JP3182854B2 - MRI endoscope - Google Patents

MRI endoscope

Info

Publication number
JP3182854B2
JP3182854B2 JP08189292A JP8189292A JP3182854B2 JP 3182854 B2 JP3182854 B2 JP 3182854B2 JP 08189292 A JP08189292 A JP 08189292A JP 8189292 A JP8189292 A JP 8189292A JP 3182854 B2 JP3182854 B2 JP 3182854B2
Authority
JP
Japan
Prior art keywords
coils
mri
coil
magnetic field
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08189292A
Other languages
Japanese (ja)
Other versions
JPH05277088A (en
Inventor
哲彦 高橋
芳樹 村上
久晃 越智
良国 松永
悦治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08189292A priority Critical patent/JP3182854B2/en
Publication of JPH05277088A publication Critical patent/JPH05277088A/en
Application granted granted Critical
Publication of JP3182854B2 publication Critical patent/JP3182854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Endoscopes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被検体中の水素や燐等
からの核磁気共鳴(以下、NMRという)信号を測定
し、核の密度分布や緩和時間分布等を映像化する核磁気
共鳴装置に用いる、MRIプローブのうち、特に生体内
に挿入若しくは侵入可能なMRI内視鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear magnetic field for measuring a nuclear magnetic resonance (hereinafter, referred to as NMR) signal from hydrogen, phosphorus or the like in an object to visualize a nuclear density distribution or a relaxation time distribution. The present invention relates to an MRI endoscope which can be inserted or penetrated into a living body among MRI probes used for a resonance apparatus.

【0002】[0002]

【従来の技術】従来、核磁気共鳴装置(以下、MR装置
と呼ぶ)では、被検体(例えば、人)の関心部位を取り
巻く各種の頭部用コイルや腹部用コイル,心臓等の動き
の影響を受けにくい表面コイル等を用い被検体の検査,
撮像が行われてきた。
2. Description of the Related Art Conventionally, in a nuclear magnetic resonance apparatus (hereinafter, referred to as an MR apparatus), the influence of various movements of a head coil, an abdomen coil and a heart surrounding a site of interest of a subject (for example, a person). Inspection of the subject using a surface coil etc.
Imaging has been performed.

【0003】これらのコイルは生体内の微小部分を高感
度高空間解像度で画像化することができない。これを達
成する方法として体内挿入用MRI内視鏡がある。一般
にMRI内視鏡とは生体の胃や食道,腸,血管などに挿
入または侵入可能の小型MRIプローブである。直腸用
MRI内視鏡は、例えば、特開平2−277440 号公報に開
示がある。従来のMRI内視鏡の一例を図2に示す。
[0003] These coils cannot image minute parts in a living body with high sensitivity and high spatial resolution. As a method for achieving this, there is an MRI endoscope for insertion into the body. Generally, an MRI endoscope is a small MRI probe that can be inserted or penetrated into the stomach, esophagus, intestine, blood vessels, etc. of a living body. A rectal MRI endoscope is disclosed, for example, in Japanese Patent Application Laid-Open No. 2-277440. FIG. 2 shows an example of a conventional MRI endoscope.

【0004】[0004]

【発明が解決しようとする課題】MRIの原理からMR
Iプローブが検出する高周波磁場は静磁場方向と直交し
ている成分である。MRIプローブがこれを最も効率的
に検出するのは、MRIプローブの検出磁場方向が静磁
場と直交している場合である。しかし、生体内に挿入さ
れるMRI内視鏡の配置は、対象部位の形状や関心領域
の向きで決定されるため、必ずしも静磁場との相対的な
向きが一定にならない。従って、内視鏡利用MRIで実
際の撮像時に内視鏡の配置が静磁場に対して最適でない
ために、検出信号のS/Nが低下し、再構成画像の画質
が低下する場合がある。
From the MRI principle, MR
The high-frequency magnetic field detected by the I-probe is a component orthogonal to the static magnetic field direction. The MRI probe detects this most efficiently when the direction of the magnetic field detected by the MRI probe is orthogonal to the static magnetic field. However, since the arrangement of the MRI endoscope to be inserted into the living body is determined by the shape of the target part and the direction of the region of interest, the relative direction to the static magnetic field is not always constant. Therefore, since the arrangement of the endoscope is not optimal for the static magnetic field at the time of actual imaging in the endoscope-based MRI, the S / N of the detection signal is reduced, and the image quality of the reconstructed image may be reduced.

【0005】本発明の目的は、常に高画質な画像を結べ
るMRI内視鏡を提供することにある。
[0005] An object of the present invention is to provide an MRI endoscope that can always connect high-quality images.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、MRI内視鏡において互いに直交する3
方向の高周波磁場を生成若しくは受信するための、互い
に直交した3個のコイルを設ける。さらに前記直交する
3個のコイルのうち任意の2個を選択しそれぞれの信号
を位相若しくは振幅を調整したのち信号合成する手段を
有し、望ましくは前記2個のコイルの選択を、前記コイ
ルの合成信号がすべてのコイルの組合せのうちで最大に
なる組合せとなるように選択する手段を有することで達
成される。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an MRI endoscope having three orthogonally crossing points.
There are three mutually orthogonal coils for generating or receiving high frequency magnetic fields in different directions. The apparatus further comprises means for selecting any two of the three orthogonal coils, adjusting the phase or amplitude of each signal, and then synthesizing the signals. Preferably, the selection of the two coils is This is achieved by having means for selecting the combined signal to be the largest combination of all the coil combinations.

【0007】[0007]

【作用】互いに直交する3方向の高周波磁場を生成若し
くは受信するための互いに直交した3個のコイルを有す
るので、MRI内視鏡が静磁場に対して任意の向きであ
っても、最適なコイルを選択し最良の信号を得られ高画
質のMRI画像が得られる。更に静磁場との直交成分を
多く含む2個の直交するコイルを選択し、位相若しくは
振幅の調整を行い合成することによりMRI内視鏡にお
いてクォドラチャー検出ができ内視鏡画像の画質が著し
く向上する。
Since there are three coils orthogonal to each other for generating or receiving a high-frequency magnetic field in three directions orthogonal to each other, even if the MRI endoscope is in any direction with respect to the static magnetic field, the optimum coil is used. To obtain the best signal and obtain a high quality MRI image. Furthermore, by selecting two orthogonal coils containing a large amount of orthogonal components with the static magnetic field, adjusting the phase or amplitude, and synthesizing, quadrature detection can be performed in the MRI endoscope, and the image quality of the endoscope image is significantly improved. .

【0008】[0008]

【実施例】以下、本発明を図1に示した実施例を用いて
説明する。コイル1,2,3はそれぞれx,y,z方向
の磁場を検出するよう、直交して配置されている。図は
分かりやすいようにコイルを互いに離して示している
が、一般に各コイルはそれぞれのコイルの高周波磁場有
感領域が互いにオーバーラップするように配置される。
この場合でも、それぞれのコイルはその直交性からノイ
ズの相関が無い。各コイルは、例えば、共振用直列コン
デンサを含む1ターンの共振型コイルやソレノイド型コ
イルである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiment shown in FIG. The coils 1, 2, and 3 are arranged orthogonally so as to detect magnetic fields in the x, y, and z directions, respectively. The coils are shown separated from one another for clarity, but generally the coils are arranged such that the high-frequency magnetic field sensitive regions of the respective coils overlap each other.
Even in this case, each coil has no noise correlation due to its orthogonality. Each coil is, for example, a one-turn resonance type coil or a solenoid type coil including a series capacitor for resonance.

【0009】それぞれのコイルからの信号はケーブルを
介して位相若しくは振幅調整器4,5,6に接続され
る。これらの出力はスイッチ7,8,9を介して合成器
10に入力され合成される。合成された信号は信号処理
部11,画像処理部12により処理され表示部13に表
示される。4から13の各構成要素は制御部14で制御
される。静磁場15のコイルとの相対的な向きは撮像対
象や領域によって変化する。従って、静磁場15をH
(x,y,z)と表し図示した。この静磁場は一般に
0.2から4.7T程度の強さの均一な磁場を発生する磁
石(図示していない)で生成される。
Signals from the respective coils are connected to phase or amplitude adjusters 4, 5, and 6 via cables. These outputs are input to the combiner 10 via the switches 7, 8, and 9, and are combined. The synthesized signal is processed by the signal processing unit 11 and the image processing unit 12 and displayed on the display unit 13. Each of the components 4 to 13 is controlled by the control unit 14. The relative orientation of the static magnetic field 15 with respect to the coil changes depending on the imaging target and the region. Therefore, the static magnetic field 15 is set to H
(X, y, z) and illustrated. This static magnetic field is generally generated by a magnet (not shown) that generates a uniform magnetic field having a strength of about 0.2 to 4.7 T.

【0010】撮像の方法を次に説明する。まず、撮像前
にスイッチ7をオンしスイッチ8と9をオフしコイル1
の信号を検出する。この信号はMR信号と呼ばれるもの
で、MRIの分野で公知の技術を用いて被検体より発生
させる。同様に、順次、コイル2とコイル3の出力を検
出する。このときの振幅調整器の振幅は両コイルともコ
イル1のときと同一にしておく。これらの検出結果は、
例えば、画像処理部内のメモリに記録しておく。データ
の形態はフーリエ変換前のFID信号でも、変換後のプ
ロファイル信号でも良い。次にそれぞれの信号を比較し
最も出力の大きいコイルを選ぶ。次にこのコイルの出力
を得るようにスイッチを選択し公知の撮像技術を用いて
撮像を開始する。得られた信号を信号処理,画像処理し
て表示する。
Next, a method of imaging will be described. First, before imaging, switch 7 is turned on, switches 8 and 9 are turned off, and coil 1 is turned on.
Is detected. This signal is called an MR signal, and is generated from the subject using a technique known in the field of MRI. Similarly, the outputs of the coils 2 and 3 are sequentially detected. At this time, the amplitude of the amplitude adjuster is the same as that of the coil 1 for both coils. These findings are:
For example, it is recorded in a memory in the image processing unit. The form of the data may be an FID signal before Fourier transform or a profile signal after the transform. Next, the signals are compared and the coil having the largest output is selected. Next, a switch is selected so as to obtain the output of the coil, and imaging is started using a known imaging technique. The obtained signal is subjected to signal processing and image processing and displayed.

【0011】クォドラチャー検出をする場合は、上述と
同様に単位コイルの出力を計測した後、出力の大きいコ
イルを前記スイッチで二つ選択する。その後、これらの
コイルに対応した位相,振幅調整器を最適に設定し信号
を取得する。典型的には二つの出力の位相差を90°に
し、振幅比を各コイルの出力比とすることで高画質化が
達成できる。この場合、出力の大きい2個のコイルを選
択し合成信号を作るので、他のコイルの組合せに比べ合
成信号が大きく最良のS/Nが得られる。
When quadrature detection is performed, the output of the unit coil is measured in the same manner as described above, and two coils having a large output are selected by the switch. Thereafter, the phase and amplitude adjusters corresponding to these coils are optimally set to obtain signals. Typically, high image quality can be achieved by setting the phase difference between the two outputs to 90 ° and setting the amplitude ratio to the output ratio of each coil. In this case, two coils having large outputs are selected to produce a composite signal, so that the composite signal is large and the best S / N can be obtained as compared with the combination of the other coils.

【0012】さらに3個のコイルの出力を振幅若しくは
位相を調整して合成しても良い。この場合、さらに出力
信号のS/Nは向上する。
The outputs of the three coils may be combined by adjusting the amplitude or phase. In this case, the S / N of the output signal is further improved.

【0013】これらの一連の動作は制御部14により自
動的に行われることが望ましい。
It is desirable that these series of operations are automatically performed by the control unit 14.

【0014】この実施例で、静磁場の向きとコイルの出
力の関係は、例えば静磁場15がx方向の場合(即ちH
(x,0,0))、これと直交するコイル、即ち、y方向
のコイル2とz方向のコイル3に出力が発生しx方向の
コイル1には出力は発生しない。その他の任意の向きで
も同様に直交する3成分に分解できる。
In this embodiment, the relationship between the direction of the static magnetic field and the output of the coil is, for example, when the static magnetic field 15 is in the x direction (ie, H
(x, 0, 0)), an output is generated in the coil orthogonal to this, that is, the coil 2 in the y direction and the coil 3 in the z direction, and no output is generated in the coil 1 in the x direction. Similarly, other arbitrary directions can be decomposed into three orthogonal components.

【0015】また、位相,振幅調整はアナログ的に行っ
てもディジタル的に行っても良い。
Further, the phase and amplitude adjustment may be performed in an analog manner or in a digital manner.

【0016】[0016]

【発明の効果】本発明ではMRI内視鏡が、互いに直交
する3方向の高周波磁場を生成若しくは受信するための
互いに直交した3個のコイルを有するので、MRI内視
鏡が静磁場に対して任意の向きであっても、最良の信号
を得られる最適なコイルを選択でき、MRI画像の画質
の劣化が起きない。さらに静磁場との直交成分を多く含
む2個以上の直交するコイルを選択し、位相若しくは振
幅の調整を行い合成することによりMRI内視鏡でクォ
ドラチャー検出ができ、内視鏡画像の画質が著しく向上
する。
According to the present invention, since the MRI endoscope has three mutually orthogonal coils for generating or receiving a high-frequency magnetic field in three directions orthogonal to each other, the MRI endoscope is insensitive to the static magnetic field. Even in an arbitrary direction, the optimum coil that can obtain the best signal can be selected, and the image quality of the MRI image does not deteriorate. Furthermore, by selecting two or more orthogonal coils that include many orthogonal components with the static magnetic field, adjusting the phase or amplitude, and combining them, quadrature detection can be performed with the MRI endoscope, and the image quality of the endoscope image is remarkable. improves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】従来例を示す説明図。FIG. 2 is an explanatory view showing a conventional example.

【符号の説明】[Explanation of symbols]

1,2,3…コイル、10…合成器。 1, 2, 3 ... coil, 10 ... synthesizer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 良国 東京都国分寺市東恋ケ窪1丁目280番地 株式会社 日立製作所 中央研究所内 (72)発明者 山本 悦治 東京都国分寺市東恋ケ窪1丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 昭64−49548(JP,A) 特開 昭63−270038(JP,A) 特開 平3−231638(JP,A) 特公 平2−61252(JP,B2) (58)調査した分野(Int.Cl.7,DB名) A61B 5/055 A61B 1/00 300 G01R 33/36 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshikuni Matsunaga, Inventor, Central Research Laboratory, Hitachi, Ltd. 1-280, Higashi-Koikekubo, Kokubunji-shi, Tokyo (72) Inventor Etsuji Yamamoto 1-1280, Higashi-Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. (56) References JP-A-64-49548 (JP, A) JP-A-63-270038 (JP, A) JP-A-3-231638 (JP, A) JP-B-2-61252 (JP) , B2) (58) Fields investigated (Int. Cl. 7 , DB name) A61B 5/055 A61B 1/00 300 G01R 33/36 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに直交する3方向の高周波磁場を生成
又は受信する、互いに直交する3個のコイルと、前記3
個のコイルから選択された2個の前記コイルにより検出
された信号を合成して合成信号を得る手段を有し、前記
合成信号が全ての前記コイルの組み合わせのうちで最大
となるように、前記2個の前記コイルの選択がされる
とを特徴とするMRI用内視鏡。
1. A high-frequency magnetic field in three directions orthogonal to each other is generated.
Or three coils that are orthogonal to each other to receive,
Detected by two of the coils selected from the two coils
Means for obtaining a synthesized signal by synthesizing the obtained signal,
The composite signal is the largest of all the coil combinations
An endoscope for MRI , wherein the two coils are selected so that
JP08189292A 1992-04-03 1992-04-03 MRI endoscope Expired - Fee Related JP3182854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08189292A JP3182854B2 (en) 1992-04-03 1992-04-03 MRI endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08189292A JP3182854B2 (en) 1992-04-03 1992-04-03 MRI endoscope

Publications (2)

Publication Number Publication Date
JPH05277088A JPH05277088A (en) 1993-10-26
JP3182854B2 true JP3182854B2 (en) 2001-07-03

Family

ID=13759100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08189292A Expired - Fee Related JP3182854B2 (en) 1992-04-03 1992-04-03 MRI endoscope

Country Status (1)

Country Link
JP (1) JP3182854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9514877D0 (en) * 1995-07-20 1995-09-20 Marconi Gec Ltd Magnetic resonance methods and apparatus
JP5039258B2 (en) * 2001-04-04 2012-10-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Position detection system, medical imaging apparatus, operation instrument, and ultrasonic probe

Also Published As

Publication number Publication date
JPH05277088A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
Klose In vivo proton spectroscopy in presence of eddy currents
US6160397A (en) Fast spin echo prescan for magnetic resonance imaging systems
US7663365B2 (en) Magnetic resonance imaging apparatus and analysis method for fat suppression effect in magnetic resonance imaging apparatus
JPH0856928A (en) Mr modulus that determines core magnetization distribution by surface coil setting
US7319324B2 (en) MRI method and apparatus using PPA image reconstruction
JP2003079595A (en) Magnetic resonance imaging device and rf receiving coil therefor
EP0132358B1 (en) Imaging method and apparatus for obtaining images using nmr
JP2005205206A (en) Fat-water separating magnetic resonance imaging method and system using steady free precession motion
EP0125339B1 (en) Diagnostic apparatus using nmr
WO2003040733A3 (en) 'combined magnetic resonance data acquisition of multi-contrast images'
JP3386864B2 (en) Nuclear magnetic resonance imaging method and apparatus
JP4072879B2 (en) Nuclear magnetic resonance imaging system
JPH05300895A (en) Selective excitation method of nuclear spin in mri apparatus
US7239138B2 (en) Magnetic resonance method and device
JP2006507071A (en) Magnetic resonance method
JP2006501006A (en) K-space data collection method and MRI apparatus
JPH06169896A (en) Magnetic resonance imaging system
US5250899A (en) Method for fat suppression in magnetic resonance imaging
JP3182854B2 (en) MRI endoscope
US6492810B1 (en) Anti-aliasing magnetic resonance device which reduces aliasing from regions outside of the excitation volume
EP0097519A2 (en) Nuclear magnetic resonance diagnostic apparatus
US6215305B1 (en) Method and device for imaging an object by means of magnetic resonance
WO2009047690A2 (en) Segmented multi-shot mri involving magnetization preparation
US20190310339A1 (en) Magnetic resonance apparatus and method for obtaining measurement signals in spin echo-based imaging
JP3907944B2 (en) Magnetic resonance imaging method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees