JP3182344B2 - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JP3182344B2
JP3182344B2 JP18766096A JP18766096A JP3182344B2 JP 3182344 B2 JP3182344 B2 JP 3182344B2 JP 18766096 A JP18766096 A JP 18766096A JP 18766096 A JP18766096 A JP 18766096A JP 3182344 B2 JP3182344 B2 JP 3182344B2
Authority
JP
Japan
Prior art keywords
groove
tire
degrees
tread
groove wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18766096A
Other languages
Japanese (ja)
Other versions
JPH1029410A (en
Inventor
充浩 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP18766096A priority Critical patent/JP3182344B2/en
Priority to EP97304541A priority patent/EP0816130B1/en
Priority to DE69732451T priority patent/DE69732451T2/en
Priority to US08/884,646 priority patent/US6343636B1/en
Publication of JPH1029410A publication Critical patent/JPH1029410A/en
Application granted granted Critical
Publication of JP3182344B2 publication Critical patent/JP3182344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非方向性タイヤに
おいて、ドライ及びウエット時の走行性能向上と、車両
の片流れの抑制とをバランスよく高めた空気入りタイヤ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire for a non-directional tire, in which the running performance in dry and wet conditions and the suppression of one-sided flow of the vehicle are improved in a well-balanced manner.

【0002】[0002]

【従来の技術】近年、車両の高性能化とともに、ドライ
路面における高速走行に際して操縦安定性の向上が要望
される。ドライ路面での操縦安定性を高めるには、周方
向にのびるストレートリブの数を減らし、トレッド面に
おけるパターン剛性を高めることが広く行われている。
2. Description of the Related Art In recent years, there has been a demand for improved driving stability at the time of high-speed running on a dry road surface as well as higher performance of a vehicle. In order to enhance steering stability on dry road surfaces, it is widely practiced to reduce the number of straight ribs extending in the circumferential direction and increase pattern rigidity on a tread surface.

【0003】しかし、ストレートリブを減らすことによ
り、グリップ力が不足し、雨天時などウエット路面にお
いてスリップが生じやすく、ハイドロ性能が低下するこ
ととなる。
[0003] However, by reducing the number of straight ribs, the grip force is insufficient, slipping is likely to occur on a wet road surface such as in rainy weather, and the hydro performance is reduced.

【0004】このように、ドライ走行性能とウエット走
行性能とは二律背反の関係にあり、両者の性能を共に充
足するためには、従来においては例えば図6に示すよう
にショルダー領域においてタイヤ赤道に対して傾けてな
るラグ溝を設けることが行われている。
As described above, the dry running performance and the wet running performance are in a trade-off relationship, and in order to satisfy both performances, conventionally, for example, as shown in FIG. It is common to provide a lug groove that is inclined.

【0005】このようなラグ溝は、一般的にはタイヤ赤
道を挟んで両側を線対称に配設されているが、線対称に
配置、即ちハ字状の配置とした場合には、タイヤの回転
方向に方向性が生じることとなり、その装着が面倒とな
る。
[0005] Such lug grooves are generally arranged symmetrically on both sides of the tire equator. However, when the lug grooves are arranged symmetrically, that is, in a C-shaped arrangement, the lug grooves of the tire are not provided. Directivity is generated in the rotation direction, and the mounting is troublesome.

【0006】このため、タイヤ軸方向両側に配される各
ラグ溝の傾きをタイヤ赤道上の点で図1に示すように点
対称となるよう配置することにより、タイヤが回転する
向きに関係のない、非方向性のタイヤとして形成し得
た。さらに、ラグ溝のタイヤ赤道に対する流れ角を40
度未満とすることによって、ウエット、ドライの両時に
おける走行性能の安定が図られるようになった。
For this reason, by arranging the lugs arranged on both sides in the axial direction of the tire so as to be symmetrical with respect to a point on the tire equator as shown in FIG. A non-directional tire could be formed. Further, the flow angle of the lug groove with respect to the tire equator is set to 40.
By setting it to less than the degree, the running performance in both wet and dry conditions can be stabilized.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記構成のタ
イヤにあっては、流れ角を小にしたため、走行に際して
パターンの影響が大きく現れ、トレッド面に生じる残留
CFの値が大きくなり、車両に流れが生じるという問題
が生じる。
However, in the tire having the above-described structure, the flow angle is reduced, so that the effect of the pattern appears during traveling, and the value of the residual CF generated on the tread surface increases. A problem arises in that flow occurs.

【0008】このような残留CFの発生要因としては、
タイヤ赤道を中心としてそのタイヤ軸方向両側で半径差
が生じるいわゆる円錘度のあるタイヤにおいて、タイヤ
が自由転動時に、主としてショルダー領域に配置された
ブロックが、このショルダー領域においてはタイヤの回
転方向の半径がトラッド面における回転方向の半径に比
べて小であることに起因して制動される方向に力を受け
ることにより、図5(A)に示す向きのトルクM1が発
生する。ラグ溝の前記流れ角が小さい場合には、図5
(B)に示すように、トルクの発生も大きくなり、直進
走行時にあってもハンドル操舵のために力を加えること
が必要となる。
[0008] The cause of such residual CF is as follows.
In a tire having a so-called conical ratio in which a radial difference occurs on both sides in the tire axial direction with respect to the tire equator as a center, when the tire freely rolls, a block arranged mainly in a shoulder region has a rotation direction of the tire in this shoulder region. Is applied in the braking direction due to the fact that the radius is smaller than the radius of the trad surface in the rotation direction, a torque M1 in the direction shown in FIG. 5A is generated. When the flow angle of the lug groove is small, FIG.
As shown in (B), the generation of torque also increases, and it is necessary to apply a force for steering the steering wheel even during straight running.

【0009】これら問題点の一端を解決するため特開平
2−147416号において、ブロックを形成する横溝
のタイヤ軸に対する傾き角度をトレッド部の中央部分と
側部分とで変化させる提案、又特開平4−193607
号においてはクラウン領域とショルダー領域とにおい
て、サイピングの傾きを違える提案がなされている。し
かし、前記提案のものは何れも残留CFは若干の減少す
るものの前記問題点の完全な解決には至っていない。
In order to solve one of these problems, Japanese Patent Application Laid-Open No. 2-147416 proposes changing the inclination angle of a lateral groove forming a block with respect to a tire axis between a central portion and a side portion of a tread portion. -193607
In Japanese Patent Application Laid-Open No. H11-163, a proposal has been made in which the inclination of the siping is different between the crown region and the shoulder region. However, none of the above proposals has solved the above problem completely, though the residual CF is slightly reduced.

【0010】発明者は、周方向溝をクラウン域に限定し
て配しかつラグ溝の流れ勾配を急としたリブラグからな
るパターンを採用するとともに、このラグブロックを先
着側と後着側とでその溝壁の傾き角度を違えることを基
本として、ウエット、ドライの両走行性の向上と、車両
の片流れの抑制とをバランスよく高めうる空気入りタイ
ヤの提供を目的としている。
The inventor of the present invention has adopted a pattern of rib lugs in which the circumferential groove is limited to the crown region and the lug groove has a steep flow gradient. It is an object of the present invention to provide a pneumatic tire capable of improving both wet and dry running performance and suppressing one-sided flow of a vehicle in a well-balanced manner based on different inclination angles of the groove walls.

【0011】[0011]

【課題を解決するための手段】本発明は、トレッド面
に、周方向にのびる周方向溝と、トレッド縁からのびる
多数条のラグ溝を有するトレッド溝部を、タイヤ赤道C
上の点で点対称に配列した非方向性のパターンを具える
とともに、正規リムに装着しかつ正規内圧と正規荷重と
を加えた正規状において、トレッド面が接地する接地端
間のタイヤ軸方向の距離である接地全巾SWの1/8倍
の距離をタイヤ赤道Cから軸方向両側に隔てる1/8点
を周方向に通る内側線間の中央領域内のみに周方向にの
びるリブを挟む少なくとも1対の前記周方向溝を設ける
とともに、最もトレッド縁側に位置する外の周方向溝を
前記ラグ溝に接続することによりタイヤ赤道C両側でブ
ロックを形成し、かつラグ溝が内側線と交わる交点A
と、接地端を周方向に通る外側線にラグ溝が交わる交点
Bとを結ぶ線分ABがタイヤ赤道Cとなすラグ溝の流れ
角θを10度以上かつ40度以下とするとともに、前記
ブロックの蹴込み側の各溝壁において、タイヤ転動に際
して先行して接地する接地部分の溝壁がタイヤ赤道Cと
平行な平面において半径線となす先着側の溝壁角度αを
20度以上かつ40度未満、後着側の溝壁角度βを0度
以上かつ20度未満とし、しかも先着側の溝壁と後着側
の溝壁とをなめらかに連続させてなる空気入りタイヤで
ある。
According to the present invention, a tread groove having a circumferential groove extending in a circumferential direction and a plurality of lug grooves extending from a tread edge is provided on a tread surface.
A non-directional pattern that is arranged point-symmetrically at the above points, and is mounted on a regular rim and applied with a regular internal pressure and a regular load. The circumferentially extending rib is sandwiched only in a central region between inner lines passing circumferentially through a 1/8 point that is axially separated from the tire equator C by a distance of 1/8 of the total contact width SW, which is a distance from the tire equator C. A block is formed on both sides of the tire equator C by providing at least one pair of the circumferential grooves and connecting an outer circumferential groove located closest to the tread edge to the lug groove, and the lug groove intersects the inner line. Intersection A
When, along with the line segment AB connecting the point of intersection B which lug grooves intersect is less and 40 degrees 10 degrees the flow angle θ of the lug groove formed between the tire equator C to the outside line through the ground end in the circumferential direction, wherein
In each of the groove walls on the kick-in side of the block, the groove wall of the ground contact portion that comes in contact with the tire before rolling becomes a radius line on a plane parallel to the tire equator C and has a groove wall angle α of 20 degrees or more on the first arrival side. The pneumatic tire has a groove wall angle β of less than 40 degrees and a groove wall angle β of the rear arrival side of not less than 0 degrees and less than 20 degrees, and furthermore, the groove wall of the first arrival side and the groove wall of the rear arrival side are smoothly continuous.

【0012】前記の如く中央領域に限定して周方向溝を
配し、パターン剛性を高めドライ路面におけるパターン
剛性を高めている。
As described above, the circumferential grooves are provided only in the central region to increase the pattern rigidity and the pattern rigidity on a dry road surface.

【0013】又、ラグ溝の流れ角θを10〜40度と従
来のタイヤに比べて急角度とすることによって、排水性
を高めウエットグリップ性能の向上を図っている。
Further, by setting the flow angle θ of the lug groove to a steep angle of 10 to 40 degrees as compared with the conventional tire, drainage is enhanced and wet grip performance is improved.

【0014】しかも、ラグ溝間のブロックにおいて、先
着側の溝壁の傾き角度αを後着側の溝壁の傾き角度βよ
りも大としている。このように傾き角度を違えることに
より、溝壁の倒れの差によって生じる回転モーメントを
生じさせ、ラグ溝を前記したように急角度で傾斜させた
ことによって生じる回転モーメントを打消すことによっ
て、タイヤ全体の残余CFを0に近づけることが出来、
これによって車両の片流れが減少し、直進走行性が高ま
り、操縦安定性の向上を図りうる。
Further, in the block between the lug grooves, the inclination angle α of the groove wall on the first arrival side is set larger than the inclination angle β of the groove wall on the rear arrival side. By changing the inclination angle in this manner, a rotational moment caused by the difference in the inclination of the groove wall is generated, and the rotational moment generated by inclining the lug groove at a steep angle as described above is canceled, whereby the entire tire is produced. Can be brought close to 0,
Thereby, the one-sided flow of the vehicle is reduced, the straight running performance is enhanced, and the steering stability can be improved.

【0015】このように本発明は、前記した各構成が有
機的に結合しかつ一体化することによって、全方向性の
パターンを具えるタイヤであってもウエット、ドライの
両走行時における走行性能の向上と、車両の流れの抑制
とをバランスよく高めることが出来る。
As described above, according to the present invention, even when the tire has an omnidirectional pattern, the running performance in both wet and dry running is achieved by organically combining and integrating the above-described components. And the suppression of the vehicle flow can be improved in a well-balanced manner.

【0016】[0016]

【発明の実施の形態】以下本発明の実施の形態について
タイヤサイズが195/65R15の乗用車用の空気入
りタイヤを例にとり図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings by taking a pneumatic tire for a passenger car having a tire size of 195 / 65R15 as an example.

【0017】図1〜4において空気入りタイヤ1は、ト
レッド面2に周方向にのびる1本又は2〜3本、本例で
は2本の周方向溝3、3と、トレッド縁Eからのびる多
数条のラグ溝4…とを有するトレッド溝部5をタイヤ赤
道C上点で点対称で配列した非方向性パターンを具えて
いる。
1 to 4, a pneumatic tire 1 has one or two, three, in this example, two circumferential grooves 3, 3 extending circumferentially on a tread surface 2, and a large number extending from a tread edge E. The tread grooves 5 having the strip lugs 4... Are arranged in a point symmetrical manner at a point on the tire equator C and have a non-directional pattern.

【0018】又、空気入りタイヤ1は、トレッド面2を
形成するトレッド部12からサイドウォール部13をへ
てビード部14のビードコア15の周りを折返して立上
がるカーカス16と、トレッド部2の内部かつ前記カー
カス16の半径方向外側に配されるベルト層17とを具
える。
The pneumatic tire 1 has a carcass 16 which rises from the tread portion 12 forming the tread surface 2 to the sidewall portion 13 and turns up around the bead core 15 of the bead portion 14, and the inside of the tread portion 2. And a belt layer 17 disposed radially outward of the carcass 16.

【0019】前記カーカス16は、ナイロン、レーヨ
ン、芳香族ポリアミドなどの有機繊維コードをタイヤ赤
道Cに対して70〜90°傾けて配列したラジアル又は
セミラジアル構成からなるカーカスプライを1枚又は複
数枚重ね合わせて形成している。
The carcass 16 includes one or more carcass plies having a radial or semi-radial configuration in which organic fiber cords such as nylon, rayon, and aromatic polyamide are arranged at an angle of 70 to 90 ° with respect to the tire equator C. It is formed by overlapping.

【0020】前記ベルト層17は複数枚、本例では2枚
のベルトプライ17A、17Bからなり、これらのベル
トプライ17A、17Bは、ナイロン、ポリエステル、
レーヨン、芳香族ポリアミド等の有機繊維コード、又は
スチールコードをプライ間で互いに交差する向きに配列
している。
The belt layer 17 is composed of a plurality of belt plies 17A and 17B in this embodiment, and these belt plies 17A and 17B are made of nylon, polyester,
Organic fiber cords such as rayon and aromatic polyamide, or steel cords are arranged in a direction crossing each other between plies.

【0021】前記空気入りタイヤ1を正規リムに装着
し、かつ正規内圧と正規荷重とを加えた正規状態におい
て、トレッド面2が接地する接地端F、F間のタイヤ軸
方向の距離である接地全巾SWが形成される。
In a normal state in which the pneumatic tire 1 is mounted on a normal rim and a normal internal pressure and a normal load are applied, a ground contact which is a distance in the tire axial direction between the grounding ends F on which the tread surface 2 is grounded. The full width SW is formed.

【0022】又、本例においては、トレッド面2を接地
全巾SWの1/8倍の距離をタイヤ赤道Cからタイヤ軸
方向両側に隔てる1/8点Pを周方向に通る中央領域M
と、前記1/8点Pとトレッド縁Eとの間の外領域N、
Nとに仮想区分している。
In this embodiment, the central region M which passes the tread surface 2 in the circumferential direction through a 1/8 point P separating the tread surface 2 from the tire equator C by 8 times the total contact width SW on both sides in the tire axial direction.
And an outer region N between the 8 point P and the tread edge E,
N.

【0023】前記中央領域Mのみにおいては、該中央領
域M内で周方向にのびるリブ6を挟んで周方向溝3、3
が設けられるとともに、最もトレッド縁Eに近い位置す
る外の周方向溝3Aを、前記ラグ溝4に接続している。
従って前記トレッド面2にあっては、トレッド縁Eと外
の周方向溝3Aとの間で隣り合うラグ溝4、4間に周方
向に並ぶ多数のブロック7…が形成される。
In only the central region M, the circumferential grooves 3, 3 are sandwiched by the ribs 6 extending in the circumferential direction in the central region M.
And the outer circumferential groove 3 </ b> A located closest to the tread edge E is connected to the lug groove 4.
Therefore, on the tread surface 2, a large number of blocks 7 are formed in the circumferential direction between the lug grooves 4 adjacent to each other between the tread edge E and the outer circumferential groove 3A.

【0024】なお、本例においては、ブロック7にトレ
ッド縁Eからタイヤ赤道Cに向かってのびかつ外領域N
の中間位置で途切れる横溝19が設けられる。
In this embodiment, the block 7 extends from the tread edge E toward the tire equator C and the outer region N
Is provided at the middle position of the horizontal groove 19.

【0025】前記ラグ溝4は、内側縁Kと交わる点を交
点Aとし、該ラグ溝4が、接地端Fを周方向に通る外側
線Lと交わる点を交点Bとするとき、交点Aと、交点B
とを結ぶ線分ABがタイヤ赤道Cとなす角をラグ溝4の
流れ角θとする。この流れ角θは10度以上かつ40度
以下に設定している。本例ではブロック7は、タイヤ赤
道Cを挟む両側でともに、図1において右上がりに傾け
ることにより、非方向性パターンとして形成されてい
る。
When the lug groove 4 intersects with the inner edge K at an intersection A, and when the lug groove 4 intersects with the outer line L passing through the grounding end F in the circumferential direction, the intersection A, , Intersection B
Is defined as the flow angle θ of the lug groove 4 between the line segment AB and the tire equator C. The flow angle θ is set to 10 degrees or more and 40 degrees or less. In this example, the block 7 is formed as a non-directional pattern by inclining rightward in FIG. 1 on both sides sandwiching the tire equator C.

【0026】この流れ角θの大、小は、ウエット路面に
おける操縦安定性に大きく影響し、40度をこえて大と
なれば雨水の誘導排出が不十分となり、アクアプレーニ
ングが発生するなどウエット性能の低下を招く。逆に1
0度未満とすればドライ路面においてグリップ力の不足
を招くことになる。
The flow angle θ has a large effect on the steering stability on a wet road surface. When the flow angle θ exceeds 40 degrees, the induced drainage of rainwater becomes insufficient and the wet performance such as aquaplaning occurs. Causes a decrease in Conversely 1
If the angle is less than 0 degrees, a lack of grip force on a dry road surface is caused.

【0027】このように流れ角θを規制することによ
り、ブロック7はタイヤ軸に対して斜方向にのびる斜方
形状となり、タイヤが転動する際に特定のブロック7に
限定すれば蹴込み側において、一様なかつ同時接地では
なく、先着する部分と、後着する部分とが生じる。図1
においては、タイヤが実線の矢印の向きに回転するとき
ブロック7の右上端が先着側Fr、左下端が後着側Re
となる。タイヤが破線の矢印の向きに回転するときに
は、同図に破線で示す位置がそれぞれ先着側Fr、後着
側Reとなる。このような接地の不均一は、ブロック7
に回転モーメントM1を生じさせ、車両を片流れさせる
こととなる。
By restricting the flow angle θ in this manner, the block 7 has an oblique shape extending in an oblique direction with respect to the tire axis. In this case, not a uniform and simultaneous grounding, but a first-arrival portion and a second-arrival portion occur. FIG.
When the tire rotates in the direction of the solid arrow, the upper right end of the block 7 is the first arrival side Fr, and the lower left end is the rear arrival side Re.
Becomes When the tire rotates in the direction of the dashed arrow, the positions indicated by the dashed lines in FIG. Such non-uniformity of grounding can be prevented by the block 7
Causes a rotational moment M1 to cause the vehicle to flow in one direction.

【0028】ここで回転モーメントM1の発生原理を説
明する。図5(A)に示す如く、前記ブロックの蹴込み
側の各溝壁9において、ブロック7の接地に際して先着
側Frと後着側Reとに着時に時差が生じた場合には、
該ブロック7にブレーキ力Brが生じる。このブレーキ
力Brはブロック7に対して一点鎖線に示す方向に捻る
作用力を生じさせ、その結果ブロック7に回転モーメン
トM1が発生する。
Here, the principle of generation of the rotational moment M1 will be described. As shown in FIG. 5 (A), riser of the block
In the case where a time difference occurs between the first arrival side Fr and the second arrival side Re when the block 7 is grounded,
A braking force Br is generated in the block 7. This braking force Br causes an acting force to twist the block 7 in the direction indicated by the dashed line, and as a result, a rotational moment M1 is generated in the block 7.

【0029】この回転モーメントM1は、図5(B)に
示すように、先着側Frと後着側Reとの周方向距離が
大きいほど、即ちラグ溝4の流れ角θを小さくするほど
大となる。従って流れ角θを小にすることによって、ウ
エット、ドライ両走行性能が充足される反面、前述の如
くブロック7に発生する回転モーメントM1が大とな
り、車両を片流れさせることになる。
As shown in FIG. 5 (B), the rotational moment M1 increases as the circumferential distance between the first arrival side Fr and the second arrival side Re increases, that is, as the flow angle θ of the lug groove 4 decreases. Become. Therefore, by making the flow angle θ small, both wet and dry running performances are satisfied, but the rotational moment M1 generated in the block 7 becomes large as described above, and the vehicle flows in one direction.

【0030】そこで図5(C)に示すように、ブロック
7のタイヤ赤道Cと平行な平面において半径線Rとなす
先着側Frの溝壁角度αを20度以上かつ40度未満と
緩やかに傾く溝壁9とし、かつ同じ条件における後着側
Reの溝壁角度βを0度以上かつ20度未満と急勾配の
溝壁9として形成するとともに、先着側Frの溝壁9と
後着側Reの溝壁9とをなめらかに連続させている。
Therefore, as shown in FIG. 5 (C), the groove wall angle α of the first arrival side Fr which forms the radius line R on the plane parallel to the tire equator C of the block 7 is gently inclined to 20 degrees or more and less than 40 degrees. The groove wall 9 and the groove wall angle β of the rear arrival side Re under the same conditions are formed as a steeply inclined groove wall 9 of not less than 0 degree and less than 20 degrees, and the groove wall 9 of the first arrival side Fr and the rear arrival side Re are formed. And the groove wall 9 are smoothly continuous.

【0031】このように、先着側Frの溝壁角度αを後
着側の溝壁角度βよりも大きくすることによって、ブロ
ック7に剛性差が生じることにより前記流れ角θに起因
する回転モーメントM1とは逆方向の回転モーメント−
M2が発生し、両回転モーメントM1、−M2が互いに
打消し合い車両に片流れが生じるのを抑制することが出
来る。
As described above, by making the groove wall angle α of the first arrival side Fr larger than the groove wall angle β of the rear arrival side, a difference in rigidity occurs in the block 7, so that the rotational moment M 1 caused by the flow angle θ is generated. Rotational moment in the opposite direction to-
M2 is generated, and the two moments M1 and -M2 cancel each other, thereby suppressing a one-sided flow in the vehicle.

【0032】前記先着側Frの溝壁角度αが20度未満
又は後着側Reの溝壁角度βが20度以上になれば、先
着側Frと後着側Reとの溝壁9の傾斜の差が僅少とな
りブロック7に対して前述の逆方向の回転モーメント−
M2を生じさせることが出来ず車の片流れを抑制させる
ことが出来ない。又先着側Frの溝壁角度αが40度を
こえて大となれば、ブロック7の先着側Frにおいて、
剛性が局部的に過大となる結果、ドライ時の操縦安定性
が劣り、かつグリップ力の不足を招く。さらにラグ溝4
の溝底巾を確保することが出来ず、排水性に劣り、ウエ
ット時の走行性能が低下することとなる。
If the groove wall angle α of the first arrival side Fr is less than 20 degrees or the groove wall angle β of the second arrival side Re becomes 20 degrees or more, the inclination of the groove wall 9 between the first arrival side Fr and the rear arrival side Re is reduced. The difference is so small that the rotational moment in the opposite direction with respect to the block 7-
M2 cannot be generated, and the one-sided flow of the vehicle cannot be suppressed. If the groove wall angle α of the first arrival side Fr becomes larger than 40 degrees, on the first arrival side Fr of the block 7,
As a result, the rigidity becomes locally excessive, so that the steering stability during dry operation is inferior and the grip force is insufficient. Further lug grooves 4
The groove bottom width cannot be secured, and the drainage performance is inferior, and the running performance when wet is reduced.

【0033】なお本発明において図6に示す如くラグ溝
4の傾斜方向を第1図とは逆の向きに、即ち図6におい
て左上がりとしてもよく、又周方向溝3を中央領域Mに
限定して配設する限りにおいて、その条数を増すことも
出来、本発明は種々な態様のものに変形することが出来
る。
In the present invention, as shown in FIG. 6, the lug groove 4 may be inclined in the opposite direction to that of FIG. 1, that is, may be inclined leftward in FIG. 6, and the circumferential groove 3 is limited to the central area M. As long as it is arranged, the number of lines can be increased, and the present invention can be modified into various embodiments.

【0034】[0034]

【実施例】タイヤサイズが195/65R15であり、
かつ図1、6に示すパターンを有するタイヤ(実施例
1、2)について表1に示す仕様で試作するとともに、
その性能をテストした。なお本願構成外のタイヤについ
ても併せてテストを行いその性能を比較した。テスト条
件は次の通り。
[Example] The tire size is 195 / 65R15,
In addition, tires (Examples 1 and 2) having the patterns shown in FIGS.
Its performance was tested. A test was also performed on a tire other than the configuration of the present invention, and the performance was compared. The test conditions are as follows.

【0035】テストタイヤは何れもベルト層17は逆貼
りであって、6JJのリムに装着し、2.0kgf/cm2
の内圧と400kgfの荷重のもとで行った。
In each of the test tires, the belt layer 17 was reversely bonded, and was mounted on a 6JJ rim, and was set to 2.0 kgf / cm 2.
Under an internal pressure of 400 kgf.

【0036】1)ドライ路面における操縦安定性 cc級の乗用車の全輪に装着し、一般舗装路によるドラ
イバーのフィーリングによる判定を5段階法で評価し
た。3が平均であり数値が大きいほど良好である。
1) Driving stability on dry road surface The vehicle was mounted on all the wheels of a cc class passenger car, and the evaluation based on the driver's feeling on a general pavement road was evaluated by a five-point method. 3 is an average, and the larger the numerical value, the better.

【0037】2)ハイドロ性能 1)項と同じ車両を、水膜5mmの路面を走行させハイド
ロプレーニングが発生する速度を実施例1を100とす
る指数で表示した。数値が大きいほど良好である。
2) Hydro Performance The same vehicle as in 1) was run on a road surface having a water film of 5 mm, and the speed at which hydroplaning occurs was represented by an index with the value of Example 1 being 100. The higher the value, the better.

【0038】3)残留CF フラットベルト式タイヤコーナリング試験器を用いて測
定した。テスト結果を表1に示す。
3) Residual CF Measured using a flat belt type tire cornering tester. Table 1 shows the test results.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】テストの結果、実施例のものは比較例のも
のに比べて、ドライ、ウエット両走行性能と、残余CF
との値がバランスよく向上したことが確認出来た。
As a result of the test, the example of the present invention has both dry and wet running performance and residual CF compared to the comparative example.
It was confirmed that the values of and were improved in a well-balanced manner.

【0042】[0042]

【発明の効果】叙上の如く本発明の空気入りタイヤは、
前記構成を具えることにより、ドライ路面における操縦
安定性を含むドライ走行性の向上と、ウエット路面にお
けるハイドロ性能などのウエット走行性の向上と、残余
CFを0に近づけ車両の片流れを抑制することをバラン
スよく高めうる。
As described above, the pneumatic tire of the present invention has the following features.
By providing the above configuration, it is possible to improve dry running performance including steering stability on a dry road surface, to improve wet running performance such as hydro performance on a wet road surface, and to reduce residual CF to zero to suppress one-way flow of a vehicle. Can be increased in a well-balanced manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の空気入りタイヤの実施の形態の一例の
トレッドパターンを示す展開平面図である。
FIG. 1 is a developed plan view showing a tread pattern of an example of a pneumatic tire according to an embodiment of the present invention.

【図2】その軸方向断面図である。FIG. 2 is an axial sectional view thereof.

【図3】ラグ溝の断面を示し、(A)はa−a′線、
(B)はb−b′線、(C)はc−c′線の各断面図で
ある。
FIG. 3 shows a cross section of a lug groove, wherein FIG.
(B) is a sectional view taken along the line bb 'and (C) is a sectional view taken along the line cc'.

【図4】ラグ溝の断面を示し、(A)はd−d′線、
(B)はe−e′線、(C)はf−f′線の各断面図で
ある。
FIG. 4 shows a cross section of a lug groove, where (A) is a dd ′ line,
(B) is a sectional view taken along the line ee ', and (C) is a sectional view taken along the line ff'.

【図5】(A)、(B)、(C)は何れもブロックに生
じる作用力を略示する平面図である。
FIGS. 5A, 5B, and 5C are plan views schematically showing the acting force generated in the block.

【図6】他のトレッドパターンの実施形態を示す平面図
である。
FIG. 6 is a plan view showing an embodiment of another tread pattern.

【図7】従来技術を示す平面図である。FIG. 7 is a plan view showing a conventional technique.

【図8】従来技術を示す平面図である。FIG. 8 is a plan view showing a conventional technique.

【符号の説明】[Explanation of symbols]

2 トレッド面 3 周方向溝 3A 外の周方向溝 4 ラグ溝 5 トレッド溝部 6 リブ 7 ブロック 9 溝壁 A 交点A B 交点B C タイヤ赤道 F 接地端 K 内側線 L 外側線 M 中央領域 P 1/8 点 R 半径線 S 接地面 SW 接地全巾 α、β 溝壁角度 θ ラグ溝の流れ角 2 Tread surface 3 Circumferential groove 3A Outer circumferential groove 4 Lug groove 5 Tread groove part 6 Rib 7 Block 9 Groove wall A Intersection point A B Intersection point BC Tire equator F Grounding end K Inner line L Outer line M Central area P 1 / 8 points R radius line S ground plane SW total ground width α, β groove wall angle θ flow angle of lug groove

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−178026(JP,A) 特開 平7−246806(JP,A) 特開 平3−253409(JP,A) 特開 平3−186405(JP,A) 特開 平8−183311(JP,A) 特開 平5−178008(JP,A) 特開 平6−211006(JP,A) 特開 平5−178026(JP,A) 特開 平7−246806(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60C 11/04 - 11/08 B60C 9/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-178026 (JP, A) JP-A-7-246806 (JP, A) JP-A-3-253409 (JP, A) JP-A-3- 186405 (JP, A) JP-A-8-183111 (JP, A) JP-A-5-178008 (JP, A) JP-A-6-2121006 (JP, A) JP-A-5-178026 (JP, A) JP-A-7-246806 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B60C 11/04-11/08 B60C 9/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】トレッド面に、周方向にのびる周方向溝
と、トレッド縁からのびる多数条のラグ溝を有するトレ
ッド溝部を、タイヤ赤道C上の点で点対称に配列した非
方向性のパターンを具えるとともに、 正規リムに装着しかつ正規内圧と正規荷重とを加えた正
規状において、トレッド面が接地する接地端間のタイヤ
軸方向の距離である接地全巾SWの1/8倍の距離をタ
イヤ赤道Cから軸方向両側に隔てる1/8点を周方向に
通る内側線間の中央領域内のみに周方向にのびるリブを
挟む少なくとも1対の前記周方向溝を設けるとともに、
最もトレッド縁側に位置する外の周方向溝を前記ラグ溝
に接続することによりタイヤ赤道C両側でブロックを形
成し、 かつラグ溝が内側線と交わる交点Aと、接地端を周方向
に通る外側線にラグ溝が交わる交点Bとを結ぶ線分AB
がタイヤ赤道Cとなすラグ溝の流れ角θを10度以上か
つ40度以下とするとともに、前記ブロックの蹴込み側の各溝壁において、 タイヤ転動
に際して先行して接地する接地部分の溝壁がタイヤ赤道
Cと平行な平面において半径線となす先着側の溝壁角度
αを20度以上かつ40度未満、後着側の溝壁角度βを
0度以上かつ20度未満とし、しかも先着側の溝壁と後
着側の溝壁とをなめらかに連続させてなる空気入りタイ
ヤ。
1. A non-directional pattern in which a circumferential groove extending in the circumferential direction and a plurality of lug grooves extending from the tread edge are arranged point-symmetrically at points on the tire equator C on the tread surface. In the normal condition where the tread surface is attached to the normal rim and the normal internal pressure and the normal load are applied, the total tread width SW, which is the distance in the tire axial direction between the tread surfaces where the tread surface contacts the tread surface, is 1/8 times. At least one pair of the circumferential grooves sandwiching a rib extending in the circumferential direction is provided only in a central region between inner lines passing circumferentially through a 点 point that separates the distance from the tire equator C on both sides in the axial direction,
A block is formed on both sides of the tire equator C by connecting the outer circumferential groove located closest to the tread edge side to the lug groove, and the outer side passing circumferentially through the intersection A where the lug groove intersects with the inner line and the grounding end. A line segment AB connecting the line to the intersection B where the lug groove intersects
The flow angle θ of the lug groove formed by the tire with the tire equator C is set to 10 degrees or more and 40 degrees or less, and the groove wall of the ground contact portion that contacts the ground before the tire rolls on each of the groove walls on the kick-in side of the block. The groove wall angle α on the first arrival side, which forms a radius line in a plane parallel to the tire equator C, is 20 degrees or more and less than 40 degrees, the groove wall angle β on the last arrival side is 0 degrees or more and less than 20 degrees, and the first arrival side The pneumatic tire is formed by smoothly connecting the groove wall of the rear side and the groove wall of the rear arrival side.
JP18766096A 1996-06-28 1996-07-17 Pneumatic tire Expired - Fee Related JP3182344B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18766096A JP3182344B2 (en) 1996-07-17 1996-07-17 Pneumatic tire
EP97304541A EP0816130B1 (en) 1996-06-28 1997-06-26 Pneumatic tyre
DE69732451T DE69732451T2 (en) 1996-06-28 1997-06-26 tire
US08/884,646 US6343636B1 (en) 1996-06-28 1997-06-27 Pneumatic tire including non-directional tread pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18766096A JP3182344B2 (en) 1996-07-17 1996-07-17 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH1029410A JPH1029410A (en) 1998-02-03
JP3182344B2 true JP3182344B2 (en) 2001-07-03

Family

ID=16209960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18766096A Expired - Fee Related JP3182344B2 (en) 1996-06-28 1996-07-17 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3182344B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573062B2 (en) * 2009-09-16 2014-08-20 横浜ゴム株式会社 Pneumatic tire
JP6073739B2 (en) * 2013-05-01 2017-02-01 株式会社ブリヂストン Pneumatic tire

Also Published As

Publication number Publication date
JPH1029410A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
US5277235A (en) Pneumatic radial tire with high cornering and steering stability
CA2058801A1 (en) Tread for a tire
CN111660733A (en) Tyre for vehicle wheels
JP3035172B2 (en) Radial tire
JPH03139402A (en) Pneumatic tire
JPH0655909A (en) Tire for motor-bicycle
JP3569387B2 (en) Flat radial tire with asymmetric tread pattern on asymmetric profile
JP2009519856A (en) Pneumatic tire with asymmetric tread profile
JP3332358B2 (en) Pneumatic tire
JP3511299B2 (en) Set asymmetric pneumatic tire and method of mounting the same
WO2019159544A1 (en) Pneumatic tire
JP3182344B2 (en) Pneumatic tire
US5299612A (en) Pneumatic radial tire with high cornering and steering stability
JP3358976B2 (en) Pneumatic tire
JP4118391B2 (en) Pneumatic radial tire for motorcycles
JP4705284B2 (en) Radial tire for ATV
JP3377262B2 (en) Pneumatic tires for motorcycles
JP3513340B2 (en) Pneumatic tires for vehicles
JP3569081B2 (en) Pneumatic radial tire
JP3983860B2 (en) Pneumatic radial tire
JP2934403B2 (en) Pneumatic tire
JP4037949B2 (en) Pneumatic tires for passenger cars
CN112644228A (en) Tyre for vehicle wheels
JPWO2009011344A1 (en) Pneumatic tire
JPH08188015A (en) Front and rear wheel pneumatic tire pair for vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees