JP3186819B2 - Optical communication device and optical communication method - Google Patents

Optical communication device and optical communication method

Info

Publication number
JP3186819B2
JP3186819B2 JP02491992A JP2491992A JP3186819B2 JP 3186819 B2 JP3186819 B2 JP 3186819B2 JP 02491992 A JP02491992 A JP 02491992A JP 2491992 A JP2491992 A JP 2491992A JP 3186819 B2 JP3186819 B2 JP 3186819B2
Authority
JP
Japan
Prior art keywords
signal
light
intermittently
optical
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02491992A
Other languages
Japanese (ja)
Other versions
JPH05227092A (en
Inventor
誠一郎 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP02491992A priority Critical patent/JP3186819B2/en
Publication of JPH05227092A publication Critical patent/JPH05227092A/en
Application granted granted Critical
Publication of JP3186819B2 publication Critical patent/JP3186819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光リモコン装置、光フ
ァイバーケーブル伝送装置或いは光空間伝送装置等に用
いられる光通信装置および光通信方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication device and an optical communication method used for an optical remote control device, an optical fiber cable transmission device or an optical space transmission device.

【0002】[0002]

【従来の技術】例えば、光リモコン装置では、パルス位
置変調方式によって光を変調してデータ伝送を行なって
おり、その構成は一般に図4に示すようになっている。
即ち、光信号送信部(1)において、アンドゲート回路
(A1)の一方の入力端(A)には図5(a)に示すよ
うな所定周波数の発振信号が入力され、且つ他方の入力
端(B)には図5(b)に示すようなパルス幅がtであ
ってその時間間隔がtと3tとを組み合わせてデータを
2値化したパルス列信号が入力され、この発振信号とパ
ルス列信号の論理積信号によりスイッチングトランジス
タ(Q1)がオン・オフされて電源部(Vcc)からの
通電により赤外発光ダイオード等からなる発光素子(L
D)が点滅駆動され、発光素子(LD)からは図5
(c)に示すような光信号が送信される。
2. Description of the Related Art For example, in an optical remote controller, data is transmitted by modulating light by a pulse position modulation method, and the configuration thereof is generally as shown in FIG.
That is, in the optical signal transmitting section (1), an oscillation signal of a predetermined frequency as shown in FIG. 5A is input to one input terminal (A) of the AND gate circuit (A1), and the other input terminal is used. 5B, a pulse train signal whose pulse width is t as shown in FIG. 5B and whose time interval is a combination of t and 3t to binarize data is input, and this oscillation signal and pulse train signal are inputted. The switching transistor (Q1) is turned on / off by the logical product signal of the light-emitting element (L1) and the light-emitting element (L
D) is driven to blink, and the light-emitting element (LD)
An optical signal as shown in (c) is transmitted.

【0003】前記発振信号は、光信号を拡大して示した
図5(d)のように1/fの一定周期を有し、パルス列
信号は、図5(b)に示すようにデータ“0”をパルス
幅がtのパルスとtの時間間隔との組み合わせとし、且
つデータ“1”をパルス幅がtのパルスと3tの時間間
隔との組み合わせとして情報を2値化した信号である。
従って、発光素子(LD)は、この発振信号とパルス列
信号との論理積信号に基づき1/fの周期で且つiの一
定の光の強度にtの一定時間の間断続的に発光されると
ともに、この断続的発光がtまたは3tの何れかの時間
間隔で継続的に繰り返され、図5(c)に示すような光
信号が出力される。
The oscillating signal has a fixed period of 1 / f as shown in FIG. 5 (d) showing an enlarged optical signal, and the pulse train signal has a data "0" as shown in FIG. 5 (b). Is a combination of a pulse having a pulse width of t and a time interval of t, and data "1" is a signal obtained by binarizing information using a combination of a pulse having a pulse width of t and a time interval of 3t.
Therefore, the light emitting element (LD) emits light intermittently at a period of 1 / f and a constant light intensity of i for a fixed time of t based on a logical product signal of the oscillation signal and the pulse train signal. This intermittent light emission is continuously repeated at a time interval of either t or 3t, and an optical signal as shown in FIG. 5C is output.

【0004】一方、図1に示す光信号受信部(2)で
は、光信号送信部(1)からの光信号をフォトダイオー
ド等からなる受光素子(FD)が受信して図6(a)に
示すような電気信号に変換し、この電気信号を増幅器
(3)で増幅した後にコンデンサ(4)を通じて該電気
信号から直流成分を除去し、更にバンドパスフィルタ
(5)により光信号送信部(1)における周波数fの成
分のみを通過させ、外乱光等によるノイズ成分を除去す
る。続いて、バンドパスフィルタ(5)から出力される
図6(b)に示すような波形の電気信号が2系統に分岐
され、一方はそのままコンパレータ(7)の非反転入力
端子(+)に入力されるとともに、他方は抵抗(R)と
コンデンサ(C)からなる積分回路(6)に供給され、
この積分回路(6)の時定数が時間tよりも大きく設定
されていることにより積分された信号は図6(c)に示
すように受光電気信号の平均値の波形となり、この積分
信号がコンパレータ(7)の反転入力端子(−)に入力
される。このコンパレータ(7)において、非反転入力
端子(+)に入力された電気信号を反転入力端子(−)
に入力された平均値信号を基準信号として比較されるこ
とにより電気信号が検波され、更にコンデンサ(8)で
積分されて図6(d)に示すような周波数fの成分を除
去した波形の積分信号に変換される。この積分信号が、
図6(d)に破線で示すハイレベルがVTHでローレベル
がVTLのスレッシュホールドを有するヒステリシスコン
パレータ(9)で波形整形された後に、トランジスタ
(Q2)とプルアップ抵抗(10)とにより信号反転さ
れて出力端子(O)からは図6(e)に示すような波形
の信号が出力される。
On the other hand, in the optical signal receiving section (2) shown in FIG. 1, a light receiving element (FD) including a photodiode or the like receives an optical signal from the optical signal transmitting section (1), and FIG. After converting the electric signal into an electric signal as shown in the figure, amplifying the electric signal with an amplifier (3), removing a DC component from the electric signal through a capacitor (4), and further using a bandpass filter (5), an optical signal transmitting unit (1) 2) passes only the component of the frequency f, and removes noise components due to disturbance light or the like. Subsequently, an electric signal having a waveform as shown in FIG. 6B output from the band-pass filter (5) is branched into two systems, one of which is directly input to the non-inverting input terminal (+) of the comparator (7). And the other is supplied to an integrating circuit (6) comprising a resistor (R) and a capacitor (C),
Since the time constant of the integrating circuit (6) is set to be longer than the time t, the integrated signal has a waveform of the average value of the received light signal as shown in FIG. It is input to the inverting input terminal (-) of (7). In the comparator (7), the electric signal input to the non-inverting input terminal (+) is converted to the inverting input terminal (-).
The electric signal is detected by comparing the average value signal input to the reference signal as a reference signal, and further integrated by a capacitor (8) to remove the component of the frequency f as shown in FIG. Converted to a signal. This integrated signal is
After the waveform is shaped by a hysteresis comparator (9) having a threshold of a high level of V TH and a low level of V TL indicated by a broken line in FIG. 6 (d), a transistor (Q2) and a pull-up resistor (10) are used. The signal is inverted, and a signal having a waveform as shown in FIG. 6E is output from the output terminal (O).

【0005】[0005]

【発明が解決しようとする課題】然し乍ら、前述の光通
信装置では、外乱光等によるノイズによって誤動作する
のを防止する目的で、積分回路(6)の時定数を時間t
よりも大きく設定してコンパレータ(7)の反転入力端
子(−)に入力する基準信号としての電圧が除々に上昇
するよう設定しているので、光信号においてデータ
“1”が連続する場合には積分回路(6)からの積分信
号の電位が図6(c)にEで示すように低下していき、
逆に、データ“0”が連続する場合には積分回路(6)
からの積分信号の電位が図6(c)にDで示すように上
昇していく。従って、コンパレータ(7)の動作点がデ
ータ“1”,“0”の配列に伴って変動することにな
り、その影響を受けてコンデンサ(8)の出力波形は、
コンパレータ(7)の反転入力端子(−)の入力電位が
低い時には早く立ち上がり、且つヒステリシスコンパレ
ータ(9)の出力波形も早く立ち上がるが、コンパレー
タ(7)の反転入力端子(−)の入力電位が高い時には
立ち上がりが遅くなって図6(d)にFで示すようにハ
イレベルVTHに達しないような不都合が発生し、図6
(e)にGで示すようなパルス幅の大きな波形の信号が
出力されてしまう。このようにデータ“1”,“0”の
配列により光信号受信部(2)の出力波形のパルス幅が
変化し易いため、送信データの判別が不能となる事態が
発生する。
However, in the above-described optical communication device, the time constant of the integrating circuit (6) is set to the time t in order to prevent malfunction due to noise due to disturbance light or the like.
Is set so that the voltage as the reference signal input to the inverting input terminal (-) of the comparator (7) gradually increases. Therefore, when data "1" continues in the optical signal, The potential of the integration signal from the integration circuit (6) decreases as shown by E in FIG.
Conversely, if data "0" continues, the integration circuit (6)
The potential of the integration signal from rises as shown by D in FIG. Therefore, the operating point of the comparator (7) fluctuates according to the arrangement of the data "1" and "0", and the output waveform of the capacitor (8) becomes
When the input potential of the inverting input terminal (-) of the comparator (7) is low, it rises quickly and the output waveform of the hysteresis comparator (9) also rises quickly, but the input potential of the inverting input terminal (-) of the comparator (7) is high. In some cases, the rise is delayed and a problem such as not reaching the high level VTH occurs as shown by F in FIG.
In (e), a signal having a large pulse width as indicated by G is output. As described above, the pulse width of the output waveform of the optical signal receiving unit (2) is apt to change due to the arrangement of the data “1” and “0”, so that it becomes impossible to determine the transmission data.

【0006】そこで本発明は、データ“1”,“0”の
配列に拘わらず光信号受信部の検波用コンパレータの基
準信号の電位を常に一定に保持して2値の原信号に正確
に復元できるような光通信装置および光通信方法を提供
することを技術的課題とするものである。
Therefore, according to the present invention, the potential of the reference signal of the detection comparator of the optical signal receiving section is always kept constant irrespective of the arrangement of the data "1" and "0" to accurately restore the binary original signal. An object of the present invention is to provide an optical communication device and an optical communication method that can be used.

【0007】[0007]

【課題を解決するための手段】本発明は、上記した課題
を達成するための技術的手段として、光通信装置を次の
ように構成した。即ち、光素子を一定周期で且つ所定
の光の強度に一定時間の間断続的に発光させるととも
に、該発光素子を断続的に発光させるまでの時間間隔を
2種類設け、この2種類の時間間隔を組み合わせること
によりデータをパルス位置変調による2値信号の光信号
として送信する光信号送信部と、受信した光信号を電気
信号に変換する手段、この電気信号を該電気信号を積分
した基準信号と比較して検波する手段、この検波信号を
積分した信号を波形整形して2値の原信号に復元する
段を有する光信号受信部とからなる光通信装置におい
て、前記光信号送信部、前記発光素子を一定周期で一
定時間の間断続的に発光させる光の強度を次に該発光
素子を断続的に発光させるまでの時間間隔に比例した値
に設定して送信する構成としたことを特徴としている。
また、本発明は、上記した課題を達成するための技術的
手段として、次のような光通信方法とした。即ち、光信
号送信部において、発光素子を一定周期で且つ所定の光
の強度に一定時間の間断続的に発光させるとともに、該
発光素子を断続的に発光させるまでの時間間隔を2種類
設け、この2種類の時間間隔を組み合わせることにより
データをパルス位置変調による2値信号の光信号として
送信し、光信号受信部において、光信号を電気信号に変
換し、この電気信号を該電気信号を積分した基準信号と
コンパレータで比較して検波し、この検波信号を積分し
た信号を波形整形して2値の原信号に復元する光通信方
法において、前記発光素子を一定周期で一定時間の間断
続的に発光させる光の強度を、次に該発光素子を断続的
に発光させるまでの時間間隔に比例した値に設定するこ
とを特徴としている。
According to the present invention, an optical communication apparatus is constituted as follows as technical means for achieving the above-mentioned object. That is, Rutotomo the light emission element to and a predetermined intensity intermittently for a predetermined time for light emission of the light at a constant period
To, the time interval until the intermittently emitting the light emitting element 2 kinds provided, an optical signal transmission unit to be transmitted as an optical signal of the binary signal data by the pulse position modulation by Rukoto combination of the two types of time intervals , means for converting an optical signal received into an electric signal, means for detecting the electric signal the electrical signal obtained by integrating the reference signal and compared to the signal waveform shaping to binary obtained by integrating the detection signal hand be restored to the original signal of
In the optical communication system consisting of an optical signal receiving unit having steps, the optical signal transmitting unit intermittently intensity of the emitted to light for a predetermined time said light emitting element at a constant cycle, then intermittently light emitting element It is characterized in that transmission is performed by setting the value to a value proportional to the time interval until a specific light emission.
Further, the present invention provides a technical solution for achieving the above object.
As a means, the following optical communication method was adopted. That is, Koshin
In the signal transmission section, the light emitting element is
To emit light intermittently for a certain time at the intensity of
Two types of time intervals until the light emitting element emits light intermittently
By combining these two time intervals
Data as optical signal of binary signal by pulse position modulation
Transmit and convert the optical signal to an electrical signal in the optical signal receiving unit.
The electric signal is replaced with a reference signal obtained by integrating the electric signal.
Comparing and detecting with a comparator, integrating this detected signal
Optical communication method for waveform shaping of restored signal to restore to binary original signal
In the method, the light emitting element is interrupted for a certain period of time at a certain cycle.
The intensity of the light to be emitted continuously, and then the light emitting element
To a value proportional to the time interval
It is characterized by.

【0008】[0008]

【作用】光信号送信部からは、例えば、データ“0”を
光の強度がiで且つ光の強度が零の継続時間がtと設定
した場合に、データ“1”を光の強度が3iで且つ光の
強度が零の継続時間が3tと設定された光信号が送信さ
れるので、光信号受信部において、光信号を光電変換し
た電気信号を積分した信号は、光の強度が零の継続時間
がtと短いデータ“0”の場合にはそれに応じて光の強
度もiと小さいために一定値以上に上昇せず、一方、光
の強度が零の継続時間が3tと長いデータ“1”の場合
にはそれに応じて光の強度も3iと大きいために一定値
以下に下降しない。即ち、電気信号の積分信号つまり検
波用コンパレータの基準信号がほぼ一定に保持されるの
で、該コンパレータの動作点がほぼ一定となって出力波
形のパルス幅が送信データに対応したものとなり、送信
された2値の原信号に正確に復元できる。
From the optical signal transmitting unit, for example, when data "0" is set to a duration of t where the light intensity is i and the light intensity is zero, the data "1" is converted to the light intensity of 3i. In addition, since an optical signal whose duration is set to 3t at which the light intensity is zero is transmitted, the signal obtained by integrating the electric signal obtained by photoelectrically converting the optical signal in the optical signal receiving unit becomes a signal having the light intensity of zero. In the case of data “0” having a short duration t, the light intensity is also small as i, so that the data does not increase to a certain value or more. In the case of 1 ", the light intensity does not drop below a certain value because the light intensity is correspondingly large at 3i. That is, since the integration signal of the electric signal, that is, the reference signal of the detection comparator is held substantially constant, the operating point of the comparator becomes substantially constant, and the pulse width of the output waveform corresponds to the transmission data. The original binary signal can be accurately restored.

【0009】[0009]

【実施例】以下、本発明の好適な一実施例について図面
を参照しながら詳細に説明する。図1は本発明の一実施
例のブロック構成を示し、同図において図4と同一若し
くは同等のものには同一の符号を付してあり、相違する
点は、光信号送信部(11)を、既存のスイッチングト
ランジスタ(Q1)に他のスイッチングトランジスタ
(Q3)を並列接続し、このスイッチングトランジスタ
(Q3)をスイッチング制御するアンドゲート回路(
)を設け、このアンドゲート回路(A2)の一方の入
力端に既存のアンドゲート回路(A1)の出力信号を入
力するとともに、他方の入力端に、図2(d)に示すよ
うにデータ“0”,“1”に対応してデータ“0”の時
に「0」のローレベルで且つデータ“1”の時に「1」
のハイレベルの信号を入力するようにした構成を付設し
たことのみである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a block configuration of an embodiment of the present invention. In FIG. 1, the same or equivalent components as those in FIG. 4 are denoted by the same reference numerals. An AND gate circuit ( A ) that connects another switching transistor (Q3) in parallel to the existing switching transistor (Q1) and controls the switching of the switching transistor (Q3).
2) providing inputs the output signal of the existing AND gate (A1) to one input terminal of the AND gate (A2), the other input terminal, the data as shown in FIG. 2 (d) Corresponding to "0" and "1", when data is "0", it is "0" low level and when data is "1", it is "1".
The only difference is that a configuration for inputting a high-level signal is added.

【0010】次に前記実施例の作用を光信号送信部(1
1)のタイミングチャートを示した図2および光信号受
信部(2)のタイミングチャートを示した図3を参照し
ながら詳述する。図2(a),(b)はそれぞれアンド
ゲート回路(A1)の両入力端(A),(B)の入力信
号の波形で、同図(c)は同アンドゲート回路(A1)
の出力信号の波形をそれぞれ示し、同図(d)は前述の
ようにアンドゲート回路(A2)の他方の入力端(C)
への入力信号の波形を示す。従って、スイッチングトラ
ンジスタ(Q1)が図2(c)に示すアンドゲート回路
(A1)の出力信号によりスイッチング制御されるとと
もに、スイッチングトランジスタ(Q2)が、図2
(c)の信号と同図(d)の信号とをアンゲゲート回路
(A2)で論理積をとった信号によりスイッチング制御
される。そのため、発光素子(LD)からは、図2
(e)に示すように、データ“0”の時にはスイッチン
グトランジスタ(Q1)のスイッチング動作に対応して
光の強度が「0」と「i」とを一定周期1/fで繰り返
す光信号が時間tの間出力されるとともに、データ
“1”の時にはスイッチングトランジスタ(Q1)とス
イッチングトランジスタ(Q2)との各スイッチング動
作に対応して光の強度が「0」と「3i」とを一定周期
1/fで繰り返す光信号が時間tの間出力される。即
ち、光信号送信部(11)からは、発光素子(LD)を
一定周期(1/f)で一定時間(t)の間断続的に発光
させる光の強度を次に発光素子(LD)を断続的に発光
させるまでの時間間隔(t)または(3t)にそれぞれ
比例した値iまたは3iに設定した光信号が出力され
る。
Next, the operation of the above embodiment will be described with reference to the optical signal transmitting unit (1).
This will be described in detail with reference to FIG. 2 showing the timing chart of 1) and FIG. 3 showing the timing chart of the optical signal receiving section (2). 2A and 2B show waveforms of input signals at both input terminals (A) and (B) of the AND gate circuit (A1), respectively. FIG. 2C shows the waveform of the AND gate circuit (A1).
FIG. 3D shows the waveform of the output signal of the AND gate circuit (A2) as described above.
2 shows a waveform of an input signal to the LM. Therefore, the switching of the switching transistor (Q1) is controlled by the output signal of the AND gate circuit (A1) shown in FIG.
Switching control is performed by a signal obtained by logically ANDing the signal of (c) and the signal of (d) in the same figure by an age gate circuit (A2). Therefore, from the light emitting element (LD), FIG.
As shown in (e), when the data is “0”, an optical signal in which the light intensity repeats “0” and “i” at a constant cycle 1 / f in response to the switching operation of the switching transistor (Q1) is time-dependent. t, and when the data is “1”, the light intensity changes between “0” and “3i” at a constant period of 1 in accordance with each switching operation of the switching transistor (Q1) and the switching transistor (Q2). An optical signal that repeats at / f is output during time t. That is, from the optical signal transmission unit (11), the intensity of light for causing the light emitting element (LD) to emit light intermittently at a constant period (1 / f) for a constant time (t) is then changed to the light emitting element (LD). An optical signal set to a value i or 3i proportional to the time interval (t) or (3t) until intermittent light emission is output.

【0011】そして、光信号受信部(2)において、受
光素子(FD)が光信号を受信して図3(a)に示すよ
うな電気信号に変換し、この電気信号を増幅器(3)で
増幅した後にコンデンサ(4)で直流成分を除去し、更
にバンドパスフィルタ(5)を通過した信号は図3
(b)に示すような波形となり、この電気信号がコンパ
レータ(7)の非反転入力端子(+)に入力される。一
方、この電気信号を積分回路(6)で積分した信号は、
光の強度が零の継続時間がtと短いデータ“0”の場合
にはそれに応じて光の強度もiと小さいために一定値以
上に上昇せず、一方、光の強度が零の継続時間が3tと
長いデータ“1”の場合にはそれに応じて光の強度も3
iと大きいために一定値以下に下降しない。即ち、積分
回路(6)から出力される積分信号は、図3(c)に示
すように略一定値に保持され、この積分信号がコンパレ
ータ(7)の基準信号として反転入力端子(−)に入力
されるので該コンパレータ(7)の動作点がほぼ一定と
なり、コンパレータ(7)の出力信号をコンデンサ
(8)で積分した信号は図3(d)に示したような波形
となり、出力端子(O)からの出力信号は、同図(e)
に示すように、送信データに対応したパルス幅の波形と
なり、2値の原信号に正確に復元できる。
Then, in the optical signal receiving section (2), the light receiving element (FD) receives the optical signal and converts it into an electric signal as shown in FIG. 3 (a), and the electric signal is converted by the amplifier (3). After amplification, the DC component is removed by the capacitor (4), and the signal passed through the band-pass filter (5) is shown in FIG.
The waveform becomes as shown in (b), and this electric signal is input to the non-inverting input terminal (+) of the comparator (7). On the other hand, a signal obtained by integrating this electric signal by the integration circuit (6) is
When the light intensity is zero and the data is "0" having a short duration t, the light intensity is correspondingly small at i, so that the light intensity does not rise to a certain value or more, while the light intensity is zero. Is 3t, which is a long data “1”, the light intensity is also 3
It does not fall below a certain value because it is large as i. That is, the integration signal output from the integration circuit (6) is held at a substantially constant value as shown in FIG. 3 (c), and this integration signal is supplied to the inverting input terminal (-) as a reference signal of the comparator (7). Since the input is input, the operating point of the comparator (7) becomes substantially constant, and the signal obtained by integrating the output signal of the comparator (7) with the capacitor (8) has a waveform as shown in FIG. The output signal from O) is shown in FIG.
As shown in (2), the waveform has a pulse width corresponding to the transmission data, and the binary original signal can be accurately restored.

【0012】[0012]

【発明の効果】以上のように本発明の光通信装置および
光通信方法によると、光信号送信部を、発光素子を一定
周期で一定時間の間断続的に発光させる光の強度を次に
該発光素子を断続的に発光させるまでの時間間隔に比例
した値に設定するようにしたので、光信号受信部におい
て、受光電気信号の積分信号つまり検波用コンパレータ
の基準信号を受信データに拘わらずほぼ一定に保持でき
るので、該コンパレータの動作点がほぼ一定となって出
力波形のパルス幅が送信データに対応したものとなり、
2値の原信号に正確に復元することができる。
Optical communication devices and the present invention as described above, according to the present invention
According to the optical communication method , the optical signal transmitting unit sets the intensity of light that causes the light emitting element to emit light intermittently at a constant period for a certain time period, a value proportional to a time interval until the next light emitting element emits light intermittently. since so as to set, in the optical signal receiving unit, since the reference signal of the integration signal, i.e. detection comparator of the received electrical signals can be kept substantially constant irrespective of the received data, the operating point of the comparator is substantially constant The pulse width of the output waveform corresponds to the transmission data,
It can be accurately restored to a binary original signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のブロック構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】同上、光信号送信部の各部の信号のタイミング
チャートである。
FIG. 2 is a timing chart of signals of each unit of the optical signal transmission unit according to the first embodiment.

【図3】同上、光信号受信部の各部の信号のタイミング
チャートである。
FIG. 3 is a timing chart of signals of respective units of the optical signal receiving unit according to the first embodiment.

【図4】従来の光通信装置のブロック構成図である。FIG. 4 is a block diagram of a conventional optical communication device.

【図5】同上、光信号送信部の各部の信号のタイミング
チャートである。
FIG. 5 is a timing chart of signals of respective units of the optical signal transmission unit according to the first embodiment.

【図6】同上、光信号受信部の各部の信号のタイミング
チャートである。
FIG. 6 is a timing chart of signals of respective units of the optical signal receiving unit according to the first embodiment.

【符号の説明】[Explanation of symbols]

2 光信号受信部 6 積分回路 7 検波用コンパレータ LD 発光素子 11 光信号送信部 2 Optical signal receiving unit 6 Integrating circuit 7 Detection comparator LD Light emitting element 11 Optical signal transmitting unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H04B 10/26 10/28 (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 H03K 7/04 H04Q 9/14 H04L 27/00 - 27/30 H04L 25/00 - 25/66 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 identification code FI H04B 10/26 10/28 (58) Fields investigated (Int.Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 H03K 7/04 H04Q 9/14 H04L 27/00-27/30 H04L 25/00-25/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光素子を一定周期で且つ所定の光の強
度に一定時間の間断続的に発光させるとともに、該発光
素子を断続的に発光させるまでの時間間隔を2種類設
、この2種類の時間間隔を組み合わせることによりデ
ータをパルス位置変調による2値信号の光信号として送
する光信号送信部と、受信した光信号を電気信号に変
する手段、この電気信号を該電気信号を積分した基準
信号と比較して検波する手段、この検波信号を積分した
信号を波形整形して2値の原信号に復元する手段を有す
る光信号受信部とからなる光通信装置において、前記光
信号送信部、前記発光素子を一定周期で一定時間の間
断続的に発光させる光の強度を次に該発光素子を断続
的に発光させるまでの時間間隔に比例した値に設定して
送信することを特徴とする光通信装置。
1. A Luminous element causes a constant period at and given the intensity of the light intermittently emit light during the predetermined time Rutotomoni, provided two time intervals until the intermittently emitting the light emitting element, the means for converting the optical signal transmitting unit that transmits data by Rukoto combination of two time intervals as the optical signal of the binary signal by pulse position modulation, the optical signal received into an electrical signal, the electrical and the electrical signal means for detecting signals obtained by integrating the reference signal and compared to the, having a means for restoring the integrated signal to the detection signal to the original signal waveform shaping to binary
In the optical communication system consisting of an optical signal receiving unit that, the optical signal transmitting unit intermittently intensity of the emitted to light for a predetermined time said light emitting element at a constant cycle, then intermittently the light emitting element set to a value which is proportional to the time interval until the emission is
An optical communication device for transmitting .
【請求項2】 光信号送信部において、発光素子を一定
周期で且つ所定の光の強度に一定時間の間断続的に発光
させるとともに、該発光素子を断続的に発光させるまで
の時間間隔を2種類設け、この2種類の時間間隔を組み
合わせることによりデータをパルス位置変調による2値
信号の光信号として送信し、光信号受信部において、光
信号を電気信号に変換し、この電気信号を該電気信号を
積分した基準信号とコンパレータで比較して検波し、こ
の検波信号を積分した信号を波形整形して2値の原信号
に復元する光通信方法において、前記発光素子を一定周
期で一定時間の間断続的に発光させる光の強度を、次に
該発光素子を断続的に発光させるまでの時間間隔に比例
した値に設定することを特徴とする光通信方法。
2. A light emitting element is fixed in an optical signal transmitting section.
Light emission intermittently for a certain period of time and at a predetermined light intensity
Until the light-emitting element emits light intermittently.
Two types of time intervals are provided, and these two types of time intervals are combined.
By combining, the data is binary by pulse position modulation
The optical signal is transmitted as an optical signal.
Convert the signal to an electrical signal and convert the electrical signal to an electrical signal
The integrated reference signal is compared with a comparator and detected.
Waveform of the signal obtained by integrating the detection signal of
In the optical communication method for restoring to a predetermined
The intensity of the light emitted intermittently for a certain period of time
Proportional to the time interval until the light-emitting element emits light intermittently
An optical communication method characterized in that the value is set to a predetermined value.
JP02491992A 1992-02-12 1992-02-12 Optical communication device and optical communication method Expired - Fee Related JP3186819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02491992A JP3186819B2 (en) 1992-02-12 1992-02-12 Optical communication device and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02491992A JP3186819B2 (en) 1992-02-12 1992-02-12 Optical communication device and optical communication method

Publications (2)

Publication Number Publication Date
JPH05227092A JPH05227092A (en) 1993-09-03
JP3186819B2 true JP3186819B2 (en) 2001-07-11

Family

ID=12151560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02491992A Expired - Fee Related JP3186819B2 (en) 1992-02-12 1992-02-12 Optical communication device and optical communication method

Country Status (1)

Country Link
JP (1) JP3186819B2 (en)

Also Published As

Publication number Publication date
JPH05227092A (en) 1993-09-03

Similar Documents

Publication Publication Date Title
US4027152A (en) Apparatus and method for transmitting binary-coded information
US4369525A (en) Device for automatic regulation of the output power of a transmitter module in an optical-fiber transmission system
US5586145A (en) Transmission of electronic information by pulse position modulation utilizing low average power
EP0346438A1 (en) Optical wireless data communication system.
EP1289175B1 (en) Control circuit for controlling the extinction ratio of a semiconductor laser
KR100574753B1 (en) Wake-up circuit for an electronic apparatus
JP2530282B2 (en) Optical pulse source and optical transmission system by soliton including the source
JP3186819B2 (en) Optical communication device and optical communication method
US6535308B1 (en) Method and apparatus for converting electrical signals and optical signals for bidirectional communication over a single optical fiber
US5729371A (en) Optical communications device
US5969839A (en) Optical communications device
KR900008047B1 (en) Optical pulse receiving device
JPH1084316A (en) Optical reception method and its device
JPS5855701Y2 (en) Binary code information transmission device
KR910002767B1 (en) Circuit arrangement for the suppression of unwanted signals
JPS6261432A (en) Optical communication system
JPS60146537A (en) Infrared ray remote control receiving circuit
JP3349971B2 (en) Infrared receiver
JP3224485B2 (en) Signal processing circuit of photoelectric conversion element
JP2001007684A (en) Remote control receiver and disturbing wave eliminating method
JPH11234205A (en) Optical communication equipment
JPS6342621Y2 (en)
EP0600091A1 (en) Digital signal receiver
JPH0591057A (en) Optical communication equipment and method
JPH09102769A (en) Optical transmitter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees