JP3181535B2 - Method for producing polyacetal copolymer - Google Patents
Method for producing polyacetal copolymerInfo
- Publication number
- JP3181535B2 JP3181535B2 JP14507397A JP14507397A JP3181535B2 JP 3181535 B2 JP3181535 B2 JP 3181535B2 JP 14507397 A JP14507397 A JP 14507397A JP 14507397 A JP14507397 A JP 14507397A JP 3181535 B2 JP3181535 B2 JP 3181535B2
- Authority
- JP
- Japan
- Prior art keywords
- polymerization
- monomer
- producing
- polyacetal copolymer
- vaporized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明はポリアセタール共重
合体の製造方法に関する。詳しくはトリオキサンを主モ
ノマーとして、これと共重合し得るコモノマーとの共重
合において、重合後期又は末期において未反応モノマー
を効率的且つ経済的に重合系より除去、回収して再使用
することができ、熱安定性等の品質に優れたポリアセタ
ール共重合体を簡単な工程で経済的に製造する方法に関
するものである。The present invention relates to a method for producing a polyacetal copolymer. In detail, in the copolymerization with trioxane as a main monomer and a comonomer that can be copolymerized therewith, unreacted monomers can be efficiently and economically removed from the polymerization system at the latter or final stage of polymerization, recovered and reused. The present invention relates to a method for economically producing a polyacetal copolymer having excellent quality such as thermal stability in a simple process.
【0002】[0002]
【従来の技術】従来、ポリアセタール共重合体の製造法
としては、トリオキサンを主モノマーとし、隣接炭素原
子を有する環状エーテル又は環状ホルマールをコモノマ
ーとするカチオン重合が知られており、これら重合に用
いるカチオン活性触媒としては、ルイス酸、殊にホウ
素、スズ、チタン、リン、ヒ素及びアンチモンのハロゲ
ン化物、例えば三フッ化ホウ素、四塩化スズ、四塩化チ
タン、五塩化リン、五フッ化リン、五フッ化ヒ素及び五
フッ化アンチモン、及びその錯化合物又は塩の如き化合
物、或いはプロトン酸、例えばパーフルオロアルキルス
ルホン酸(トリフルオロメタンスルホン酸等)、パーク
ロル酸、これらプロトン酸のエステル、無水物、更に、
ヘテロポリ酸(リンモリブデン酸、リンタングステン
酸、ケイモリブデン酸、ケイタングステン酸等)、イソ
ポリ酸及びこれらの酸性塩も提案されている。又、イオ
ンペア触媒、例えばトリメチルオキソニウムヘキサフル
オルホスフェート、トリフェニルメチルヘキサフルオル
アルゼナート、アセチルヘキサフルオルホスフェート及
びアセチルヘキサフルオルアルゼナート等が知られてい
る。中でも三フッ化ホウ素、或いは三フッ化ホウ素と有
機化合物、例えばエーテル類との配位化合物は、トリオ
キサンを主モノマーとする(共)重合触媒として最も一
般的であり、工業的にも広く用いられている。2. Description of the Related Art Conventionally, as a method for producing a polyacetal copolymer, cationic polymerization using trioxane as a main monomer and a cyclic ether or cyclic formal having adjacent carbon atoms as a comonomer has been known. Active catalysts include Lewis acids, especially boron, tin, titanium, phosphorus, arsenic and antimony halides, such as boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, phosphorus pentafluoride, pentafluoride. Compounds such as arsenic arsenide and antimony pentafluoride, and complex compounds or salts thereof, or protonic acids such as perfluoroalkylsulfonic acid (trifluoromethanesulfonic acid and the like), perchloric acid, esters and anhydrides of these protonic acids, and
Heteropoly acids (phosphomolybdic acid, phosphotungstic acid, silicomolybdic acid, silicotungstic acid, etc.), isopolyacids and their acid salts have also been proposed. Also, ion pair catalysts such as trimethyloxonium hexafluorophosphate, triphenylmethylhexafluoroarsenate, acetylhexafluorophosphate and acetylhexafluoroarsenate are known. Among them, boron trifluoride or a coordination compound of boron trifluoride and an organic compound such as ethers is the most common as a (co) polymerization catalyst using trioxane as a main monomer, and is widely used industrially. ing.
【0003】しかし、何れの触媒を用いても重合後期に
重合速度が急減し、短時間に 100%に近い重合収率を得
ることは至難であり、極めて長時間を要して非能率的で
あるのみならず、重合後期には触媒が生成重合体の分解
を促進する作用が相対的に優位となり、分子量の低下を
来すのみならず、不安定部分が増加して熱安定性等の品
質も劣る結果となる。また、重合触媒の量を増加すれば
全体的に重合速度は促進するが、生成粗重合体の品質は
益々劣化し、後工程で煩雑な安定化処理を要するため製
造工程全体としては決して好ましい方法ではない。However, using any of the catalysts, the polymerization rate is rapidly reduced in the latter stage of the polymerization, and it is extremely difficult to obtain a polymerization yield close to 100% in a short time, and it takes an extremely long time to be inefficient. Not only that, in the late stage of polymerization, the action of the catalyst to promote the decomposition of the produced polymer becomes relatively dominant, which not only reduces the molecular weight, but also increases the unstable part and increases the quality such as thermal stability. Is also inferior. In addition, if the amount of the polymerization catalyst is increased, the polymerization rate is accelerated as a whole, but the quality of the resulting crude polymer is further deteriorated, and a complicated stabilization treatment is required in the post-process, so that the entire production process is never a preferable method. Absent.
【0004】従って、従来のポリアセタール共重合体の
製造法は重合率が比較的低い段階で触媒の失活剤を含む
比較的多量の溶液を加えて重合を停止し、同時に残存す
る未反応モノマーを洗浄して回収し、精製して再使用す
る方法が一般的であるが、かかる方法で洗浄、回収した
未反応モノマーは比較的低濃度の溶液として回収される
ためこれを再使用するには、分離、精製に煩雑な工程と
エネルギーを要し、また、未反応モノマーの回収を断念
すれば完全な損失となり、何れにしても経済的に好まし
くない。Therefore, in the conventional method for producing a polyacetal copolymer, the polymerization is stopped by adding a relatively large amount of a solution containing a catalyst deactivator at a stage where the conversion is relatively low, and at the same time, the remaining unreacted monomer is removed. The method of washing and recovering, purifying and reusing is generally used.However, since the unreacted monomer washed and recovered by such a method is recovered as a relatively low-concentration solution, it is necessary to reuse it. Separation and purification require complicated steps and energy, and if recovery of the unreacted monomer is abandoned, complete loss will result, which is not economically preferable.
【0005】[0005]
【発明が解決しようとする課題】本発明は、かかる現状
に鑑み、高品質の粗重合体を得ることができ、シンプル
なプロセスで熱的にも極めて安定なポリアセタール共重
合体を経済的に製造することを目的とし、未反応モノマ
ーを経済的に回収、再使用することができ、生成ポリア
セタール重合体の品質と、経済的効果を両立させること
を目的とするものである。即ち本発明者らは、トリオキ
サンを主モノマーとする共重合において、重合の後期又
は末期には、著しく重合速度が減じ、 100%に近い重合
収率を得るには極めて長時間を要するのみならず、重合
末期には分解反応が相対的に極めて優勢となり、分子量
の低下、不安定ポリマーの著しい増加を来たし、煩雑な
安定化処理を要するなど品質上問題となることに鑑み、
重合反応を完結する前に、ある特定の重合率に到達した
ところでトリオキサンその他の未反応モノマーを気化さ
せて重合系から分離除去して回収することにより、従来
の如き大量の溶剤で洗浄して低濃度のモノマー溶液とし
て捕集する方法に比し、その分離捕集を経済的に行うこ
とができ、そのまま或いは極めて簡単な精製処理のみで
再使用することができ、重合反応末期の著しい分解によ
る重合体の品質の悪化を避けると同時に、未反応モノマ
ーの回収、再使用を簡単且つ経済的に行うことができ、
品質と経済性の両面の効果が期待された。ところが本発
明者らが、かかる構想に基づき種々実験・検討を行った
ところ、重合後期に未反応モノマーを気化させる際に、
未反応モノマーの気化捕集のラインで重合反応が生じ
て、未反応モノマーの気化捕集を長期間安定して円滑に
行うのに支障を生じることが判明した。この傾向は特に
三フッ化ホウ素系など揮発性の重合触媒を使用する場合
に顕著に認められ、かかる揮発性触媒はその一部が気化
分離したモノマーに同伴して、回収系での重合を惹起す
るものと解される。本発明は重合後期又は末期における
未反応モノマーの気化、分離、回収する場合の上記問題
点を解決して、円滑に未反応モノマーを気化して重合系
から分離捕集し、品質良好なポリアセタール共重合体を
経済的に製造することを目的とするものである。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is capable of obtaining a high-quality crude polymer and economically producing a thermally stable polyacetal copolymer by a simple process. It is an object of the present invention to allow the unreacted monomer to be economically recovered and reused, and to achieve both the quality of the produced polyacetal polymer and the economic effect. That is, in the copolymerization using trioxane as a main monomer, the present inventors have found that the polymerization rate is remarkably reduced at the latter or final stage of the polymerization, and it takes not only a very long time to obtain a polymerization yield close to 100% but also a very long time. In view of the fact that the decomposition reaction becomes relatively predominant in the late stage of polymerization, the molecular weight is reduced, the amount of unstable polymer is significantly increased, and quality problems such as complicated stabilization treatment are required.
Before the completion of the polymerization reaction, trioxane and other unreacted monomers are vaporized when a certain degree of polymerization is reached, separated and removed from the polymerization system, and recovered. Compared to the method of collecting as a monomer solution having a high concentration, the separation and collection can be performed economically, and can be reused as it is or only by a very simple purification treatment, and the weight due to remarkable decomposition at the end of the polymerization reaction can be reduced. It is possible to easily and economically recover and reuse the unreacted monomer while avoiding deterioration of the coalescence quality,
Both quality and economic effects were expected. However, the present inventors have conducted various experiments and studies based on such a concept, and found that when unreacted monomers are vaporized in the late stage of polymerization,
It has been found that a polymerization reaction occurs in a line for vaporizing and collecting unreacted monomers, which hinders stable and smooth vaporization and collection of unreacted monomers for a long period of time. This tendency is particularly remarkable when a volatile polymerization catalyst such as boron trifluoride is used, and such a volatile catalyst causes polymerization in the recovery system, with a part of the volatile catalyst accompanying the monomer separated by vaporization. It is understood that. The present invention solves the above-mentioned problems in the case of vaporizing, separating, and recovering unreacted monomer in the latter or final stage of polymerization, smoothly vaporizing the unreacted monomer, separating and collecting the unreacted monomer from the polymerization system, and obtaining a high-quality polyacetal copolymer. The purpose is to produce a polymer economically.
【0006】[0006]
【課題を解決するための手段】本発明者らは前記の如き
問題、特に重合後期又は末期における未反応モノマーの
気化、分離、回収する場合において、回収系での重合物
の生成の問題を解決し、安定して未反応モノマーの気化
分離捕集を行うべく検討した結果、特定量の塩基性物質
を添加して気化分離した未反応モノマーと共存させて処
理することにより、分離した未反応モノマーの回収系に
おける重合物の生成を抑え、円滑に未反応モノマーを分
離回収して、再使用に供することができ、経済的に品質
良好なポリアセタール共重合体の製造を可能ならしめた
ものである。即ち、本発明は、トリオキサンを主モノマ
ーとし、コモノマーとして少なくとも一つの炭素間結合
を有する環状エーテル又は環状ホルマールを用い、カチ
オン活性触媒により共重合してポリアセタール共重合体
を製造するにあたり、重合率が少なくとも60重量%(対
全モノマー)以上となった段階で、未反応モノマーを気
化させて重合系から分離、除去、回収し、その回収にあ
たり、未反応モノマーに塩基性化合物を添加、共存させ
ることを特徴とするポリアセタール共重合体の製造方法
である。Means for Solving the Problems The present inventors have solved the above-mentioned problems, particularly, the problem of the formation of a polymer in a recovery system in the case of vaporizing, separating and recovering unreacted monomers in the latter or later stages of polymerization. As a result of studying to stably vaporize and collect the unreacted monomer, the unreacted monomer separated by adding a specific amount of basic substance and co-existing with the unreacted monomer vaporized and separated was treated. The production of polymer in the recovery system is suppressed, the unreacted monomer can be separated and recovered smoothly, and can be reused, enabling the production of economically good-quality polyacetal copolymer. . That is, the present invention uses trioxane as a main monomer, uses a cyclic ether or cyclic formal having at least one carbon-carbon bond as a comonomer, and copolymerizes with a cationic active catalyst to produce a polyacetal copolymer. At least 60% by weight (based on total monomers), unreacted monomers are vaporized and separated, removed, and recovered from the polymerization system. Upon recovery, a basic compound is added to and coexisted with the unreacted monomers. A method for producing a polyacetal copolymer characterized by the following:
【0007】[0007]
【発明の実施の形態】以下本発明について詳しく説明す
る。まず、本発明の共重合の対象となる原料モノマーは
ホルムアルデヒドの環状三量体であるトリオキサンを主
体とするものであり、コモノマーとしては従来のトリオ
キサンとの共重合に用いられる少なくとも一つの隣接炭
素間結合を有する公知の環状ホルマール又は環状エーテ
ルが何れも使用可能である。かかるコモノマーとして
は、例えば、1,3−ジオキソラン、ジエチレングリコ
ールホルマール、1,4−ブタンジオールホルマール、
1,3−ジオキサン、1,3,5−トリオキセパン等の
環状ホルマール、又はエチレンオキシド、プロピレンオ
キシド、エピクロルヒドリン等の環状エーテルが挙げら
れる。また、共重合体が分岐状又は架橋状分子構造を形
成するためのコモノマーとして、アルキレン−ジグリシ
ジルエーテル又はジホルマールの如き2つ以上の環状エ
ーテル基又は環状ホルマール基を有する化合物、例え
ば、ブタンジオールジグリシジルエーテル、ブタンジオ
ールジメチリデングリセリルエーテル等を用いることも
できる。かかるコモノマーは少なくとも1種、又は目的
に応じて2種以上を併用してもよい。特にコモノマーと
しては、1,3−ジオキソラン、ジエチレングリコール
ホルマール、1,4−ブタンジオールホルマール、エチ
レンオキシド等の環状ホルマール或いは環状エーテルが
好ましい。本発明に用いるコモノマー量はトリオキサン
に対して、 0.1〜20モル%であり、好ましくは 0.2〜10
モル%である。コモノマーの量が多いほど、生成ポリマ
ーの熱安定性には有利であるが、過大になると生成共重
合体が軟質となり融点の低下を生じて好ましくない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. First, the raw material monomer to be copolymerized in the present invention is mainly composed of trioxane, which is a cyclic trimer of formaldehyde, and the comonomer is at least one adjacent carbon atom used for copolymerization with conventional trioxane. Any known cyclic formal or cyclic ether having a bond can be used. Such comonomers include, for example, 1,3-dioxolan, diethylene glycol formal, 1,4-butanediol formal,
Examples include cyclic formals such as 1,3-dioxane and 1,3,5-trioxepane, and cyclic ethers such as ethylene oxide, propylene oxide, and epichlorohydrin. Compounds having two or more cyclic ether groups or cyclic formal groups such as alkylene-diglycidyl ether or diformal as comonomers for the copolymer to form a branched or cross-linked molecular structure, for example, butanediol diamine Glycidyl ether, butanediol dimethylidene glyceryl ether and the like can also be used. Such comonomers may be used in combination of at least one kind or two or more kinds depending on the purpose. Particularly, as the comonomer, a cyclic formal such as 1,3-dioxolan, diethylene glycol formal, 1,4-butanediol formal, ethylene oxide or a cyclic ether is preferable. The amount of the comonomer used in the present invention is 0.1 to 20 mol%, preferably 0.2 to 10 mol%, based on trioxane.
Mol%. The larger the amount of the comonomer, the more advantageous the thermal stability of the produced polymer. However, if the amount of the comonomer is too large, the produced copolymer becomes soft and the melting point is lowered, which is not preferable.
【0008】尚、本発明の共重合において、更に目的に
応じて重合度を調節するための公知の連鎖移動剤、例え
ば、メチラールの如き低分子量の線状アセタール等を添
加することも可能である。また重合に影響しない程度の
立体障害性フェノール系の酸化防止剤を予めモノマー又
はコモノマーに添加し、その存在下で共重合させるのも
好ましい重合法である。また、重合系(モノマー等)に
は活性水素を有する不純物、例えば蟻酸、水、メタノー
ル等が実質的に存在しないことが好ましく、例えばこれ
らの不純物がそれぞれ 20ppm以下、更には 10ppm以下で
あることが望ましい。In the copolymerization of the present invention, a known chain transfer agent for adjusting the degree of polymerization, such as a low-molecular-weight linear acetal such as methylal, may be added according to the purpose. . It is also a preferable polymerization method that a sterically hindered phenolic antioxidant that does not affect the polymerization is previously added to the monomer or comonomer and copolymerized in the presence thereof. Further, it is preferable that impurities having active hydrogen, such as formic acid, water, and methanol, are not substantially present in the polymerization system (monomer or the like). For example, these impurities are preferably 20 ppm or less, and more preferably 10 ppm or less. desirable.
【0009】次に、本発明における重合触媒としては、
前記例示した一般のカチオン活性触媒が何れも使用され
る。中でも揮発性の重合触媒である三フッ化ホウ素(ガ
ス)、或いは三フッ化ホウ素と有機化合物(例えばエー
テル類)との配位化合物、或いはパークロル酸、パーフ
ルオロアルキルスルホン酸(例えばトリフルオロメタン
スルホン酸、ペンタフルオロエタンスルホン酸、ヘプタ
フルオロプロパンスルホン酸)等のプロトン酸、又はそ
れらの無水物、アルキルエステル等は揮発性を有するた
め特に本発明の効果を得るのに適した触媒である。触媒
の添加法は特に限定されるものではなく、トリオキサン
とコモノマーの混合物へ添加してもよいが、予めコモノ
マー中に比較的低温度で添加混合し、これをコモノマー
自体の重合が進行する前にトリオキサンと混合して共重
合を開始してもよい。Next, as the polymerization catalyst in the present invention,
Any of the general cation-active catalysts exemplified above may be used. Above all, boron trifluoride (gas) which is a volatile polymerization catalyst, a coordination compound of boron trifluoride and an organic compound (for example, ethers), or perchloric acid or perfluoroalkylsulfonic acid (for example, trifluoromethanesulfonic acid) , Pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, etc., or their anhydrides, alkyl esters, etc., are volatile catalysts which are particularly suitable for obtaining the effects of the present invention. The method of adding the catalyst is not particularly limited, and may be added to a mixture of trioxane and a comonomer.However, it is added and mixed in a comonomer in advance at a relatively low temperature, and before the polymerization of the comonomer itself proceeds. The copolymerization may be started by mixing with trioxane.
【0010】本発明の重合法は、従来公知のトリオキサ
ンの重合法と同様の設備と方法で行うことができる。即
ち、バッチ式、連続式、いずれも可能であり、液体モノ
マーを用い、重合の進行とともに固体粉塊状のポリマー
を得る連続式塊状重合方法が工業的には一般的であり好
ましい。この場合、必要に応じて少量の不活性液体媒体
が共存してもよい。本発明に用いられる重合装置として
は、バッチ式では一般に用いられる温調可能な攪拌機付
きの反応機が使用でき、また、連続式としては、コニー
ダー、2軸スクリュー式連続押出混合機、2軸パドルタ
イプの連続混合機、その他これまでに提案されているト
リオキサン等の連続重合装置が使用可能であり、2種以
上のタイプの重合機を組み合わせて使用することもでき
る。特に重合反応によって生成する固体重合物が微細な
形態で得られるような破砕機能を備えたものが好まし
い。重合温度は、重合方式、使用触媒の種類、量等によ
り特に限定はしないが、一般に用いられる塊状重合法を
採用するならば、60〜 120℃、好ましくは65〜 110℃の
温度範囲で行われる。また、重合時間は触媒量、重合温
度等とも関係し、特に制限はないが、一般には 0.5〜 1
00分の重合時間が選ばれ、特に1〜30分とするのが好ま
しい。The polymerization method of the present invention can be carried out with the same equipment and method as the conventionally known polymerization method of trioxane. That is, any of a batch type and a continuous type is possible, and a continuous bulk polymerization method using a liquid monomer and obtaining a solid powder bulk polymer with the progress of polymerization is industrially common and preferred. In this case, if necessary, a small amount of an inert liquid medium may coexist. As a polymerization apparatus used in the present invention, a batch-type reactor with a temperature-controllable stirrer generally used can be used. As a continuous type, a co-kneader, a twin-screw continuous extrusion mixer, a twin-screw paddle can be used. A continuous polymerization device of a type such as a continuous mixer and other conventionally proposed trioxane and the like can be used, and two or more types of polymerization devices can be used in combination. Particularly, those having a crushing function such that a solid polymer produced by a polymerization reaction can be obtained in a fine form are preferable. The polymerization temperature is not particularly limited by the type of polymerization, the type of catalyst used, the amount, and the like.However, if a generally used bulk polymerization method is employed, the polymerization is carried out in a temperature range of 60 to 120 ° C, preferably 65 to 110 ° C. . Further, the polymerization time is also related to the amount of the catalyst, the polymerization temperature, and the like, and is not particularly limited.
A polymerization time of 00 minutes is selected, and particularly preferably 1 to 30 minutes.
【0011】本発明は、上記の如き方法による重合反応
の速度が減退し、分解反応が相対的に優勢となる重合の
後期又は末期の適当な段階で重合系から未反応モノマー
を気化させて分離除去することを特徴とする。かかる未
反応モノマーの気化による分離は重合率が少なくとも60
%以上(対全モノマー)、好ましくは70〜90%、特に好
ましくは75〜85%に到達したところで行う。重合率が過
少の段階で未反応モノマーの分離を行うと、品質的には
良いが、その気化、分離、回収に長時間を要し、且つ取
得重合体の収率が減じ経済的に好ましくない。また、重
合率が過大になった段階で、未反応モノマーの分離を行
うのは、分離操作自体は短時間で可能となり収率も高い
が重合に長時間を要し、且つ、その後期に分解反応が生
じて品質上好ましくない。この観点から本発明は未反応
モノマーの分離を前記の如き重合率に到達したところで
行うのが適当であって、この範囲において、目的に応じ
適宜選択すればよい。According to the present invention, the unreacted monomer is vaporized and separated from the polymerization system at an appropriate late or final stage of the polymerization in which the rate of the polymerization reaction by the above method is reduced and the decomposition reaction becomes relatively dominant. It is characterized by being removed. Separation by vaporization of such unreacted monomers has a conversion of at least 60
% (Based on total monomers), preferably 70-90%, particularly preferably 75-85%. When the unreacted monomer is separated at a stage where the polymerization rate is too low, the quality is good, but the vaporization, separation, and recovery require a long time, and the yield of the obtained polymer is reduced, which is not economically preferable. . Separation of the unreacted monomer at the stage when the polymerization rate becomes excessive can be performed in a short time and the yield is high, but it takes a long time for the polymerization, and the decomposition takes place in the later stage. A reaction occurs and is not preferable in quality. From this point of view, the present invention suitably performs the separation of the unreacted monomer when the above-mentioned polymerization rate is reached, and within this range, it may be appropriately selected according to the purpose.
【0012】また、未反応モノマーの気化、分離を効率
的に短時間に行うためには重合物が微細な粒子(少なく
とも3mm以下、好ましくは2mm以下、更には1mm以下)
に粉砕されていることが好ましく、このため重合物を一
旦粉砕機を通して微粉砕した後、又は粉砕と同時に未反
応モノマーを気化させ分離するのが好ましい。本発明は
上記の如く、未反応モノマーを気化させて反応系から分
離除去することを特徴とし、本発明におけるトリオキサ
ンを主体とするモノマーは揮発性が高いため重合温度に
おいて、或いは所定の段階で多少昇温して反応系を減圧
吸引するか、或いは窒素ガスの如き不活性のキャリアー
ガスを流通させ、或いは更に両者を併用することによっ
て意外に簡単に気化させて、反応系から除去することが
できる。In order to efficiently vaporize and separate the unreacted monomer in a short time, the polymer should be fine particles (at least 3 mm or less, preferably 2 mm or less, more preferably 1 mm or less).
The polymer is preferably pulverized once through a pulverizer or, at the same time as the pulverization, to vaporize and separate the unreacted monomer. As described above, the present invention is characterized in that the unreacted monomer is vaporized and separated and removed from the reaction system, and the monomer mainly composed of trioxane in the present invention has a high volatility, so that it is slightly polymerized at a polymerization temperature or at a predetermined stage. It is possible to remove the reaction system from the reaction system by evaporating the reaction system under reduced pressure by raising the temperature, or by passing an inert carrier gas such as nitrogen gas, or by using both together in a surprisingly simple manner. .
【0013】次に、本発明はかかる未反応モノマーの気
化、分離、回収において前記の如く気化、分離したモノ
マーからの重合物の生成による回収ラインの閉塞等の支
障を防止するため少なくとも分離した未反応モノマーは
所定量の塩基性物質を添加し共存させることを第2の特
徴とし、かくすることによって未反応モノマーの気化、
分離、回収を安定して円滑に行うことができる。かかる
目的で未反応モノマーに添加し、共存させる塩基性化合
物としては未反応モノマーが気体として分離される故、
揮発性の物質が好ましく、例えばアンモニアや脂肪族ア
ミン化合物、例えば、メチルアミン、ジメチルアミン、
トリメチルアミン、エチルアミン、ジエチルアミン、ト
リエチルアミン、ブチルアミン、ジブチルアミン、トリ
ブチルアミン及びこれらに対応するアルコールアミンな
どが挙げられるが、処理温度、圧力下で揮発性を有する
ものであれば如何なる塩基性物質であってもよく、比較
的高沸点のものでも、キャリアーガス等で希釈して添加
共存させることにより目的は達せられる。かかる塩基性
物質はそのままガス状で未反応モノマーに加えてもよ
く、また不活性溶媒の溶液として添加し、未反応モノマ
ーと共に気化させて、共存させてもよい。また重合触媒
の失活、重合停止のための失活剤の添加処理と兼ねて未
反応モノマーの気化分離を行っても気化分離したモノマ
ー中に失活剤としての塩基性物質が同伴し本発明の目的
は達せられる。Next, the present invention provides at least the separated unreacted monomer in order to prevent the obstruction of the recovery line due to the formation of a polymer from the separated monomer in the vaporization, separation and recovery of the unreacted monomer. The second feature of the reactive monomer is that a predetermined amount of a basic substance is added and made to coexist, and thus the unreacted monomer is vaporized,
Separation and recovery can be performed stably and smoothly. Because the unreacted monomer is separated as a gas as a basic compound added to the unreacted monomer for coexistence for this purpose,
Volatile substances are preferred, for example ammonia and aliphatic amine compounds, such as methylamine, dimethylamine,
Trimethylamine, ethylamine, diethylamine, triethylamine, butylamine, dibutylamine, tributylamine and the corresponding alcohol amines, and the like.Examples include any basic substance as long as it has volatility at the treatment temperature and pressure. Even with a relatively high boiling point, the purpose can be achieved by diluting with a carrier gas or the like and allowing it to coexist. Such a basic substance may be added to the unreacted monomer in a gaseous state as it is, or may be added as a solution of an inert solvent and vaporized together with the unreacted monomer to coexist. In addition, even if the unreacted monomer is vaporized and separated for the purpose of deactivating the polymerization catalyst and adding a deactivator for terminating the polymerization, a basic substance as a deactivator accompanies the vaporized and separated monomer in the present invention. The goal of is achieved.
【0014】本発明の方法によれば、未反応モノマーは
ガス化して重合反応系より分離し、溶剤等により洗浄
(抽出)分離するものではない故、これを凝縮液化する
ことによりほぼ 100%の状態で捕集され、前記回収時の
重合防止のため共存させる塩基性物質もごく微量(例え
ば使用した重合触媒量の 0.1〜30モル%)で足りるた
め、新しいモノマーに混合してそのまま再使用しても重
合反応に殆ど悪影響はなく使用できる。また仮に比較的
多量の塩基性物質、その他の混入物によりそのままでは
直接再使用に若干支障があっても、新しいトリオキサン
精製工程に合流させて処理することによりその回収精製
に要するエネルギーは極めて減少することができる。従
って従来の如き洗浄により低濃度の溶液として分離捕集
する場合に比べて、濃縮、精製等、再使用するまでの煩
雑で多量のエネルギーを要する回収精製の不利を避ける
ことができ、極めて経済的な回収、再使用を可能ならし
める利点を有する。According to the method of the present invention, unreacted monomers are gasified and separated from the polymerization reaction system, and are not washed (extracted) and separated by a solvent or the like. Since only a very small amount of a basic substance (for example, 0.1 to 30 mol% of the amount of the used polymerization catalyst) coexists to prevent polymerization at the time of the above-mentioned recovery is sufficient, it is mixed with a new monomer and reused as it is. However, it can be used with almost no adverse effect on the polymerization reaction. Also, even if a relatively large amount of a basic substance or other contaminants directly hinders direct reuse, the energy required for the recovery and purification of the trioxane is greatly reduced by combining it with a new trioxane purification process. be able to. Therefore, compared with the conventional case of separation and collection as a low-concentration solution by washing, concentration, purification, and the like can be avoided, which is complicated and requires a large amount of energy to recover and purify. It has the advantage that it can be recovered and reused.
【0015】本発明は、前記の方法により未反応モノマ
ーを重合系から分離除去し、少なくとも重合系の残存未
反応モノマーが重合体に対し、5重量%以下、好ましく
は2重量%以下、更に好ましくは1重量%以下となるま
で行う。最終残存モノマーはそのまま損失となるため少
ない方が好ましいのは当然であるが、皆無とするには長
時間を要し、かえって不経済となる他、重合体の分解も
併発するので必ずしも皆無とする必要はなく上記範囲の
適当なところで、切り上げればよい。In the present invention, the unreacted monomer is separated and removed from the polymerization system by the above-mentioned method, and at least the residual unreacted monomer of the polymerization system is at most 5% by weight, preferably at most 2% by weight, more preferably at most 2% by weight, based on the polymer. Is performed until it becomes 1% by weight or less. Naturally, it is preferable that the amount of the final residual monomer is small because it is lost as it is.However, it takes a long time to eliminate the residual monomer, which is uneconomical, and the decomposition of the polymer also occurs. It is not necessary to round up at an appropriate place in the above range.
【0016】尚、上記未反応モノマーを気化させて分離
除去した重合物は、要すれば更に同様の塩基性物質、或
いは他の触媒の失活剤として公知の物質を追加して触媒
の失活を十分行った後、或いは触媒の失活剤として塩基
性物質を加え十分な失活処理を行うと同時に未反応モノ
マーを気化させて分離除去を行い、失活剤としての塩基
性物質の一部を同伴させながら、未反応モノマーを気化
除去した後、そのまま各種公知の安定剤等を加え、要す
れば更に少量の水、その他安定化のための促進剤等を加
え、ベント付押出機等を用いて溶融混練押出し、安定化
して最終製品(ペレット)とすることができる。本発明
においては、多量の失活剤溶液を使用することなく、ま
た未反応モノマーも殆ど除去されているため、上記の如
く簡単な後処理で製品化が可能で、製造工程全体として
極めて経済的であり、品質も良好である。The polymer obtained by vaporizing and separating and removing the unreacted monomer may be further deactivated by adding a similar basic substance or a substance known as a deactivator for another catalyst, if necessary. After sufficient treatment, or by adding a basic substance as a catalyst deactivator and performing a sufficient deactivation treatment, unreacted monomers are vaporized and separated and removed, and a part of the basic substance as a deactivator After the unreacted monomer is vaporized and removed, various known stabilizers and the like are added as it is, and if necessary, a small amount of water and other stabilizing accelerators are added. It can be melt-kneaded, extruded and stabilized to form a final product (pellet). In the present invention, since a large amount of the deactivator solution is not used and the unreacted monomer is almost completely removed, the product can be produced by the simple post-treatment as described above, and the production process is very economical. And the quality is good.
【0017】本発明の方法は上記の如き基本的構成要件
を満足すればよく、具体的な実施には以下の如き種々の
態様が可能である。例えば、 (I)連続重合装置を用いて、その排出口で、所定の重
合率となる様に条件を設定し、排出口又はその近傍に減
圧、吸引或いは不活性ガス気流の流通機構を設けて未反
応モノマーの気化分離を行うにあたり、 (a)未反応モノマーの気化排出口に揮発性塩基性物質
の導入を行い最小限の塩基性ガスを添加混合して回収す
る (b)重合物に揮発性塩基性物質の必要最小限の量を添
加し、未反応モノマーと共に気化させて気化分離した未
反応モノマーに必要量を共存させる (c)不活性ガス気流中に塩基性物質の所定量を混入し
て導入し、気化した未反応モノマー中に所定量共存させ
る 上記方法によれば気化分離した未反応モノマー中に添加
混合される塩基性ガスの量は極めて少量(これは予備実
験で適宜決定すればよく、一般に重合触媒に対し 0.1〜
30モル%で十分)であるため回収したモノマーは新しい
モノマーと混合してそのまま重合に再使用が可能である
が、未反応モノマーの分離後、重合系には触媒の失活を
十分行うため、同種又は異種の失活剤を追加して処理
し、失活を完全に行うことが好ましい。 (II)重合機排出物を十分粉砕し、別の失活剤処理装置
に移し、揮発性又はガス状塩基性物質を加えて触媒の失
活処理を行うと同時に未反応モノマーの気化分離を行
い、分離したモノマー中に塩基性物質の一部を同伴させ
る。 (III) (II)において塩基性物質の添加を2段に分け、
初め最小限の量を加えて未反応モノマーの気化分離除去
を行い、分離後、更に追加処理して十分な失活処理を行
う(この際、処理装置を2段に分けて実施しても可)。
この方法によれば回収モノマー中の塩基性物質含量は必
要最小限とし、回収モノマーはそのまま再使用ができ
る。 (II)及び(III) の態様は縦型又は横型の装置を用いて
キャリアーガス(気化モノマー含)と重合物の流れを向
流とすることにより連続処理も可能であり、効率もよ
い。尚、上記例示の実施態様は、更にそれぞれの一部を
組み合わせて利用することにより、他の修正態様を採用
することも可能であり、適宜選択し組み合わせて実施す
ればよい。The method of the present invention only needs to satisfy the above-mentioned basic constitutional requirements, and specific embodiments thereof can be carried out in the following various modes. For example, (I) using a continuous polymerization apparatus, conditions are set so that a predetermined polymerization rate is obtained at the outlet, and a decompression, suction, or a flow mechanism of an inert gas stream is provided at or near the outlet. In vaporizing and separating the unreacted monomer, (a) a volatile basic substance is introduced into the vaporization outlet of the unreacted monomer, and a minimum amount of a basic gas is added and mixed to recover (b) volatilization to the polymer Add the required minimum amount of the basic substance, vaporize it with the unreacted monomer, and make the necessary amount coexist with the unreacted monomer that has been vaporized and separated. (C) Mix a predetermined amount of the basic substance into the inert gas stream According to the above method, the amount of the basic gas added and mixed in the vaporized and separated unreacted monomer is extremely small (this may be determined as appropriate in preliminary experiments). Good, generally heavy 0.1 for the catalyst
30 mol% is sufficient), the recovered monomer can be mixed with a new monomer and reused for polymerization as it is.However, after the unreacted monomer is separated, the polymerization system is sufficiently deactivated with a catalyst. It is preferable that the same or different quenching agents be additionally treated to completely deactivate. (II) The polymerizer effluent is pulverized sufficiently, transferred to another deactivator treatment device, and a volatile or gaseous basic substance is added to deactivate the catalyst and simultaneously vaporize and separate unreacted monomers. Part of the basic substance is entrained in the separated monomer. (III) In (II), the addition of the basic substance is divided into two stages,
Initially, a minimum amount is added to vaporize and remove the unreacted monomer, and after separation, additional treatment is performed to perform sufficient deactivation treatment (at this time, the treatment device may be divided into two stages. ).
According to this method, the content of the basic substance in the recovered monomer is minimized, and the recovered monomer can be reused as it is. In the embodiments (II) and (III), continuous processing is possible and efficiency is improved by using a vertical or horizontal apparatus to make the flow of the carrier gas (including the vaporized monomer) and the polymer flow countercurrent. It should be noted that the above-described exemplary embodiments can employ other modified modes by combining and using a part of each of them, and may be appropriately selected and implemented.
【0018】[0018]
【発明の効果】前述の説明及び実施例にて明らかな如
く、本発明の製造方法によれば、従来の方法と比して、
簡単な工程で、未反応モノマーを効率的に分離、回収、
再使用することができ、熱安定性等の品質に優れたポリ
アセタール共重合体を経済的に製造することができる。As is clear from the above description and the examples, according to the manufacturing method of the present invention, compared with the conventional method,
Easily separate and recover unreacted monomers with simple processes.
The polyacetal copolymer which can be reused and has excellent quality such as thermal stability can be economically produced.
【0019】[0019]
【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものでないことは勿論である。尚、実施
例及び比較例中の用語及び測定法は次の通りである。 ・%又はppm :特記しない限りすべて重量で表す。 ・重合率又は重合収率:重合反応後又は未反応モノマー
回収後の取得生成物を失活剤溶液で洗浄後、乾燥して、
その重合体の供給全モノマーに対する%で示す。 ・残存モノマー含有率:未反応モノマー回収後の取得生
成物を所定の失活剤溶液で洗浄し、その洗浄液中のモノ
マーをガスクロマトグラフィーにて求め、粗重合体に対
する%で示す。 ・メルトインデックス(MI):粗重合体(粉粒状)又
は押出ペレットについて、 190℃で測定したメルトイン
デックス(g/10min)を示す。これは分子量に対する特
性値として評価した。即ちMIが低いほど分子量が高
い。但し、測定時の分解を防ぐため、一定の安定剤(チ
バガイギー社、イルガノックス1010(0.5%)及びメラミ
ン(0.1%) を添加し、よく混合して測定。 ・アルカリ分解率(不安定部分の存在量):粗重合体粉
末の1gを 0.5%のアンモニアを含む50%メタノール水
溶液 100mlに入れ、密閉容器中で 180℃、45分間加熱し
た後、液中に分解溶出したホルムアルデヒドの量を定量
分析し、重合物に対する%で示す。 ・加熱重量減少率:溶融押出(前記と同じ安定剤を混
合)した共重合物ペレット5gを、空気中で230℃、45
分間加熱した場合の重量減少率を示す。EXAMPLES Examples of the present invention will be described below, but it is needless to say that the present invention is not limited to these examples. The terms and measuring methods in Examples and Comparative Examples are as follows.・% Or ppm: All parts are expressed by weight unless otherwise specified. -Polymerization rate or polymerization yield: after the polymerization reaction or after the unreacted monomer recovery obtained product is washed with a deactivator solution, and dried,
It is shown as a percentage of the total monomer fed to the polymer. -Residual monomer content: The product obtained after collecting the unreacted monomer is washed with a predetermined deactivator solution, and the monomer in the washing liquid is determined by gas chromatography and is shown as% of the crude polymer. Melt index (MI): Shows a melt index (g / 10 min) measured at 190 ° C. for a crude polymer (powder or granule) or an extruded pellet. This was evaluated as a characteristic value for the molecular weight. That is, the lower the MI, the higher the molecular weight. However, in order to prevent decomposition during measurement, add a certain stabilizer (Ciba Geigy, Irganox 1010 (0.5%) and melamine (0.1%) and mix well. Abundance): 1 g of the crude polymer powder was placed in 100 ml of a 50% aqueous methanol solution containing 0.5% ammonia, heated at 180 ° C. for 45 minutes in a closed vessel, and the amount of formaldehyde decomposed and eluted in the liquid was quantitatively analyzed. Heating weight loss rate: 5 g of a copolymer pellet extruded by melt extrusion (mixed with the same stabilizer as described above) was placed in air at 230 ° C and 45 ° C.
It shows the weight loss rate when heated for one minute.
【0020】実施例1〜3及び比較例1〜2 熱媒を通すことができるジャケットと混合粉砕機能を有
する攪拌羽根を備えたニーダー中に、コモノマーとして
1,3−ジオキソラン 3.5%を含有するトリオキサンを
入れ、攪拌し、ジャケットに70℃の温水を通して内部温
度を約70℃に保った後、三フッ化ホウ素のジブチルエー
テル溶液(全モノマーに対して三フッ化ホウ素として40
ppm)を添加して、重合を行った。次いで、重合率が約75
%(同一条件による予備実験より)、温度約 105℃に到
達したところで、表1に示した塩基性ガスを含む窒素ガ
スを通じながら、装置上部に付した排気孔(ジャケット
付き、 120℃)より5分間減圧吸引して未反応モノマー
を気化させて反応系より分離除去し、次いで、常圧下70
℃に冷却して凝縮、捕集した。捕集したモノマー中及び
捕集設備には何れも殆ど重合物の生成は認められず、円
滑に回収することができた。尚、未反応モノマーを気化
分離した後の重合系は、更にトリエチルアミン水溶液を
添加してよく混合し、十分失活処理を行うと同時に洗浄
して残存モノマー量及び重合収率を測定し、また取得共
重合体粉末の不安定部の存在量(アルカリ分解率)を測
定した。結果を表1に示す。一方、比較のため、塩基性
ガスを添加せず、塩基性ガスが気化した未反応モノマー
に含まれない場合についても同様に実験を行い、モノマ
ーの気化分離を試みたが、捕集器中で重合物が生成して
未反応モノマーを円滑に捕集することができなかった
(比較例1)。また、比較のため重合反応を長時間継続
して重合率が約96%になるまで重合を行った後、そのま
ま触媒失活洗浄処理を行った。結果を併せて表1に示す
(比較例2)。Examples 1-3 and Comparative Examples 1-2 Trioxane containing 3.5% 1,3-dioxolane as a comonomer in a kneader equipped with a jacket through which a heat medium can pass and a stirring blade having a mixing and grinding function. Into the jacket, keep the internal temperature at about 70 ° C by passing warm water through the jacket at 70 ° C, and then use a solution of boron trifluoride in dibutyl ether (40% as boron trifluoride with respect to all monomers).
ppm) was added to perform polymerization. Then, the polymerization rate is about 75
% (From a preliminary experiment under the same conditions), when the temperature reached about 105 ° C., the nitrogen gas containing a basic gas shown in Table 1 was passed through the exhaust hole (jacketed, 120 ° C.) provided at the upper part of the apparatus while passing nitrogen gas. The unreacted monomer is vaporized by suction under reduced pressure for one minute and separated and removed from the reaction system.
The mixture was cooled to ℃ and condensed and collected. In the collected monomers and in the collecting equipment, almost no polymer was formed, and the polymer was collected smoothly. The polymerization system after the unreacted monomer was vaporized and separated was further added with an aqueous solution of triethylamine, mixed well, thoroughly deactivated and washed at the same time, and the residual monomer amount and polymerization yield were measured and obtained. The amount of the unstable part (alkali decomposition rate) of the copolymer powder was measured. Table 1 shows the results. On the other hand, for comparison, the same experiment was performed for the case where the basic gas was not added and the basic gas was not included in the vaporized unreacted monomer, and the vaporization and separation of the monomer were attempted. A polymer was formed and unreacted monomers could not be collected smoothly (Comparative Example 1). For comparison, the polymerization reaction was continued for a long time to carry out the polymerization until the polymerization rate reached about 96%, and then the catalyst was subjected to a deactivation cleaning treatment. The results are shown in Table 1 (Comparative Example 2).
【0021】[0021]
【表1】 [Table 1]
【0022】実施例4〜6 前記実施例1〜3で回収したモノマーを、新しいモノマ
ーに混合して同様の重合実験を試みた結果、僅かに重合
速度の低下、MIの上昇が認められたものの、重合挙
動、重合物の性状に殆ど支障は生じなかった。Examples 4 to 6 A similar polymerization experiment was conducted by mixing the monomers recovered in Examples 1 to 3 with a new monomer. As a result, a slight decrease in the polymerization rate and an increase in MI were observed. There was hardly any trouble in the polymerization behavior and the properties of the polymer.
【0023】実施例7〜9、比較例3 二つの円が一部重なった断面を有し、外側に熱媒を通す
ジャケット付きのバレルとその内部に攪拌、推進用の多
数のパドルを付した2本の回転軸を長手方向に設けた連
続式混合反応機を用い、ジャケットに70℃の温水を通
し、2本の回転軸を一定の速度で回転させ、その一端に
コモノマーとして1,3−ジオキソランを3.0%、分子
量調節剤としてメチラール700ppmを含有するトリオキサ
ンを連続的に供給し、三フッ化ホウ素を全モノマーに対
して40ppm となるように連続的に添加して、共重合を行
った。次いで、この重合機吐出口より排出された反応生
成物(その中間重合率は約80%)を、平均粒径が1mm以
下となるよう粉砕機を通して第2の連続式混合装置(ジ
ャケット 100℃)の一端に供給して攪拌混合しながら、
出口方向へ移動させ、一方、出口方向から表2に示した
所定量の塩基性ガスを含有したチッ素を導入して、重合
物と接触させながら重合物の移動と反対方向(向流)に
流し、この間に未反応モノマーを気化させて、塩基性ガ
ス含有チッ素ガスと共に第2の装置の排気管(120℃)よ
り減圧吸引して分離除去し、凝集器に導いて常圧、65℃
で冷却凝縮し、捕集した。捕集は円滑に行うことがで
き、捕集設備及び捕集したモノマー中には殆ど重合物の
生成は認められず、長時間の連続運転を安定に行うこと
ができた。次いで第2の装置から排出した重合物は残存
未反応モノマー量及び重合収率を測定した。尚、第2の
装置に供給した塩基性ガスが少量の場合(実施例7、
8)は更にその排出物に同じ塩基性ガスを追加処理して
十分な触媒の失活を行った後、また、第2の装置で加え
た塩基性物質が過剰で触媒の失活処理が十分な場合(実
施例9)はそのまま、安定剤(前記と同じ)を加えてベ
ント付の押出機で溶融混練し、押出して不安定部分を除
去し、安定化してペレットを作成した。このペレットの
MIと加熱重量減少率を測定した。結果を表2に示す。
尚、比較のため第2の装置に塩基性物質を導入すること
なく同様に未反応モノマーの気化、分離、捕集を試みた
が、次第に捕集器に重合物が生成して付着し、捕集ライ
ンが閉塞して遂には安定して捕集することが不可能とな
った(比較例3)。Examples 7 to 9 and Comparative Example 3 A barrel having a jacket in which two circles partially overlap each other and through which a heating medium is passed, and a number of paddles for stirring and propulsion inside the barrel. Using a continuous mixing reactor provided with two rotating shafts in the longitudinal direction, hot water of 70 ° C. was passed through the jacket, and the two rotating shafts were rotated at a constant speed. Trioxane containing 3.0% of dioxolane and 700 ppm of methylal as a molecular weight regulator was continuously supplied, and boron trifluoride was continuously added so as to be 40 ppm with respect to all monomers to carry out copolymerization. Then, the reaction product discharged from the polymerization machine discharge port (the intermediate polymerization rate is about 80%) is passed through a pulverizer so that the average particle size becomes 1 mm or less, and the mixture is fed into a second continuous mixing device (jacket at 100 ° C.). While stirring and mixing at one end of
It is moved in the direction of the outlet, while nitrogen containing a predetermined amount of the basic gas shown in Table 2 is introduced from the direction of the outlet, and is brought into contact with the polymer in the opposite direction (countercurrent) to the movement of the polymer. During this time, the unreacted monomer is vaporized, and is separated and removed together with the basic gas-containing nitrogen gas by suction under reduced pressure from the exhaust pipe (120 ° C.) of the second device.
And condensed and collected. The collection could be carried out smoothly, and almost no polymer was found in the collection equipment and the collected monomers, and a long-time continuous operation could be stably performed. Next, the polymer discharged from the second device was measured for the amount of residual unreacted monomer and the polymerization yield. When the amount of the basic gas supplied to the second device was small (Example 7,
8) In addition, after the same basic gas is additionally treated to the discharge to deactivate the catalyst sufficiently, and the basic substance added in the second device is excessive, the deactivation treatment of the catalyst is sufficient. In such a case (Example 9), a stabilizer (same as above) was added as it was, and the mixture was melt-kneaded with a vented extruder, extruded to remove unstable portions, and stabilized to produce pellets. The MI and the weight loss rate of the pellets were measured. Table 2 shows the results.
For comparison, vaporization, separation, and collection of unreacted monomer were similarly attempted without introducing a basic substance into the second apparatus, but a polymer was gradually generated and adhered to the collector, and was trapped. The collecting line was blocked, and it was finally impossible to stably collect (Comparative Example 3).
【0024】[0024]
【表2】 [Table 2]
【0025】実施例10〜11、比較例4 実施例7、9、比較例3と同様の連続重合装置を用い、
触媒としてトリフルオロメタンスルホン酸(全モノマー
に対し1ppm)を用いた以外は同様の連続重合を行った。
次いでこの重合機吐出口より排出した反応生成物( 重合
率は約82%) を前記実施例7、9及び比較例3と同様に
粉砕し、第2の装置で同様に処理して未反応モノマーの
気化、分離、回収を行った。その結果、未反応モノマー
の気化、分離、回収に塩基性ガスを添加共存させた場合
(実施例10、11)は、長時間、重合物の生成付着は
認められず、安定して回収操作を行うことができたが、
塩基性ガスを添加共存させない場合(比較例4)は回収
系に重合物の生成、付着が認められ、長時間の安定操作
には支障が認められた。未反応モノマーを分離後、実施
例7、9と同様にして、更に触媒の失活処理を行った後
(実施例10)、又はそのまま(実施例11)、安定剤
を加えてベント付押出機にて溶融混練し、押出してペレ
ットを作成し、同様に評価した。結果を表3に示す。Examples 10 to 11, Comparative Example 4 Using the same continuous polymerization apparatus as in Examples 7, 9 and Comparative Example 3,
The same continuous polymerization was performed except that trifluoromethanesulfonic acid (1 ppm based on all monomers) was used as a catalyst.
Next, the reaction product (polymerization rate: about 82%) discharged from the polymerization machine discharge port was pulverized in the same manner as in Examples 7 and 9 and Comparative Example 3, and treated in the same manner in the second apparatus to obtain unreacted monomer. Was vaporized, separated and recovered. As a result, when a basic gas was added and coexisted for vaporization, separation, and recovery of unreacted monomers (Examples 10 and 11), production and adhesion of a polymer were not observed for a long time, and the recovery operation was stably performed. Was able to do,
In the case where no basic gas was added and coexisted (Comparative Example 4), generation and adhesion of a polymer were observed in the recovery system, and trouble was observed in long-term stable operation. After the unreacted monomer was separated, the catalyst was further deactivated in the same manner as in Examples 7 and 9 (Example 10), or as it was (Example 11). , And extruded to form pellets, which were evaluated in the same manner. Table 3 shows the results.
【0026】[0026]
【表3】 [Table 3]
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 米国特許5541284(US,A) (58)調査した分野(Int.Cl.7,DB名) C08G 2/00 - 2/38 ──────────────────────────────────────────────────続 き Continued on the front page (56) References US Patent 5,512,284 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08G 2/00-2/38
Claims (13)
マーとして少なくとも一つの炭素間結合を有する環状エ
ーテル又は環状ホルマールを用い、カチオン活性触媒に
より共重合してポリアセタール共重合体を製造するにあ
たり、重合率が少なくとも60重量%(対全モノマー)以
上となった段階で、未反応モノマーを気化させて重合系
から分離、除去、回収し、その回収にあたり、未反応モ
ノマーに塩基性化合物を添加、共存させることを特徴と
するポリアセタール共重合体の製造方法。Claims: 1. A method for producing a polyacetal copolymer by using trioxane as a main monomer and using a cyclic ether or cyclic formal having at least one carbon-carbon bond as a comonomer and copolymerizing with a cationically active catalyst to produce a polyacetal copolymer. At the stage when the content becomes 60% by weight (based on all monomers), unreacted monomers are vaporized and separated, removed, and recovered from the polymerization system. In the recovery, it is necessary to add a basic compound to the unreacted monomers and make them coexist. A method for producing a characteristic polyacetal copolymer.
後の残存モノマーが共重合体の5重量%以下である請求
項1記載のポリアセタール共重合体の製造方法。2. The method for producing a polyacetal copolymer according to claim 1, wherein the residual monomer after vaporizing, separating and removing the unreacted monomer is 5% by weight or less of the copolymer.
請求項1又は2記載のポリアセタール共重合体の製造方
法。3. The method for producing a polyacetal copolymer according to claim 1, wherein the basic compound is a volatile basic substance.
ミンである請求項1〜3の何れか1項記載のポリアセタ
ール共重合体の製造方法。4. The method for producing a polyacetal copolymer according to claim 1, wherein the basic compound is ammonia or an aliphatic amine.
化合物である請求項1〜4の何れか1項記載のポリアセ
タール共重合体の製造方法。5. The method for producing a polyacetal copolymer according to claim 1, wherein the polymerization catalyst is boron trifluoride or a coordination compound thereof.
ン酸あるいは過塩素酸、又はそれらの誘導体である請求
項1〜4の何れか1項記載のポリアセタール共重合体の
製造方法。6. The method for producing a polyacetal copolymer according to claim 1, wherein the polymerization catalyst is perfluoroalkylsulfonic acid, perchloric acid, or a derivative thereof.
連結した第2の装置に、塩基性化合物又はその希釈ガス
導入機構、減圧吸引又は不活性ガス流通機構を設け、重
合体混合物中の未反応モノマーを気化除去して、回収す
るにあたり、塩基性化合物を重合系に加えるか、或いは
気化分離した未反応モノマーへ添加し、気化分離したモ
ノマーに共存させることを特徴とする請求項1〜6の何
れか1項記載のポリアセタール共重合体の製造方法。7. A basic device or a diluent gas introduction mechanism, a reduced pressure suction or an inert gas flow mechanism is provided in the vicinity of the outlet of the continuous polymerization apparatus or in a second apparatus connected thereto. The reaction monomer is vaporized and removed, and upon recovery, a basic compound is added to the polymerization system or added to the vaporized and separated unreacted monomer to coexist with the vaporized and separated monomer. The method for producing a polyacetal copolymer according to any one of the above.
性化合物の量が、使用触媒量に対し 0.1〜30モル%であ
る請求項1〜7の何れか1項記載のポリアセタール共重
合体の製造方法。8. The polyacetal copolymer according to claim 1, wherein the amount of the basic compound in the unreacted monomer vaporized and separated is 0.1 to 30 mol% based on the amount of the catalyst used. Production method.
くとも2mm以下に粉砕した後、又は粉砕しながら未反応
モノマーを気化させて分離回収する請求項1〜8の何れ
か1項記載のポリアセタール共重合体の製造方法。9. The polyacetal according to claim 1, wherein the polymerization reaction mixture is separated and recovered by pulverizing an unreacted monomer after pulverizing the polymerization reaction mixture to an average particle size of at least 2 mm or less, or while pulverizing. A method for producing a copolymer.
応モノマーを、重合用モノマーとして再使用する請求項
1〜9の何れか1項記載のポリアセタール共重合体の製
造方法。10. The process for producing a polyacetal copolymer according to claim 1, wherein the unreacted monomer vaporized, removed and recovered from the polymerization system is reused as a monomer for polymerization.
法により未反応モノマーを気化させて分離、回収した
後、重合体に更に触媒失活剤を加えて重合触媒の失活処
理を行うポリアセタール共重合体の製造方法。11. After the unreacted monomer is vaporized and separated and recovered by the method according to any one of claims 1 to 10, a catalyst deactivator is further added to the polymer to carry out a deactivation treatment of the polymerization catalyst. A method for producing a polyacetal copolymer.
(対全モノマー)となるまで重合した反応生成物を、第
2の装置に移し、塩基性物質を加えて重合触媒の失活処
理を行うと同時に、未反応モノマーを気化させて分離、
回収することを特徴とする請求項1〜9の何れか1項記
載のポリアセタール共重合体の製造方法。12. A reaction product polymerized to at least 60% by weight or more (based on all monomers) in a polymerization apparatus is transferred to a second apparatus, and a basic substance is added thereto to deactivate a polymerization catalyst. At the same time, unreacted monomers are vaporized and separated,
The method for producing a polyacetal copolymer according to claim 1, wherein the polyacetal copolymer is recovered.
応モノマーを気化、分離し、触媒失活処理した重合物
を、ベント付押出機にて、安定剤の存在下で溶融混練押
出することを特徴とするポリアセタール共重合体の製造
方法。13. A polymer obtained by vaporizing and separating unreacted monomers according to the method of claim 11 or 12, and subjecting the polymer subjected to catalyst deactivation treatment to melt kneading and extrusion in a vented extruder in the presence of a stabilizer. A method for producing a characteristic polyacetal copolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14507397A JP3181535B2 (en) | 1997-06-03 | 1997-06-03 | Method for producing polyacetal copolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14507397A JP3181535B2 (en) | 1997-06-03 | 1997-06-03 | Method for producing polyacetal copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10330443A JPH10330443A (en) | 1998-12-15 |
JP3181535B2 true JP3181535B2 (en) | 2001-07-03 |
Family
ID=15376763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14507397A Expired - Fee Related JP3181535B2 (en) | 1997-06-03 | 1997-06-03 | Method for producing polyacetal copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3181535B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6022993B2 (en) | 2013-04-25 | 2016-11-09 | ポリプラスチックス株式会社 | Process for producing polyacetal copolymer |
JP6282805B2 (en) * | 2013-04-25 | 2018-02-21 | ポリプラスチックス株式会社 | Process for producing polyacetal copolymer |
JP5814414B2 (en) | 2014-03-31 | 2015-11-17 | ポリプラスチックス株式会社 | Process for producing polyacetal copolymer |
-
1997
- 1997-06-03 JP JP14507397A patent/JP3181535B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10330443A (en) | 1998-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3369365B2 (en) | Method for producing polyacetal copolymer | |
JP3017376B2 (en) | Method for producing polyoxymethylene terpolymer having high polymerization degree | |
US5844059A (en) | Process for preparing polyacetal copolymer | |
JP2003522260A (en) | Method for producing polyoxymethylene | |
JP3037612B2 (en) | Method for producing polyacetal copolymer | |
KR930000373B1 (en) | Process for producing acetal copolymer | |
WO2014083983A1 (en) | Production method for polyacetal copolymer | |
EP3109267B1 (en) | Method for producing polyacetal copolymer | |
EP0347119B1 (en) | Process for the preparation of acetal polymer or copolymer | |
JP4610805B2 (en) | Process for producing polyacetal copolymer | |
JP3181535B2 (en) | Method for producing polyacetal copolymer | |
JP3134699B2 (en) | Method for producing acetal copolymer | |
JPS63125517A (en) | Improved method of stabilizing polyoxymethylene copolymer | |
JP3208373B2 (en) | Method for producing polyacetal copolymer | |
KR101983758B1 (en) | Method for producing polyacetal copolymer | |
JPH10292039A (en) | Production of stabilized polyacetal copolymer | |
KR101983763B1 (en) | Method for producing polyacetal copolymer | |
KR100248646B1 (en) | Process for producing polyacetal copolymer | |
JP2014095000A (en) | Method of manufacturing polyacetal copolymer | |
JP2948015B2 (en) | Method for producing polyoxymethylene copolymer having high polymerization degree | |
JP2009532510A (en) | Process for producing polyoxymethylene homopolymer and copolymer and apparatus corresponding thereto | |
JPH10237145A (en) | Production of stabilized polyacetal copolymer | |
KR100614024B1 (en) | Process for the production of oxymethylene copolymer | |
MXPA97010062A (en) | Procedure to produce a polyace copolymer | |
JPH10101756A (en) | Production of stabilized oxymethylene copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |