシリコーン被膜を形成した後、350〜600℃で加
熱処理することを特徴とする請求項1に記載のマグネシ
ア粉末の製造方法。3. A magnesia powder having an MgO content of 90% by weight or more, a specific surface area of 5 m 2 / g or more and an average particle size of 50 μm or less , using 0.2 to 10.0% by weight of silicone.
The method for producing magnesia powder according to claim 1, wherein a heat treatment is performed at 350 to 600 ° C. after the silicone film is formed by the heat treatment.
用の請求項1もしくは2の記載のマグネシア粉末。4. A raw material for fixed refractories or irregular refractories
The magnesia powder according to claim 1 or 2 for use .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16456694A JP3188813B2 (en) | 1994-06-23 | 1994-06-23 | Magnesia powder and method for producing the same |
KR1019950016956A KR100373561B1 (en) | 1994-06-23 | 1995-06-22 | Magnesia powder and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16456694A JP3188813B2 (en) | 1994-06-23 | 1994-06-23 | Magnesia powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0812321A JPH0812321A (en) | 1996-01-16 |
JP3188813B2 true JP3188813B2 (en) | 2001-07-16 |
Family
ID=15795606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16456694A Expired - Lifetime JP3188813B2 (en) | 1994-06-23 | 1994-06-23 | Magnesia powder and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3188813B2 (en) |
KR (1) | KR100373561B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5016373B2 (en) | 2007-05-15 | 2012-09-05 | ペンタックスリコーイメージング株式会社 | Optical system of focus detection device |
JP4884318B2 (en) | 2007-06-29 | 2012-02-29 | オリンパスイメージング株式会社 | Focus detection optical system and imaging apparatus using the same |
JP6356435B2 (en) * | 2014-02-28 | 2018-07-11 | 神島化学工業株式会社 | Highly acid-resistant surface-treated magnesium oxide thermal conductive agent and resin composition using the same |
WO2023157683A1 (en) * | 2022-02-17 | 2023-08-24 | デンカ株式会社 | Coated magnesia particle, filler for heat dissipation material, resin composition, and method for producing coated magnesia particle |
KR102581342B1 (en) * | 2023-05-31 | 2023-09-21 | 주식회사 이연이앤디 | Eco-friendly Grout Material and Grouting Method Using the Same |
-
1994
- 1994-06-23 JP JP16456694A patent/JP3188813B2/en not_active Expired - Lifetime
-
1995
- 1995-06-22 KR KR1019950016956A patent/KR100373561B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH0812321A (en) | 1996-01-16 |
KR960000772A (en) | 1996-01-25 |
KR100373561B1 (en) | 2003-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3188813B2 (en) | Magnesia powder and method for producing the same | |
CN109534700A (en) | A kind of steel slag modifying agent and preparation method thereof | |
JPS63384B2 (en) | ||
CN108409343B (en) | Refractory material with anti-erosion effect for calcining furnace and preparation method thereof | |
JP2022105725A (en) | Castable refractory and method for producing the same | |
JPS5874579A (en) | Carbon-containing refractories | |
US4988649A (en) | Silica bricks and process for production thereof | |
JP2010173913A (en) | Magnesia clinker | |
JP4143135B2 (en) | Magnesia refractory particles | |
JPS6024072B2 (en) | Blast furnace gutter material | |
JPH07277819A (en) | Aluminum titanate clinker and refractory using the same | |
JP2004050196A (en) | High-heat resistant impact property sliding nozzle plate brick | |
JPH02175638A (en) | Alumina cement and low-cement castable binder | |
JPH05117019A (en) | Basic refractory brick | |
KR100468448B1 (en) | Mg-Cr castable composition with residual expansion | |
JPS5927731B2 (en) | Method for producing calcia clinker | |
JP2001247377A (en) | Silicon iron nitride powder, method for evaluation of the powder and use | |
JPS5913457B2 (en) | Production method of calcia clinker | |
JP3308902B2 (en) | Raw material for carbon-containing refractories and method for producing the same | |
JP3290297B2 (en) | High purity magnesia clinker | |
SU730661A1 (en) | Refractory mass | |
RU2094407C1 (en) | Unroasted lime-silicate-periclase refractory | |
JP2013053052A (en) | Castable refractory | |
JPH06191908A (en) | Alumina cement and alumina cement composition | |
CN118619691A (en) | Microporous corundum brick and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010410 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090511 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140511 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |