JP3185822B2 - Composite rope - Google Patents

Composite rope

Info

Publication number
JP3185822B2
JP3185822B2 JP34928692A JP34928692A JP3185822B2 JP 3185822 B2 JP3185822 B2 JP 3185822B2 JP 34928692 A JP34928692 A JP 34928692A JP 34928692 A JP34928692 A JP 34928692A JP 3185822 B2 JP3185822 B2 JP 3185822B2
Authority
JP
Japan
Prior art keywords
rope
fiber
wire
strength
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34928692A
Other languages
Japanese (ja)
Other versions
JPH06322680A (en
Inventor
喜彦 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP34928692A priority Critical patent/JP3185822B2/en
Publication of JPH06322680A publication Critical patent/JPH06322680A/en
Application granted granted Critical
Publication of JP3185822B2 publication Critical patent/JP3185822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鉄道の架線や橋梁等の大
型建造物で利用可能な産業用ロープに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial rope which can be used in large structures such as railway overhead lines and bridges.

【0002】[0002]

【従来の技術】従来、橋梁のケーブルや電設用のロープ
に金属性ワイヤーロープが用いられてきた。しかしなが
ら、ワイヤーロープは自重が重い為に取扱いが困難であ
り、風力等によりケーブルが揺すられた際には振動エネ
ルギーが大きくそれに見合った支柱のスパン・構造の設
計が必要であった。係る欠点を解消するために軽量でし
なやかな合成繊維の利用も考えられるが、支線の取付部
分での側面からの圧縮に対する堅さや寸法安定性が十分
でないといった問題がありかかる用途への使用が制限さ
れていた。
2. Description of the Related Art Conventionally, metallic wire ropes have been used for cables for bridges and ropes for electrical installation. However, it is difficult to handle the wire rope due to its heavy weight, and when the cable is shaken by wind power or the like, the vibration energy is large, and it is necessary to design the span and structure of the strut corresponding to the vibration energy. The use of lightweight and flexible synthetic fibers may be considered in order to solve such disadvantages, but there is a problem that the rigidity and dimensional stability against compression from the side at the attachment part of the branch line are not sufficient, and use in such applications is limited. It had been.

【0003】そこで軽量で高強度の有機繊維を通常のワ
イヤーロープより内層に多く用いて、側面からの圧縮に
も強い金属繊維で外装をカバーした複合ロープも試みた
が、これまで入手可能であったアラミド繊維や高強力ポ
リアリレート繊維などの素材では、高強力金属繊維と比
較すると弾性率が十分でないために、得られた複合ロー
プの強力は十分高く出来るものの、同程度の太さの金属
ケーブルと比べると弾性率が低くなってしまい寸法安定
性が劣るといった欠点を有していた。すなわち、金属繊
維との複合ロープを構成しても常に金属繊維への応力集
中が生じていることになってしまう。特に、寸法安定性
を高めるには、有機繊維の寄与が小さいために、ロープ
の直径を太くする必要があった。そのような理由でこの
ような複合ロープが用いられることはなかった。
[0003] Accordingly, a composite rope in which the exterior is covered with metal fibers which are resistant to compression from the side by using more lightweight and high-strength organic fibers for the inner layer than ordinary wire ropes has been tried, but has been available until now. Materials such as aramid fibers and high-strength polyarylate fibers have insufficient elasticity compared to high-strength metal fibers, so the strength of the resulting composite rope can be sufficiently high, but metal cables of similar thickness However, the elastic modulus was low and the dimensional stability was inferior. That is, even if a composite rope with a metal fiber is formed, stress concentration always occurs on the metal fiber. In particular, in order to enhance the dimensional stability, the diameter of the rope had to be increased because the contribution of the organic fibers was small. Such composite ropes have not been used for such reasons.

【0004】[0004]

【発明が解決しようとする課題】本発明は、軽量で取扱
いに優れ、かつ極めて高強度・高弾性率な金属・有機複
合ロープを提供せんとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a metal / organic composite rope which is lightweight, excellent in handling, and has extremely high strength and high elastic modulus.

【0005】[0005]

【課題を解決するための手段】即ち、本発明は引張強度
が少なくとも4.0GPa以上、引張初期弾性率が少な
くとも140GPa以上のポリベンズビスオキサゾール
繊維を内部に配し、その外側を金属ワイヤーの層を設け
たロープである。
That is, according to the present invention, a polybenzbisoxazole fiber having a tensile strength of at least 4.0 GPa or more and an initial tensile modulus of at least 140 GPa is disposed inside, and the outside thereof is formed of a metal wire layer. It is a rope provided with.

【0006】本発明で用いる金属繊維としては、硬鋼
線、ステンレス繊維等が用いられる。またより高強度な
材料との組み合わせによりさらに高性能な複合ロープが
えられる。本発明は、使用する金属繊維の種類・形態に
よって制限されるものではない。
[0006] As the metal fibers used in the present invention, hard steel wires, stainless steel fibers and the like are used. Further, a composite rope with higher performance can be obtained by combination with a material having higher strength. The present invention is not limited by the type and form of the metal fiber used.

【0007】複合ロープの形態の例としてはポリベンザ
ゾール繊維の4つ打ちもしくは8つ打ちの芯の回りに、
6つ打ちもしくは8つ打ちの金属ワイヤーロープをシー
ル型にコンビネーションさせる方法、外側のワイヤーの
芯にもポリベンゾビスオキサゾール繊維のロープを用い
る方法する方法等があげられるが、軽量化できる用途に
合わせた形態とすることが好ましい。
As an example of the form of the composite rope, around a four-punch or eight-punch core of polybenzazole fiber,
There is a method of combining a 6-strand or 8-strand metal wire rope into a seal type, a method of using a polybenzobisoxazole fiber rope for the outer wire core, etc. It is preferable to use the form.

【0008】本発明のポリベンザゾール繊維はポリベン
ズオキサゾールもしくはポリベンズチアゾール、または
それらのランダムもしくはブロック共重合体からなる繊
維をいう。引張強度は4.0GPa以上、好ましくは
4.1GPa以上で、引張初期弾性率は140GPa以
上、好ましくは150GPa以上である。
[0008] The polybenzazole fiber of the present invention refers to a fiber made of polybenzoxazole or polybenzthiazole, or a random or block copolymer thereof. The tensile strength is 4.0 GPa or more, preferably 4.1 GPa or more, and the initial tensile modulus is 140 GPa or more, preferably 150 GPa or more.

【0009】また、中心となるポリベンザゾール繊維と
外層の金属繊維との間に中間層に第3成分を設けても良
い、たとえば、通常のグリースや金属の酸性雨からの腐
蝕を防ぐための油や表面保護剤をがん浸させるための紡
績糸等の利用も可能である。或は、芯となるポリベンザ
ゾール繊維束の回りに樹脂を含浸被覆させたり、樹脂テ
ープをスパイラルに巻き付ける等して外層の金属繊維ワ
イヤーロープとのあたりを改善する目的で使用すること
も可能である。
A third component may be provided in the intermediate layer between the central polybenzazole fiber and the outer metal fiber, for example, for preventing corrosion of ordinary grease or metal from acid rain. It is also possible to use a spun yarn or the like for soaking oil or a surface protective agent in cancer. Alternatively, it can be used for impregnating and coating a resin around the core polybenzazole fiber bundle, or by winding a resin tape in a spiral to improve the contact with the outer metal fiber wire rope. is there.

【0010】本発明の複合ロープは金属ワイヤーロープ
に比べて大幅な計量化が出来る。即ち、ポリベンゾビス
オキサゾール繊維の密度は1.6g/cm3 未満であるの
に対して金属繊維の場合、アモルファスで7.7g/cm
3 、ピアノ線で7.8g/cm 3 、ピアノ線で7.8g/
cm3 、ステンレス細線で7.98g/cm3 であり、線径
の効果を差し引いてもポリベンズビスオキサゾール繊維
の使用容積に対しては重量が3分の1以下になる。特
に、ボリベンゾビスオキサゾール繊維の芯ロープと外層
に打ち込むロープの重量比を適切に調節することで、用
途に合わせた所望の線密度・外径のロープを設計するこ
とが出来る。使用するワイヤーの素線径および材質、メ
ッキ量は上記の重量設計、用途に合わせて自由に構成す
ることができるが、軽量化の観点からワイヤーロープの
占有面積で40%以上をポリベンザゾール繊維とするこ
とが好ましい更に好ましくは50%以上をポリベンザゾ
ール繊維とすることが好ましい。
The composite rope of the present invention is a metal wire rope
Greater quantification is possible compared to. That is, polybenzobis
The density of the oxazole fiber is 1.6 g / cmThreeIs less than
7.7 g / cm amorphous in the case of metal fiber
Three7.8 g / cm for piano wire Three, 7.8g / with piano wire
cmThree7.98 g / cm with fine stainless wireThreeAnd the wire diameter
Polybenzbisoxazole fiber even after subtracting the effect of
Weight is less than one-third of the volume used. Special
In addition, the core rope and outer layer of polybenzobisoxazole fiber
By properly adjusting the weight ratio of the rope to be driven into
Design a rope with the desired linear density and outer diameter according to the application.
Can be. The wire diameter, material and method of the wire used
The amount of the jack can be freely configured according to the above weight design and application.
However, from the viewpoint of weight reduction, wire rope
40% or more of the occupied area must be polybenzazole fiber
And more preferably 50% or more of polybenzazo.
Fiber.

【0011】本発明の優れた特徴として、ポリベンズビ
スオキサゾール繊維の耐熱性が60℃と高く、外層部を
構成するワイヤー部分の、溶接、ろう接等の際の損傷が
極めて少ない。また、内層のポリベンザゾール繊維の撚
り継ぎも十分な接合強度を持たせることが出来る。本発
明のロープは、極めて作業性に優れている。
As an excellent feature of the present invention, the heat resistance of the polybenzbisoxazole fiber is as high as 60 ° C., and the wire portion constituting the outer layer is hardly damaged by welding, brazing or the like. In addition, the splicing of the polybenzazole fiber in the inner layer can also have a sufficient bonding strength. The rope of the present invention is extremely excellent in workability.

【0012】さらに、本発明の複合ロープは金属ワイヤ
ーロープに比べて衝撃吸収能が高いという優れた特性を
有する。これは、有機繊維は繊維構造そのものが数十オ
ングストロームのミクロフィブリルが束になった構造を
有する比較的粗な構造であるのに対し、高強力金属繊維
は、超微細組織とはいえ金属組織であるために熱や応力
の伝播に無駄が少ない為と考えられる。かかる特徴は構
造物へ、地震や飛来物による衝撃が加わった際の安全性
を一層高める。
Furthermore, the composite rope of the present invention has an excellent property of having a higher shock absorbing ability than a metal wire rope. This is because organic fibers have a relatively coarse structure in which the fiber structure itself is a bundle of microfibrils of several tens of angstroms, whereas high-strength metal fibers have a metal structure even though they have an ultrafine structure. This is considered to be because there is little waste in heat and stress propagation. Such a feature further enhances the safety of the structure in the event of an impact from an earthquake or a flying object.

【0013】[0013]

【実施例】以下、実施例により本発明のロープの製造方
法を具体的に説明する。原糸の強伸度特性は、JIS−
L−1013(1984)の方法にしたがった。ロープ
の強伸度特性は、JIS−G−3525(1988)方
法によった。
EXAMPLES The method for producing a rope according to the present invention will now be described in detail with reference to examples. According to JIS-
L-1013 (1984). The strength and elongation characteristics of the rope were measured according to JIS-G-3525 (1988).

【0014】実施例1および比較例1 1500デニール強度4.1GPa弾性率205GPa
のポリベンズビスオキサゾール繊維で直径8mmの4つ
打ちロープを作り、19本線の4mmのB種メッキ、ワ
イヤーストランド8本と合わせて、14mmのシール型
ロープを作製した。比較例として1500デニール強度
2.7GPa弾性率131GPaのポリパラフェニレン
テレフタルアミド繊維(デュポン・東レ・ケブラー社
製:Kevlar49)で直径8mmの4つ打ちロープ
を作り、実施例1と同様に14mmのシール型ロープを
作製した。表1に、両者の破断強力、中間伸度、ロープ
線密度を一般のワイヤーロープ(ビニロン芯)と合わせ
て示す。本発明のロープは極めて寸法安定性が高く、強
力も著しく高いことが解る。実施例1のロープは14m
mでありながら、18mmワイヤーと同等の強力を有す
る。
Example 1 and Comparative Example 1 1500 denier strength 4.1 GPa Elastic modulus 205 GPa
A 4 mm rope having a diameter of 8 mm was made from the polybenzbisoxazole fiber, and a 14 mm seal type rope was produced by combining with 19 lines of 4 mm type B plating and 8 wire strands. As a comparative example, a four-stroke rope having a diameter of 8 mm was made of a polyparaphenylene terephthalamide fiber (manufactured by Dupont Toray Kevlar: Kevlar 49) having a 1500 denier strength of 2.7 GPa and an elastic modulus of 131 GPa. A shaped rope was made. Table 1 shows the breaking strength, the intermediate elongation, and the rope linear density of both, together with those of a general wire rope (vinylon core). It can be seen that the rope of the present invention has extremely high dimensional stability and extremely high strength. The rope of Example 1 is 14m
It has the same strength as an 18 mm wire despite its m.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 1500デニール強度4.1GPa弾性率155GPa
のポリベンズビスオキサゾール繊維で直径22mmの8
つ打ち編索ロープを作り、その周りに厚み150μmの
ポリエチレンテレフタレートフイルムを巻き付けた芯ロ
ープに、7本のメッキ硬鋼線素線からなる3mmのワイ
ヤーを26本をSよりで加えて、図3のような形態の2
8mmロープを作製した。芯ロープの破断強力は、64
トンで、複合ロープの線密度は1.97kg/mであっ
た。通常の28mmワイヤーロープに対して、およそ3
0%の軽量化ができた。また、ポリエステルテープのカ
バーにより、製鋼時の芯ロープの傷みは皆無で、降雨時
の水分の浸透が少なく軽量素材の特徴が維持できる。
Example 2 1500 denier strength 4.1 GPa Elastic modulus 155 GPa
Of polybenzbisoxazole fiber with a diameter of 22 mm
A 3 mm wire consisting of seven plated hard steel wires was added to the core rope around which a striated knitted rope was made, and a 150 μm thick polyethylene terephthalate film was wound therearound. Form 2 like
An 8 mm rope was made. The breaking strength of the core rope is 64
In tons, the linear density of the composite rope was 1.97 kg / m. For a normal 28mm wire rope, about 3
The weight was reduced by 0%. Further, the cover of the polyester tape has no damage to the core rope at the time of steel making, and has little moisture permeation at the time of rainfall, so that the characteristics of the lightweight material can be maintained.

【0017】[0017]

【発明の効果】本発明によると大幅に軽量化された寸法
安定性に優れた高性能複合素材ロープを提供することが
できる。しかもポリベンザゾール繊維の耐熱性は600
℃と高く、外層を構成するワイヤー部分の溶接、ろう接
等の際の損傷が極めて少なく、内層のポリベンザゾール
繊維の撚継も十分な接合強度を有するため、極めて作業
性にも優れる。
According to the present invention, it is possible to provide a high-performance composite material rope which is greatly reduced in weight and has excellent dimensional stability. Moreover, the heat resistance of polybenzazole fiber is 600
° C, the damage of the wire constituting the outer layer during welding, brazing, etc. is extremely small, and the polybenzazole fiber of the inner layer has sufficient joining strength to be spliced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例を示す複合ロープ断面図。FIG. 1 is a cross-sectional view of a composite rope showing an example of the present invention.

【図2】本発明の一例を示す複合ロープ断面図。FIG. 2 is a cross-sectional view of a composite rope showing an example of the present invention.

【図3】本発明の実施例3に示す複合ロープ断面図。FIG. 3 is a sectional view of a composite rope according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:金属繊維 2:ポリベンザゾール繊維 3:ポリエステルフィルム 1: metal fiber 2: polybenzazole fiber 3: polyester film

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D07B 1/00 - 9/00 D01F 6/74 D02G 1/00 - 3/48 D02J 1/00 - 13/00 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) D07B 1/00-9/00 D01F 6/74 D02G 1/00-3/48 D02J 1/00-13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】引張強度が少なくとも4.0GPa以上、
引張初期弾性率が少なくとも140GPa以上のポリベ
ンズビスオキサゾール繊維を内部に配し、その外側を金
属ワイヤーの層を設けたロープ。
(1) a tensile strength of at least 4.0 GPa or more;
A rope comprising a polybenzbisoxazole fiber having an initial tensile modulus of at least 140 GPa or more and a metal wire layer provided on the outside thereof.
JP34928692A 1992-12-28 1992-12-28 Composite rope Expired - Fee Related JP3185822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34928692A JP3185822B2 (en) 1992-12-28 1992-12-28 Composite rope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34928692A JP3185822B2 (en) 1992-12-28 1992-12-28 Composite rope

Publications (2)

Publication Number Publication Date
JPH06322680A JPH06322680A (en) 1994-11-22
JP3185822B2 true JP3185822B2 (en) 2001-07-11

Family

ID=18402737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34928692A Expired - Fee Related JP3185822B2 (en) 1992-12-28 1992-12-28 Composite rope

Country Status (1)

Country Link
JP (1) JP3185822B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012006854T5 (en) 2012-08-29 2015-06-03 Mitsubishi Electric Corporation Elevator rope and same elevator device using
JP6042987B2 (en) * 2013-07-09 2016-12-14 三菱電機株式会社 Elevator rope and elevator apparatus using the same

Also Published As

Publication number Publication date
JPH06322680A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
US9045856B2 (en) Hybrid rope and method for manufacturing the same
CA2413187C (en) Stranded cable and method of making
JPS6184233A (en) Steel cord
JPH02503730A (en) electric conveyance cable
CA1248774A (en) Flexible tension members
JP3820031B2 (en) Fiber reinforced plastic strands and strands and methods for their production
JP3185822B2 (en) Composite rope
NZ201636A (en) Optical cable:fibres and plastics strength members helically laid in common layer
CN210506962U (en) Armored closed rope steel cable
DE3820730A1 (en) CABLEWIRE WITH AN OPTICAL NEWS LINE
JPH07250418A (en) Anchor end part for stranded wire
JPH02200881A (en) Steel cord for reinforcing elastic material
JPH04154004A (en) Overhead bare electric wire
CN216237854U (en) Bow and arrow string protecting rope
JP2862543B2 (en) Composite twist type tensile strength element
CN216957520U (en) Fireproof compression-resistant cable
JP3146450B2 (en) Lightning resistant optical fiber composite overhead ground wire
CN113186743B (en) Heavy-load steel wire rope based on optical fiber communication
CN214474125U (en) Light flexible steel pipe armored optical cable
EP0884816A1 (en) Aerial cable and tension clamp assembly
JP2784736B2 (en) Drum winding method for prefabricated electric wire series
JPH05120926A (en) Small-diameter cable with excellent mechanical strength
JPS62153808A (en) Nonmetallic high-tensile strength wire
JPS59171407A (en) Method of accelerating snowfall resistance of aerial ground wire
JP2529882Y2 (en) Power cable

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees