JP3185263B2 - Solid electrolyte material - Google Patents

Solid electrolyte material

Info

Publication number
JP3185263B2
JP3185263B2 JP20628991A JP20628991A JP3185263B2 JP 3185263 B2 JP3185263 B2 JP 3185263B2 JP 20628991 A JP20628991 A JP 20628991A JP 20628991 A JP20628991 A JP 20628991A JP 3185263 B2 JP3185263 B2 JP 3185263B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen
stabilized zirconia
thermal expansion
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20628991A
Other languages
Japanese (ja)
Other versions
JPH0524838A (en
Inventor
林 章 三 小
木 洋 鷹
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20628991A priority Critical patent/JP3185263B2/en
Publication of JPH0524838A publication Critical patent/JPH0524838A/en
Application granted granted Critical
Publication of JP3185263B2 publication Critical patent/JP3185263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は固体電解質物質に関
し、特に優れた酸素イオンの導伝性を有し、たとえば、
その両端に異なる酸素分圧を有する物質を接触状態に保
持したときに酸素イオンの移動により電位差が生じるこ
とを利用して酸素センサ,燃料電池などに、あるいは、
それに電流を流すことにより酸素イオンが移動すること
を利用して酸素ポンプなどに用いられる、固体電解質物
質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte material, and more particularly to a solid electrolyte material having excellent oxygen ion conductivity.
Oxygen sensors, fuel cells, etc., utilizing the potential difference caused by the movement of oxygen ions when substances having different oxygen partial pressures are held in contact at both ends, or
The present invention relates to a solid electrolyte substance used for an oxygen pump or the like by utilizing the movement of oxygen ions by passing a current through the solid electrolyte substance.

【0002】[0002]

【従来の技術】従来、固体電解質物質として広く使用さ
れているものとしては安定化ジルコニアがある。純粋な
酸化ジルコニウム(ZrO2 )は、低温から高温になる
に従って、単斜晶,正方晶および立方晶の構造をとる。
安定化ジルコニアでは、CaO,MgO,Y2 3 など
の低原子価金属酸化物を安定化剤として、所定量置換し
固溶すると、その最高温度相である蛍石型立方晶が低温
度域まで安定相となる。また、それに従って、酸素イオ
ン(O2-)の位置に多数の欠陥(空孔)が生じて導伝率
(酸素イオン導伝率)が向上する。この酸素イオン導伝
率は、一般的に1.0×10-1(S・m-1)以上必要と
されている。他にも酸素イオン導伝性を持つ固体電解質
物質は存在するが、安定性,信頼性,高導伝率の点から
安定化ジルコニアが酸素センサ,燃料電池,酸素ポンプ
などに使われていた。
2. Description of the Related Art Conventionally, stabilized zirconia has been widely used as a solid electrolyte material. Pure zirconium oxide (ZrO 2 ) has a monoclinic, tetragonal, and cubic structure from low to high temperatures.
In stabilized zirconia, when a low-valent metal oxide such as CaO, MgO, and Y 2 O 3 is used as a stabilizer and replaced by a predetermined amount to form a solid solution, a fluorite-type cubic crystal, which is the highest temperature phase, is formed in a low temperature range. Until it becomes a stable phase. Accordingly, a large number of defects (vacancies) are generated at the positions of the oxygen ions (O 2− ), and the conductivity (oxygen ion conductivity) is improved. The oxygen ion conductivity is generally required to be 1.0 × 10 −1 (S · m −1 ) or more. There are other solid electrolyte materials having oxygen ion conductivity, but stabilized zirconia has been used for oxygen sensors, fuel cells, oxygen pumps, and the like in terms of stability, reliability, and high conductivity.

【0003】[0003]

【発明が解決しようとする課題】安定化ジルコニアは熱
衝撃に対して強度が弱い。このため、それを酸素セン
サ,燃料電池,酸素ポンプなどに利用する場合、他の材
料と複合させて有効利用する場合が多い。しかし、異種
の材料との接合面間において熱膨脹係数が異なる場合、
安定化ジルコニアは高温(600℃以上)で作動させる
ため、接合面においてクラックが生じやすい。そこで、
これを構造的に解決するために様々な構造が考え出され
ている。その例を挙げると、直挿式の酸素センサがあ
る。すなわち、図2に示す従来の直挿式の酸素センサ1
では、測定ガス中に、安定化ジルコニアからなり一端が
封止された管2を挿入するため、管2を長く形成する必
要がある。しかし、安定化ジルコニアは熱衝撃に対して
弱く耐熱サイクル性が短いので、管2の破損率が非常に
高い。そこで、図3に示すような直挿式の酸素センサが
考え出された。この酸素センサ3は、たとえばアルミナ
管やムライト管などの高温下で高強度を示す管4の先に
安定化ジルコニアでできた柱状の素子5を接合したもの
である。この酸素センサ3では、アルミナ管やムライト
管の熱膨脹係数が安定化ジルコニアの熱膨脹係数より小
さいため、それらの接合部分で熱衝撃によるクラックを
生じやすい。そこで、安定化ジルコニアの熱膨脹係数を
下げる技術が開発された。それは、特公昭55−173
40号に開示されているように安定化ジルコニアにアル
ミナを含有させる方法、特開平1−108163号に開
示されているように安定化ジルコニアにシリカを含有さ
せる方法などがある。これらのいずれの方法でも、安定
化ジルコニアの熱膨脹係数は下がるが酸素イオン導伝率
はあまり下がらない。
SUMMARY OF THE INVENTION Stabilized zirconia has low strength against thermal shock. Therefore, when it is used for an oxygen sensor, a fuel cell, an oxygen pump, or the like, it is often used in combination with other materials. However, if the coefficient of thermal expansion differs between the joint surfaces with different materials,
Since stabilized zirconia operates at a high temperature (600 ° C. or higher), cracks are likely to occur at the joint surface. Therefore,
Various structures have been devised to structurally solve this. As an example, there is a direct insertion type oxygen sensor. That is, the conventional direct insertion type oxygen sensor 1 shown in FIG.
Then, since the tube 2 made of stabilized zirconia and having one end sealed is inserted into the measurement gas, the tube 2 needs to be formed long. However, since the stabilized zirconia is weak against thermal shock and has short heat cycle resistance, the breakage rate of the tube 2 is very high. Therefore, a direct insertion type oxygen sensor as shown in FIG. 3 has been devised. The oxygen sensor 3 is formed by joining a columnar element 5 made of stabilized zirconia to the tip of a tube 4 such as an alumina tube or a mullite tube which exhibits high strength at high temperatures. In the oxygen sensor 3, since the coefficient of thermal expansion of the alumina tube and the mullite tube is smaller than the coefficient of thermal expansion of the stabilized zirconia, cracks due to thermal shock are likely to occur at their joints. Accordingly, a technique for reducing the coefficient of thermal expansion of stabilized zirconia has been developed. It is Japanese Patent Publication 55-173
For example, there is a method in which alumina is contained in stabilized zirconia as disclosed in JP-A No. 40, and a method in which silica is incorporated in stabilized zirconia as disclosed in JP-A-1-108163. In either of these methods, the thermal expansion coefficient of the stabilized zirconia is reduced, but the oxygen ion conductivity is not significantly reduced.

【0004】しかし、金属材料のような熱膨脹係数の比
較的大きい材料と安定化ジルコニアとを接合することに
ついては、いまだに構造的に解決しようと試みているだ
けである。すなわち、現状では、安定化ジルコニアの酸
素イオン導伝率をあまり下げることなく熱膨脹係数を上
げる技術はまだ確立されていない。
[0004] However, the joining of stabilized zirconia with a material having a relatively high coefficient of thermal expansion, such as a metallic material, is still only attempted to solve the problem structurally. That is, at present, a technique for increasing the thermal expansion coefficient without significantly reducing the oxygen ion conductivity of stabilized zirconia has not yet been established.

【0005】それゆえに、この発明の主たる目的は、酸
素イオン導伝率があまり小さくなく、かつ熱膨脹係数が
大きい、固体電解質物質を提供することである。
[0005] It is, therefore, a primary object of the present invention to provide a solid electrolyte material that has a relatively low oxygen ion conductivity and a high coefficient of thermal expansion.

【0006】[0006]

【課題を解決するための手段】この発明は、酸化イット
リウム(Y2 3 ),ふっ化カルシウム(CaF2 )お
よび酸化ジルコニウム(ZrO2 )からなり、一般式a
2 3 ・bCaF2 ・(1−a−b)ZrO2 で表し
たとき、aおよびbが 0.022≦a≦0.150 0<b≦0.676 の範囲にある、固体電解質物質である。
The present invention comprises yttrium oxide (Y 2 O 3 ), calcium fluoride (CaF 2 ) and zirconium oxide (ZrO 2 ) and has a general formula a
A and b are in the range of 0.022 ≦ a ≦ 0.1500 and 0 <b ≦ 0.676, when represented by Y 2 O 3 .bCaF 2. (1-ab) ZrO 2 , a solid electrolyte substance It is.

【0007】[0007]

【作用】固体電解質物質の熱膨張係数が金属材料などと
同等の約10.1×10-6cm/℃〜17.4×10-6cm
/℃になる。
The thermal expansion coefficient of the solid electrolyte material is about 10.1 × 10 −6 cm / ° C. to 17.4 × 10 −6 cm, which is equivalent to that of a metal material or the like.
/ ° C.

【0008】[0008]

【発明の効果】この発明によれば、固体電解質物質の熱
膨張係数が金属材料のような熱膨脹係数の大きい材料の
値に近づくので、この発明にかかる固体電解質物質を熱
膨脹係数の大きい材料と接合した場合、熱衝撃が少なく
クラックを起こしにくい利点がある。しかも、この発明
にかかる固体電解質物質は、酸素イオン導伝率におい
て、従来の安定化ジルコニアと比較してもほとんど変わ
らない。そのため、この発明にかかる固体電解質物質を
用いて、酸素センサ,燃料電池,酸素ポンプなどを構成
する場合、複合する材料の選択の幅が広がる。
According to the present invention, since the thermal expansion coefficient of the solid electrolyte material approaches the value of a material having a high thermal expansion coefficient such as a metal material, the solid electrolyte material according to the present invention is joined to a material having a high thermal expansion coefficient. In this case, there is an advantage that cracks are less likely to occur due to less thermal shock. Moreover, the solid electrolyte material according to the present invention has almost no change in oxygen ion conductivity as compared with the conventional stabilized zirconia. Therefore, when an oxygen sensor, a fuel cell, an oxygen pump, or the like is formed by using the solid electrolyte substance according to the present invention, the range of choice of composite materials is widened.

【0009】さらに、この発明にかかる固体電解質物質
は、酸素イオンの導伝率をあまり損なわないで熱膨脹係
数を約10.1×10-6cm/℃〜17.4×10-6cm/
℃の範囲で選択することができるので、複合する材料に
合わせて細かく対応することができる。このため、支持
材料,電極材料,セパレータ材料などとして今までに不
可能であった材料も選択でき、技術的進歩に寄与する効
果は大きい。
Furthermore, the solid electrolyte material according to the present invention has a thermal expansion coefficient of about 10.1 × 10 −6 cm / ° C. to 17.4 × 10 −6 cm / without significantly impairing the conductivity of oxygen ions.
Since it can be selected in the range of ° C., it is possible to correspond finely to the composite material. For this reason, materials that have not been possible so far can be selected as support materials, electrode materials, separator materials, and the like, and the effect of contributing to technological progress is great.

【0010】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

【0011】[0011]

【実施例】まず、原料として、ZrO2 およびY2 3
を表1に示すようなモル比になるようにそれぞれ秤量
し、ボールミルで16時間湿式混合した後、蒸発乾燥し
て混合粉末を得た。
EXAMPLE First, ZrO 2 and Y 2 O 3 were used as raw materials.
Were weighed so as to have a molar ratio as shown in Table 1, and wet-mixed with a ball mill for 16 hours, and then evaporated to dryness to obtain a mixed powder.

【0012】[0012]

【表1】 [Table 1]

【0013】次に、この混合粉末を1150℃で2時間
仮焼して仮焼物を得た。
Next, this mixed powder was calcined at 1150 ° C. for 2 hours to obtain a calcined product.

【0014】そして、この仮焼物にCaF2 を表1に示
すような組成比で混合して原料粉末を得た。この原料粉
末は、仮焼物とCaF2 を表1に示す体積比で混合する
ことによって、表1に示すような組成となる。
Then, CaF 2 was mixed with the calcined product at a composition ratio as shown in Table 1 to obtain a raw material powder. This raw material powder has a composition as shown in Table 1 by mixing the calcined product and CaF 2 at a volume ratio shown in Table 1.

【0015】次に、この原料粉末に結合剤として酢酸ビ
ニルを5重量%加えて再びボールミルで16時間湿式混
合,粉砕して粉砕物を得た。それから、この粉砕物を蒸
発乾燥して篩に通して整粒し果粒状の粉末を得た。この
ようにして得た果粒状の粉末を乾式プレス機で2ton /
cm2 の圧力で加圧して成形し成形体を得た。
Next, 5% by weight of vinyl acetate was added as a binder to the raw material powder, and the mixture was wet-mixed and pulverized again with a ball mill for 16 hours to obtain a pulverized product. Then, the pulverized material was evaporated to dryness, passed through a sieve, and sized to obtain a granular powder. The granulated powder obtained in this manner is dried by a dry press at 2 ton /
Pressing was performed at a pressure of cm 2 to obtain a molded product.

【0016】次に、得られた成形体を空気中において1
400℃で2時間保持して焼成し焼成物を形成した。そ
して、これらの焼成物を5mm×10mm×1mmの大きさの
チップに切断した。
Next, the obtained molded body is placed in air for 1 hour.
The resultant was held at 400 ° C. for 2 hours and fired to form a fired product. Then, these fired products were cut into chips having a size of 5 mm × 10 mm × 1 mm.

【0017】そして、図1に示すように、そのチップ1
0の長手方向の2つの端部および10mmの間隔を隔てた
2つの中間部に多孔質の白金ペーストを塗布し、それを
1000℃で焼き付けて多孔質の白金電極12a,12
b,12cおよび12dを形成して、試料番号1〜25
の試料を得た。
Then, as shown in FIG.
A porous platinum paste is applied to two ends in the longitudinal direction of 0 and two intermediate portions separated by 10 mm, and baked at 1000 ° C. to form porous platinum electrodes 12a, 12a.
b, 12c, and 12d were formed to obtain sample numbers 1 to 25.
Sample was obtained.

【0018】各試料について、四端子法で導伝率σを測
定した。その結果を表2に示す。
The conductivity σ of each sample was measured by the four-terminal method. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】さらに、各試料について、熱膨脹係数を測
定した。その結果を表2に示す。
Further, the thermal expansion coefficient of each sample was measured. Table 2 shows the results.

【0021】表2から明らかなように、この発明の範囲
内の試料(固体電解質物質)は、比較的導伝率の低下が
小さく、かつ熱膨脹係数が大きい。
As is clear from Table 2, the samples (solid electrolyte materials) within the scope of the present invention have a relatively small decrease in conductivity and a large coefficient of thermal expansion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】この発明の背景となる従来の酸素センサの一例
を示す図解図である。
FIG. 2 is an illustrative view showing one example of a conventional oxygen sensor as a background of the present invention;

【図3】この発明の背景となる従来の酸素センサの他の
例を示す図解図である。
FIG. 3 is an illustrative view showing another example of the conventional oxygen sensor as the background of the present invention.

【符号の説明】[Explanation of symbols]

10 チップ 12a,12b,12c,12d 白金電極 10 chip 12a, 12b, 12c, 12d platinum electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−173863(JP,A) 米国特許4514277(US,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/48 C01G 25/00 CA(STN) JICSTファイル(JOIS) REGISTRY(STN)────────────────────────────────────────────────── (5) References JP-A-1-173386 (JP, A) US Patent 4,514,277 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35 / 48 C01G 25/00 CA (STN) JICST file (JOIS) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化イットリウム(Y2 3 ),ふっ化
カルシウム(CaF2 )および酸化ジルコニウム(Zr
2 )からなり、一般式aY2 3 ・bCaF2 ・(1
−a−b)ZrO2 で表したとき、aおよびbが 0.022≦a≦0.150 0<b≦0.676 の範囲にある、固体電解質物質。
1. Yttrium oxide (Y 2 O 3 ), calcium fluoride (CaF 2 ) and zirconium oxide (Zr)
O 2 ), and has the general formula aY 2 O 3 .bCaF 2. (1
-Ab) A solid electrolyte material in which a and b are in the range of 0.022 ≦ a ≦ 0.1500 and 0 <b ≦ 0.676 when represented by ZrO 2 .
JP20628991A 1991-07-22 1991-07-22 Solid electrolyte material Expired - Fee Related JP3185263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20628991A JP3185263B2 (en) 1991-07-22 1991-07-22 Solid electrolyte material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20628991A JP3185263B2 (en) 1991-07-22 1991-07-22 Solid electrolyte material

Publications (2)

Publication Number Publication Date
JPH0524838A JPH0524838A (en) 1993-02-02
JP3185263B2 true JP3185263B2 (en) 2001-07-09

Family

ID=16520845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20628991A Expired - Fee Related JP3185263B2 (en) 1991-07-22 1991-07-22 Solid electrolyte material

Country Status (1)

Country Link
JP (1) JP3185263B2 (en)

Also Published As

Publication number Publication date
JPH0524838A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
US4221650A (en) Solid electrolyte oxygen sensors
US4507394A (en) High electric resistant zirconia and/or hafnia ceramics
US4283441A (en) Method of making an ion conductive gas sensor body with a cermet electrode thereon
JPS5833190B2 (en) Stabilized zirconia for oxygen ion conductive solid electrolyte
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JP2617204B2 (en) Method for producing solid electrolyte
JPH05119015A (en) Carbon dioxide gas detection element
JPH08208333A (en) Conductive material for oxygen ion and its production
JPH11120817A (en) Mixted ion conductor
US4961835A (en) Solid electrolyte, sensor therewith and method of making said sensor
JPH11130595A (en) Oxide ion conductive single crystal and its production
JP3185263B2 (en) Solid electrolyte material
JP3185264B2 (en) Solid electrolyte material
JPS62140061A (en) Sensor for measuring gas partial pressure and manufacture thereof
Kale et al. Thermodynamic partial properties of Na2O in Nasicon solid solution, Na1+ xZr2SixP3− xO12
JPS627502B2 (en)
JPH07149522A (en) Zirconia electrolyte powder and its production
JPH07126061A (en) Magnesia-based sintered material and production thereof
JPS609978B2 (en) Oxygen ion conductive solid electrolyte
JP3607352B2 (en) BaCeO3-based ion conductive ceramics and method for producing the same
JP2006290686A (en) Hydrogen separating material and hydrogen separating apparatus
EP0345824B1 (en) Method for producing ceramics
Wang et al. Potentiometric SO 2 gas sensor based on a thick film of Ca 2+ ion conducting solid electrolyte
JPS5919074B2 (en) Porcelain sintered body for oxygen sensor
SU1073225A1 (en) Charge for making fluid-tight ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees