JP2948015B2 - Method for producing polyoxymethylene copolymer having high polymerization degree - Google Patents
Method for producing polyoxymethylene copolymer having high polymerization degreeInfo
- Publication number
- JP2948015B2 JP2948015B2 JP4050597A JP5059792A JP2948015B2 JP 2948015 B2 JP2948015 B2 JP 2948015B2 JP 4050597 A JP4050597 A JP 4050597A JP 5059792 A JP5059792 A JP 5059792A JP 2948015 B2 JP2948015 B2 JP 2948015B2
- Authority
- JP
- Japan
- Prior art keywords
- polymerization
- catalyst
- temperature
- reaction
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は高重合度ポリオキシメチ
レン共重合体の製造方法に関する。更に詳しくは、トリ
オキサンと環状エーテル或いは環状アセタールとのカチ
オン共重合において、特定の重合条件及び触媒の失活化
処理を採用することにより、実質上線状の高重合度ポリ
オキシメチレン共重合体を製造する方法に関する。The present invention relates to a method for producing a polyoxymethylene copolymer having a high degree of polymerization. More specifically, in the cationic copolymerization of trioxane with a cyclic ether or a cyclic acetal, a specific linear polymerization condition and a catalyst deactivation treatment are employed to produce a substantially linear polyoxymethylene copolymer having a high degree of polymerization. On how to do it.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】ポリオ
キシメチレン(以下POMと略称)共重合体はエンジニ
アリングプラスチック素材として多年にわたり知られて
おり、その重合方法は一般に、トリオキサンの如き環状
アセタールを主モノマーとし、隣接炭素原子を有する環
状アセタール或いは環状エーテルをコモノマーとして、
カチオン活性触媒を用いて共重合し、次いで重合生成物
は触媒の中和剤又は失活剤、又はこれらの溶液と接触さ
せて失活処理され、その後、安定化工程を経て製品とす
るが、従来、その分子量に関しては連鎖移動剤の使用に
より一定の限度以下に調節することは可能であるが、特
にある一定限度以上の高分子量のPOM共重合体を得る
方法としての提案は殆どなく、重合系中の活性不純物を
極力減少させて重合を行うことが望ましいとされている
程度である。又、重合後の処理方法としても主鎖切断を
極力防止することが好ましいのは当然であるが、具体的
方法に関しては何ら特別の提案はなく、従来、一般に重
合生成物を微粉砕し、中和剤又は失活剤或いはこれらの
溶液を比較的高い温度(例えば50℃以上)で重合体と接
触させ、中和処理することが推奨されている(例えば米
国特許第2989509 号明細書、特開昭58−34819 号公
報)。しかし、このような従来技術によって得られるP
OM共重合物の重合度には限界があり、架橋性特殊モノ
マーを用いる場合を除いて、特に実質的に直鎖状のPO
M共重合体の場合はメルトインデックス(MI)値(19
0 ℃、荷重2160g)として2.0g/10min 以下、特に0.1 〜
1.5g/10min の如き高重合度の共重合体を得ることは至
難であった。このことは、この共重合体を押し出し成
形、ブロー成形等に使用する場合には、その溶融時の張
力の不足により溶融樹脂がドローダウンし易く、成形性
に少なからず支障を生じ、又、一般に機械的物性特に靱
性等、成形品の性能、品質を制限しているのが実情であ
った。また、かかる従来技術によるPOM共重合体には
かなりの量の不安定末端部が存在し、これを実用に供す
るためには、不安定部分を除去し、安定化しなくてはな
らず、このため、複雑な後処理工程を必要とし、その処
理に多量のエネルギーを要し、経済的に不利である。重
合後の粗POMが不安定部分の少ないものであれば、最
終製品の安定性もより優れたものとなり、また安定化等
の後処理工程を簡略化できる等の利点が存在し、重合時
の不安定部分の少ない重合体を得るような方法が望まれ
ている。2. Description of the Related Art Polyoxymethylene (hereinafter abbreviated as POM) copolymers have been known for many years as engineering plastic materials, and the polymerization method is generally based on a cyclic acetal such as trioxane. As a monomer, a cyclic acetal or cyclic ether having adjacent carbon atoms as a comonomer,
The copolymerization is carried out using a cationically active catalyst, and then the polymerization product is deactivated by contacting with a catalyst neutralizer or deactivator, or a solution thereof, and then is subjected to a stabilization step to obtain a product. Conventionally, the molecular weight can be adjusted to a certain limit or less by using a chain transfer agent. However, there is almost no proposal as a method for obtaining a POM copolymer having a high molecular weight exceeding a certain limit. It is said that it is desirable to carry out the polymerization while minimizing active impurities in the system. In addition, it is naturally preferable to prevent the main chain from being cut as much as the treatment method after the polymerization.However, there is no specific proposal for the specific method, and conventionally, the polymerization product is generally finely pulverized, It has been recommended that a wetting agent or a quenching agent or a solution thereof be brought into contact with the polymer at a relatively high temperature (for example, 50 ° C. or higher) and neutralized (for example, US Pat. No. 2,989,509; JP-A-58-34819). However, the P obtained by such prior art is
There is a limit to the degree of polymerization of the OM copolymer, and in particular, unless a crosslinkable special monomer is used, a substantially linear PO
In the case of M copolymer, the melt index (MI) value (19
0 ° C, load 2160g) 2.0g / 10min or less, especially 0.1 ~
It was very difficult to obtain a copolymer having a high degree of polymerization such as 1.5 g / 10 min. This means that when this copolymer is used for extrusion molding, blow molding, etc., the molten resin tends to draw down due to lack of tension at the time of melting, causing not a little hindrance to moldability, and generally, The fact is that the performance and quality of the molded product, such as mechanical properties, especially toughness, are limited. Further, such a POM copolymer according to the prior art has a considerable amount of unstable terminal portions, and in order to put this into practical use, the unstable portion must be removed and stabilized. It requires a complicated post-processing step, requires a large amount of energy for the processing, and is economically disadvantageous. If the crude POM after polymerization has few unstable parts, the stability of the final product will be more excellent, and there are advantages such as simplification of post-treatment steps such as stabilization. A method for obtaining a polymer having a small number of unstable parts is desired.
【0003】[0003]
【課題を解決するための手段】本発明者らはブロー成形
等にも好適な、従来法では得難い高重合度の実質上線状
構造のPOM共重合体で、しかも不安定末端部が極めて
少なく、安定化工程での負荷を著しく低減し、また高品
質即ち靱性等の機械的物性に優れ、熱的にも極めて安定
なPOM共重合体を得ることを等を目的として鋭意研究
した結果、重合反応時に反応系に含まれる重合停止剤や
連鎖移動剤となり得る活性不純物の量を一定以下に保
ち、尚且つ重合反応時に使用する触媒の量を特定の範囲
に限定し、更に触媒の失活化方法として特定の条件を採
用することにより上記目的を達成しうることを見出し
た。特に従来法の重合触媒の失活化方法には問題があ
り、意外にも従来好適な方法として提案されている、比
較的高温(例えば50℃以上)での失活処理は逆効果を生
じ、触媒の中和失活と残存触媒による分解反応との競争
反応で、高温では特に後者が優先し、失活化が充分進行
しない間に分解等の副反応を併発し、重合触媒の失活化
工程で残存触媒による主鎖分解が短時間に起こり、触媒
の失活化が充分行われるまでに重合度の低下とそれに基
づく不安定部分の新たな生成を引き起こしていることが
認められた。本発明者らは、かかる見地から、重合触媒
の失活化についても鋭意検討の結果、むしろ急冷却する
ことにより分解等の副反応が抑制されて好ましいことを
発見し、前記重合反応上の諸要件と組み合わせることに
よって従来得られなかった不安定部分の少ない極めて高
重合度の線状POM共重合体を得ることに成功したので
ある。即ち、本発明は、トリオキサンを主モノマーと
し、これと隣接炭素原子を有し、置換基を全く有しない
か水素原子の一部がアルキル基で置換された環状エーテ
ル或いは環状ホルマールをコモノマーとして、三フッ化
ホウ素又はその配位化合物よりなる触媒を用いて共重合
し、ポリオキシメチレン共重合物を得る方法において、
反応系中の重合停止及び連鎖移動作用を有する不純物の
総量を全モノマーに対して1×10-2mol%以下とし、且
つ重合反応に使用する触媒の量を全モノマーに対して1
×10-3〜7×10-3 mol%として共重合を行い、共重合
後、生成物を30秒以内に45℃〜15℃の温度まで冷却し、
少なくとも10℃以上の温度で触媒を失活化することを特
徴とする実質上線状のメルトインデックス値(190 ℃、
荷重2160g)2.0g/10min以下である高重合度ポリオキシメ
チレン共重合体の製造方法に関するものである。Means for Solving the Problems The present inventors are a POM copolymer having a substantially linear structure with a high degree of polymerization, which is difficult to obtain by the conventional method, which is suitable for blow molding and the like, and has very few unstable terminal portions. As a result of intensive research on the purpose of obtaining a POM copolymer that significantly reduces the load in the stabilization process and has excellent mechanical properties such as high quality, that is, toughness, and is extremely stable thermally, Sometimes, the amount of active impurities that can be a polymerization terminator or a chain transfer agent contained in the reaction system is kept below a certain level, and the amount of the catalyst used during the polymerization reaction is limited to a specific range. It has been found that the above object can be achieved by adopting specific conditions. In particular, the conventional method for deactivating a polymerization catalyst has a problem. Surprisingly, deactivation treatment at a relatively high temperature (for example, 50 ° C. or higher), which has been conventionally proposed as a preferable method, has an adverse effect, Competition between neutralization deactivation of the catalyst and decomposition reaction by the remaining catalyst.At high temperatures, the latter takes precedence, and side reactions such as decomposition occur while the deactivation does not proceed sufficiently, and the polymerization catalyst is deactivated. It was found that in the process, the main chain was decomposed by the remaining catalyst in a short time, causing a decrease in the degree of polymerization and a new generation of an unstable portion based on the reduction until the catalyst was sufficiently deactivated. From such a viewpoint, the present inventors have conducted intensive studies on the deactivation of the polymerization catalyst, and rather found that it is preferable that rapid cooling is performed to suppress side reactions such as decomposition, and various factors related to the polymerization reaction are considered. By combining this with the requirements, a linear POM copolymer having a very high degree of polymerization and having few unstable parts, which has not been obtained conventionally, was successfully obtained. That is, the present invention uses trioxane as a main monomer and a cyclic ether or cyclic formal having a carbon atom adjacent thereto and having no substituent or having a part of hydrogen atoms substituted with an alkyl group as a comonomer. In a method of copolymerizing using a catalyst consisting of boron fluoride or a coordination compound thereof to obtain a polyoxymethylene copolymer,
The total amount of impurities having a polymerization termination and chain transfer action in the reaction system should be 1 × 10 −2 mol% or less based on all monomers, and the amount of catalyst used in the polymerization reaction should be 1% based on all monomers.
The copolymerization is carried out at × 10 −3 to 7 × 10 −3 mol%, and after the copolymerization, the product is cooled to a temperature of 45 ° C. to 15 ° C. within 30 seconds,
A substantially linear melt index value (190 ° C., wherein the catalyst is deactivated at a temperature of at least 10 ° C. or higher).
The present invention relates to a method for producing a polyoxymethylene copolymer having a high degree of polymerization with a load of 2160 g) of 2.0 g / 10 min or less .
【0004】本発明の基本的要件は、重合反応時の反応
系に存在する不純物及び触媒の量を一定レベル以下に保
つことにより、重合反応時の副反応を抑制し、生長反応
を優先させて、先ず重合時の到達重合度を高く保ち、且
つ重合反応後の反応生成物を直ちに特定の条件下で急冷
却し、触媒の中和失活化が進行するまでに併発する分解
反応等の副反応を極めて遅速化し、抑制することにあ
る。重合反応時、モノマー中に存在する重合停止剤、連
鎖移動剤となり得る活性不純物としては、水、アルコー
ル(例えばメタノール)、酸又はそのエステル(例えば
蟻酸又は蟻酸エステル)、低分子量線状アセタール(例
えばメチラール)等が挙げられる。これらの総量が反応
系中の全モノマーに対して1×10-2 mol%以下であるこ
とが先ず必要であり、好ましくは5×10-3 mol%以下で
ある。この含有量が過大であると他の条件を如何に好適
に保っても一定以上の高重合度(低MI)POM共重合
体は得られない。尚、メチラールの如き両末端がアルコ
キシ基より成る低分子量アセタール化合物の含有は共重
合体の不安定末端の増加をもたらすものではないが連鎖
移動剤として作用し、重合度の低下をもたらすため本発
明の目的からは好ましくなく、前記規定内に留めること
が望ましい。[0004] The basic requirement of the present invention is to keep the amounts of impurities and catalyst present in the reaction system during the polymerization reaction at a certain level or less, thereby suppressing side reactions during the polymerization reaction and giving priority to the growth reaction. First, the polymerization degree reached during the polymerization is kept high, and the reaction product after the polymerization reaction is immediately quenched under specific conditions. The purpose of the present invention is to extremely slow and suppress the reaction. At the time of the polymerization reaction, active impurities that can be a polymerization terminator and a chain transfer agent in the monomer include water, alcohol (eg, methanol), acid or its ester (eg, formic acid or formate), and low molecular weight linear acetal (eg, Methylal) and the like. It is first necessary that the total amount of these is 1 × 10 −2 mol% or less, and preferably 5 × 10 −3 mol% or less, based on all monomers in the reaction system. If this content is excessively high, a POM copolymer having a high degree of polymerization (low MI) exceeding a certain level cannot be obtained even if other conditions are suitably maintained. The inclusion of a low molecular weight acetal compound having an alkoxy group at both ends such as methylal does not increase the unstable terminal of the copolymer, but acts as a chain transfer agent and lowers the degree of polymerization. It is not preferable from the viewpoint of the above, and it is desirable to keep within the above definition.
【0005】次に、重合反応時に使用する触媒の量が重
要な要件である。触媒は通常使用される三フッ化ホウ素
又はその配位化合物が用いられるが、その量は全モノマ
ーに対して1×10-3〜7×10-3 mol%である。触媒量を
かかる限定範囲とすることにより、重合時の実質的な重
合度の低下及び不安定末端部の生成を防ぐのに有効であ
る。触媒量が7×10 -3 mol%を越えると重合温度を適性
値に維持することが困難になり、又、分解反応が優勢と
なって高重合度ポリマーの生成に支障を来す。又、触媒
量が1×10-3 mol%未満であると重合速度を減じ、一定
時間内の重合収率が低くなり、重合度の向上にも好まし
くない傾向を示す。尚、本発明の効果を充分得るために
は更に重合温度も重要な要素であり、重合期間を通じ、
常に実質上60〜105 ℃の間、好ましくは65〜100 ℃の間
に保つことが望ましいが、重合温度は触媒使用量と密接
な関係にあり、通常の条件、例えば一般の工業的規模に
おいて水系媒体を用いた通常可能なジャケット温度の範
囲であれば上記触媒量によってほぼ制御し得る範囲であ
る故、特別規定しなくとも得られるが、厳密には触媒量
以外の条件、例えばその規模、重合反応機の構造、ジャ
ケットの温度等の二次的要件も考慮して上記の範囲に保
つことが好ましい。[0005] Next, the amount of catalyst used in the polymerization reaction is an important requirement. Catalyst is typically boron trifluoride or a coordinate compound thereof is used is used, the amount is 1 × 10 -3 ~7 × 10 -3 mol% to the total monomers. By setting the amount of the catalyst in such a limited range, it is effective to prevent a substantial decrease in the degree of polymerization and the generation of an unstable terminal during polymerization. If the amount of the catalyst exceeds 7 × 10 −3 mol%, it becomes difficult to maintain the polymerization temperature at an appropriate value, and the decomposition reaction becomes dominant, which hinders the production of a polymer having a high degree of polymerization. On the other hand, if the amount of the catalyst is less than 1 × 10 −3 mol%, the polymerization rate is reduced, the polymerization yield within a certain time is reduced, and the degree of polymerization tends to be unfavorable. In order to sufficiently obtain the effects of the present invention, the polymerization temperature is also an important factor.
It is always desirable to keep the temperature substantially between 60 and 105 ° C., preferably between 65 and 100 ° C., however, the polymerization temperature is closely related to the amount of the catalyst used, and it is usually required to use an aqueous solution under ordinary conditions, for example, on a general industrial scale. If the range of the jacket temperature is normally possible using the medium, it is a range that can be almost controlled by the amount of the catalyst, so that it can be obtained without specially specifying.However, strictly, conditions other than the amount of the catalyst, such as its scale, polymerization, etc. It is preferable to keep the above range in consideration of secondary requirements such as the structure of the reactor and the temperature of the jacket.
【0006】本発明における上記以外の条件は特に限定
するものではなく、従来公知の方法に準じて行えばよ
い。コモノマーとして用いられる環状エーテル或いは環
状ホルマールは下記一般式で表される化合物である。Conditions other than the above in the present invention are not particularly limited, and may be performed according to a conventionally known method. The cyclic ether or cyclic formal used as a comonomer is a compound represented by the following general formula.
【0007】[0007]
【化1】 Embedded image
【0008】(式中、R1、R2、R3又はR4は水素原子又は
アルキル基を意味し、各々同一でも異なっていてもよい
が、一般には水素原子である。R5はメチレン基、オキシ
メチレン基、アルキル基で置換されたメチレン基もしく
はオキシメチレン基(この場合pは0〜3の整数を表
す)或いは式(Wherein R 1 , R 2 , R 3 or R 4 represents a hydrogen atom or an alkyl group, which may be the same or different, but is generally a hydrogen atom. R 5 is a methylene group. , An oxymethylene group, a methylene group or an oxymethylene group substituted with an alkyl group (where p represents an integer of 0 to 3) or a formula
【0009】[0009]
【化2】 Embedded image
【0010】で示される2価の基(この場合pは1を表
し、qは1〜4の整数を表す)を意味する。)該コモノ
マーとしては、例えばエチレンオキシド、1,3 −ジオキ
ソラン、ジエチレングリコールホルマール、1,4 −ブタ
ンジオールホルマール、1,3 −ジオキサン、プロピレン
オキシド等が挙げられる。中でも好ましいコモノマーは
エチレンオキシド、1,3 −ジオキソラン、1,4 −ブタン
ジオールホルマール、ジエチレングリコールホルマール
である。その使用量はトリオキサンに対し 0.2〜10重量
%、好ましくは 0.2〜5重量%である。(Where p represents 1 and q represents an integer of 1 to 4). Examples of the comonomer include ethylene oxide, 1,3-dioxolan, diethylene glycol formal, 1,4-butanediol formal, 1,3-dioxane, propylene oxide and the like. Among these, preferred comonomers are ethylene oxide, 1,3-dioxolan, 1,4-butanediol formal, and diethylene glycol formal. The amount used is 0.2 to 10% by weight, preferably 0.2 to 5% by weight, based on trioxane.
【0011】本発明の重合法は、従来公知のトリオキサ
ンの重合法と同様の設備と方法で行うことができる。即
ち、バッチ式、連続式、いずれも可能であり、又、溶液
重合、溶融塊状重合等何れにてもよいが、液体モノマー
を用い、重合の進行とともに固体粉塊状のポリマーを得
る連続式塊状重合方法が工業的には一般的であり好まし
い。この場合、必要に応じて不活性液体媒体を共存させ
ることもできる。本発明に用いられる重合装置として
は、バッチ式では一般に用いられる攪拌機付の反応槽が
使用出来、又、連続式としては、コニーダー、2軸スク
リュー式連続押出混合機、二軸パドルタイプの連続混合
機その他、これまでに提案されているトリオキサンの連
続重合装置が使用可能で、密閉系であれば2段以上にわ
かれていてもよい。特に重合反応によって生成する固体
重合物が微細な形態で得られる様な破砕機能を備えたも
のが好ましい。The polymerization method of the present invention can be carried out with the same equipment and method as the conventionally known polymerization method of trioxane. That is, any of a batch type and a continuous type can be used, and any of a solution polymerization, a melt bulk polymerization, and the like may be used. However, a continuous bulk polymerization using a liquid monomer and obtaining a solid powder bulk polymer with the progress of polymerization is performed. The method is industrially common and preferred. In this case, an inert liquid medium can coexist as necessary. As a polymerization apparatus used in the present invention, a reaction vessel with a stirrer generally used in a batch type can be used, and as a continuous type, a co-kneader, a twin screw type continuous extrusion mixer, a twin-screw paddle type continuous mixing can be used. A continuous polymerization apparatus for trioxane, which has been proposed so far, can be used. If it is a closed system, it may be divided into two or more stages. In particular, those having a crushing function such that a solid polymer produced by a polymerization reaction can be obtained in a fine form are preferable.
【0012】次に重合反応後の後処理条件も本発明の効
果を得る上で極めて重要な要件である。即ち、重合反応
後、重合機より排出される反応混合物は30秒以内に実質
的に45℃〜15℃の温度まで冷却することが必要であり、
好ましくは重合反応後20秒以内に45℃以下とし、30秒以
内実質的に35〜15℃の範囲まで冷却することが好まし
い。ここで、「重合反応後」とは、「実質的に密閉され
た重合機より排出された時点」、即ち酸素、水分等を含
む大気、又は水等の媒体と接触する時点を意味する。か
かる冷却速度は速い程よく、特に高温での保持時間を短
くすることが肝要である。冷却速度が遅い場合には、
又、特に従来提案されている如き50℃以上の高い温度で
は、たとえ触媒の中和剤又は失活剤が直ちに加えられて
も、副反応が優先して、分解又はそれによる重合度の低
下、不安定末端の新たな発生を充分抑制することが出来
ず、重合終了時の重合度等が維持出来ないことが判明し
た。かかる分解等の副反応は温度が高い程優先して生
じ、重合直後の高温においては特に反応物の接触する雰
囲気の含有水分が悪影響し、水分との接触が副反応を促
進するので、高温下で水分を含む雰囲気に曝されること
はたとえ通常の大気の程度でも好ましくない。従って、
実質的に水分等を含有しない状態の不活性雰囲気であれ
ば、重合度の低下は少なく、かかる状態はむしろ重合の
継続と解すべきであって、冷却速度が比較的遅くとも副
反応の程度は減少する。よって、かかる実質的に水分等
を含有しない不活性雰囲気下で充分冷却した後、中和剤
又は失活剤と接触させ充分な時間をかけて触媒の失活を
行ってもよいが、水が存在しても冷却を速やかに行って
高温に保持しなければよく、一般に最も冷却を速やかに
行うには比較的多量の低温の液体に浸漬するのが有効で
あって、特に熱容量の大きい水溶液を用いれば冷却を迅
速に行う上で有効である。水の存在は高温時の副反応に
対して上記の如く好ましくないが、比較的多量の水は、
冷却速度の見地からは好適な媒体で、副反応の優先する
高温経過時間を短縮することによりむしろ水溶液による
冷却が有効である。又、かかる水溶液中に塩基性化合物
よりなる触媒の中和剤、失活剤を含有させ、冷却と同時
に触媒の中和、失活を行うのが好ましいのは当然であ
る。又、かかる反応物の実質的な冷却は、特に塊状重合
物においては反応物が微粉砕されていることが好ましい
のも当然であって、重合機排出物が微細であれば最も好
都合であるが、比較的大粒子の場合には重合機排出後、
速やかに、特に冷却の初期過程で冷却媒体中、例えば水
中で速やかに微粉砕することが好ましい。The post-treatment conditions after the polymerization reaction are also extremely important requirements for obtaining the effects of the present invention. That is, after the polymerization reaction, the reaction mixture discharged from the polymerization machine needs to be cooled to substantially 45 ° C to 15 ° C within 30 seconds,
Preferably, the temperature is set to 45 ° C. or lower within 20 seconds after the polymerization reaction, and the temperature is preferably cooled to substantially 35 to 15 ° C. within 30 seconds. Here, "after the polymerization reaction" means "the point at which the resin is discharged from the substantially sealed polymerization machine", that is, the point at which it comes into contact with an atmosphere containing oxygen, moisture, or the like, or a medium such as water. The higher the cooling rate, the better, and it is particularly important to shorten the holding time at a high temperature. If the cooling rate is slow,
In addition, especially at a high temperature of 50 ° C. or higher as conventionally proposed, even if a neutralizing agent or a deactivator for a catalyst is immediately added, a side reaction takes precedence, and decomposition or a decrease in the degree of polymerization due to the decomposition is caused. It was found that new generation of unstable terminals could not be sufficiently suppressed and the degree of polymerization at the end of polymerization could not be maintained. Such side reactions such as decomposition occur preferentially as the temperature is higher. At a high temperature immediately after the polymerization, particularly, the moisture contained in the atmosphere in which the reactants come into contact adversely affects the reaction. Exposure to an atmosphere containing moisture is not preferred, even at normal atmospheric levels. Therefore,
In the case of an inert atmosphere containing substantially no water or the like, the degree of polymerization is less reduced, and such a state should be understood as continuation of polymerization, and the degree of side reactions decreases even if the cooling rate is relatively slow. I do. Therefore, after sufficiently cooling under an inert atmosphere containing substantially no water or the like, the catalyst may be deactivated over a sufficient time by contacting with a neutralizing agent or a deactivator. Even if it is present, it is not necessary to rapidly cool it and keep it at a high temperature, and it is generally effective to immerse it in a relatively large amount of low-temperature liquid to perform cooling most quickly. If it is used, it is effective for quick cooling. Although the presence of water is not preferred as described above for side reactions at high temperatures, relatively large amounts of water
From the viewpoint of the cooling rate, it is preferable to use an aqueous medium as a suitable medium, and to shorten the high-temperature elapsed time in which the side reaction takes precedence. It is naturally preferable that a neutralizing agent and a deactivating agent for a catalyst composed of a basic compound are contained in such an aqueous solution, and the catalyst is neutralized and deactivated simultaneously with cooling. In addition, it is naturally preferable that the substantial cooling of the reactant, particularly in the case of a bulk polymer, is preferably performed when the reactant is finely pulverized. In the case of relatively large particles, after discharging the polymerization machine,
It is preferred to pulverize quickly, particularly in a cooling medium, for example, water, in the initial stage of cooling.
【0013】尚、本発明の方法により30秒以内に45℃〜
15℃、望ましくは35〜15℃の範囲まで急冷却すれば、そ
の後充分な時間をかけて副反応を併発することなく、触
媒の中和失活を完全に行うことが可能であり、充分触媒
を中和失活した反応物はその後の処理においてたとえ温
度が上昇しても、媒体が酸性を呈するものでない限り、
副反応による重合度の低下、不安定末端の発生は殆どな
く以後、比較的高温度で洗浄、乾燥等を行うことができ
る。尚、10℃以下の極低温では逆に失活反応が極めて遅
く長時間を要し好ましくない。[0013] Incidentally, 45 ° C. ~ within 30 seconds by the method of the present invention
If the temperature is rapidly cooled to 15 ° C. , preferably 35 to 15 ° C. , the neutralization and deactivation of the catalyst can be completely carried out without causing side reactions over a sufficient period of time, and the catalyst can be sufficiently cooled. The reaction product neutralized and deactivated is treated in a subsequent process even if the temperature is increased, unless the medium is acidic.
There is almost no decrease in the degree of polymerization and no generation of unstable terminals due to side reactions. Thereafter, washing and drying can be performed at a relatively high temperature. At an extremely low temperature of 10 ° C. or less, the deactivation reaction is extremely slow and takes a long time, which is not preferable.
【0014】本発明において重合触媒を中和し失活する
ための塩基性化合物としては、アンモニア、或いはトリ
エチルアミン、トリブチルアミン等のアミン類、或いは
アルカリ金属、アルカリ土類金属の水酸化物塩類、その
他公知の触媒失活剤が用いられる。これらの失活剤は、
水或いは、シクロヘキサン、ベンゼン、トルエン等の有
機溶剤等、反応生成物の冷却用媒体中に溶解させて重合
物の冷却と同時に触媒と接触させ中和するのが好まし
い。特に水溶液とするのが好ましい。In the present invention, examples of the basic compound for neutralizing and deactivating the polymerization catalyst include ammonia, amines such as triethylamine and tributylamine, hydroxide salts of alkali metals and alkaline earth metals, and others. A known catalyst deactivator is used. These quenchers are
It is preferable to dissolve the reaction product in a medium for cooling the reaction product such as water or an organic solvent such as cyclohexane, benzene, and toluene, and contact the catalyst with the catalyst simultaneously with cooling of the polymer to neutralize the polymer. It is particularly preferable to use an aqueous solution.
【0015】本発明において重合触媒の失活を行った共
重合体は、更に要すれば洗浄、未反応モノマーの分離回
収、乾燥等を経て、又要すれば更に安定化工程を経て、
又各種安定剤等の添加剤を加え溶融混練しペレット化し
て製品とする。本発明のPOM共重合体は前述の如く極
めて不安定末端が少なく、安定化処理の負荷は軽減され
ているため簡単な仕上処理で充分安定なポリマーが得ら
れ、又安定剤等の配合のための溶融混練押出により、残
存する不安定部の揮発除去を兼ねることも可能となる。In the present invention, the copolymer in which the polymerization catalyst has been deactivated is further subjected to washing, separation and recovery of unreacted monomers, drying, etc., if necessary, and further to a stabilization step, if necessary.
Additives such as various stabilizers are added, melt-kneaded and pelletized to obtain a product. As described above, the POM copolymer of the present invention has a very small number of unstable terminals and the load of the stabilization treatment is reduced, so that a sufficiently stable polymer can be obtained by a simple finishing treatment. Can be used to volatilize and remove the remaining unstable portion.
【0016】又、本発明の方法によれば、MI値2.0 以
下、更には0.1 〜1.5 程度の従来得られなかった極めて
高重合度の線状構造のPOM共重合体を得ることがで
き、ブロー成形等の特殊成形による加工が可能となり、
又その物性例えば靭性等の顕著な向上を期待することが
出来る。Further, according to the method of the present invention, it is possible to obtain a POM copolymer having an extremely high degree of polymerization, having a MI value of not more than 2.0, and more preferably about 0.1 to 1.5. Processing by special molding such as molding becomes possible,
In addition, a remarkable improvement in physical properties such as toughness can be expected.
【0017】[0017]
【発明の効果】本発明の方法によって得られる共重合体
は、実質的に線状でMI値2.0 以下、更には1.5 以下の
極めて高い重合度と、優れた熱安定性を有し、従来品で
は得られなかった高性能、高品質の成形品を得ることが
できる。又、射出成形品はもとより、押し出し成形や従
来至難であったブロー成形も可能となり、用途が拡大さ
れる。又、不安定部分が少ないため後処理工程を簡略化
でき、最終製品の熱安定性も高い。The copolymer obtained by the method of the present invention is substantially linear and has an extremely high degree of polymerization of MI value of 2.0 or less, further 1.5 or less, and excellent thermal stability. It is possible to obtain a high-performance, high-quality molded product that could not be obtained by the above method. Further, not only injection molded products, but also extrusion molding and blow molding, which has been conventionally difficult, can be performed, and the applications are expanded. In addition, since there are few unstable parts, the post-processing step can be simplified, and the thermal stability of the final product is high.
【0018】[0018]
【実施例】以下に本発明の実施例を示すが、本発明はこ
れらに限定されるものでないことは勿論である。尚、実
施例及び比較例中の用語及び測定法は次の通りである。 %又はppm ; 特に記載なき場合は重量基準である。 重合収率 ; 供給全モノマーに対する重合物取得%(重
量基準)。 メルトインデックス(MI); 190 ℃、荷重2160g で測定したメルトインデックス値
(g/10min)を示す。これは、分子量に対応する特性値
として評価した。即ち、MIが低い程分子量が高い(但
し、測定時の分解を防ぐため、一定の安定剤を少量添加
混合して測定)。 アルカリ分解率(不安定部分の存在量); 共重合物1g を0.5 %の水酸化アンモニウムを含む50%
メタノール水溶液100ml に入れ、密閉容器中で170 ℃、
45分間加熱した後、液中に溶出したホルムアルデヒドの
量を定量分析し、重合物に対する%で示した。 加熱重量減少率; 共重合物5g を粉砕し、2,2'−メチレンビス(4−メチ
ル−6−t−ブチルフェノール)(0.5 %)とジシアン
ジアミド(0.1 %)からなる安定剤粉末を良く混合し、
空気中で220 ℃、45分間加熱した場合の重量減少率を測
定した。 実施例1〜3、比較例1〜3 二つの円が一部重なった断面を有し、外側に熱(冷)媒
を通すジャケット付きのバレルとその内部に攪拌、推進
用のパドルを付した2本の回転軸を長手方向に設けた連
続式混合反応機を用い、ジャケットに80℃の温水を通
し、2本の回転軸を100rpmの速度で回転させ、その一端
に、 3.3%の1,3 −ジオキソランを含有するトリオキサ
ンを連続的に供給し、同時に同じところへ、三フッ化ホ
ウ素ブチルエーテラートをシクロヘキサンに1%濃度に
溶解させた溶液を、全モノマー(トリオキサン+1,3 −
ジオキソラン)に対して表1に示した濃度で連続添加し
て、共重合を行った。尚、上記供給原料中に含まれる不
純物の種類と量は、分析の結果、表1に示す通りであっ
た。次いで、重合機吐出口より排出された反応生成物
(約90℃)は、排出直後にトリエチルアミン1000ppm 含
有、20℃の水溶液(最終的には約4倍量)を加え、混合
粉砕し、排出後20秒で45℃まで冷却し、更に10秒後30℃
まで冷却した後、この温度で60分攪拌処理した。その
後、遠心分離、乾燥を行い、最終重合体を得た。重合収
率及び得られた重合体の性状を表1に示した。EXAMPLES Examples of the present invention will be shown below, but it is needless to say that the present invention is not limited to these examples. The terms and measuring methods in Examples and Comparative Examples are as follows. % Or ppm; by weight unless otherwise stated. Polymerization yield;% of polymer obtained relative to all monomers supplied (by weight). Melt index (MI): Indicates a melt index value (g / 10 min) measured at 190 ° C. under a load of 2160 g. This was evaluated as a characteristic value corresponding to the molecular weight. That is, the lower the MI, the higher the molecular weight (however, in order to prevent decomposition during measurement, a small amount of a certain stabilizer is added and mixed). Alkali decomposition rate (amount of unstable portion); 1 g of copolymer 50% containing 0.5% ammonium hydroxide
Put into 100 ml of aqueous methanol solution, and in a closed container at 170 ° C,
After heating for 45 minutes, the amount of formaldehyde eluted in the solution was quantitatively analyzed and shown as% of the polymer. Heating weight loss rate: 5 g of the copolymer was pulverized, and a stabilizer powder composed of 2,2'-methylenebis (4-methyl-6-t-butylphenol) (0.5%) and dicyandiamide (0.1%) was thoroughly mixed.
The weight loss rate when heated at 220 ° C. for 45 minutes in air was measured. Examples 1 to 3 and Comparative Examples 1 to 3 A cross section in which two circles partially overlapped each other was provided with a jacketed barrel through which a heat (cooling) medium passed, and a paddle for stirring and propulsion inside thereof. Using a continuous mixing reactor provided with two rotating shafts in the longitudinal direction, warm water of 80 ° C. is passed through the jacket, and the two rotating shafts are rotated at a speed of 100 rpm. Trioxane containing 3-dioxolane was continuously supplied, and at the same time, a solution in which boron trifluoride butyl etherate was dissolved in cyclohexane at a concentration of 1% was added to all monomers (trioxane + 1,3-
(Dioxolane) at a concentration shown in Table 1 to carry out copolymerization. The type and amount of impurities contained in the above-mentioned feedstock were as shown in Table 1 as a result of analysis. Next, the reaction product (approximately 90 ° C) discharged from the outlet of the polymerization machine is added immediately after discharge with an aqueous solution (finally, about 4 times) containing 1000 ppm of triethylamine at 20 ° C, and mixed and pulverized. Cool down to 45 ° C in 20 seconds, then 30 ° C after 10 seconds
After cooling, the mixture was stirred at this temperature for 60 minutes. Thereafter, centrifugation and drying were performed to obtain a final polymer. Table 1 shows the polymerization yield and the properties of the obtained polymer.
【0019】実施例4〜9、比較例4〜7 実施例2(表1)に示したと全く同様の重合条件により
重合し、重合機吐出口より排出された反応生成物は表2
に示すアルカリ水溶液と混合しつつ粉砕し、表2に示し
たような温度条件で触媒の失活化処理を行った。尚、こ
の温度(冷却)条件は、使用したアルカリ水溶液の温度
及び量、更には温度の異なる多段添加等により調整し
た。冷却後、表記温度で60分攪拌処理したのち、遠心分
離、乾燥を行い、最終重合体を得た。すべての場合にお
いて、重合収率はほぼ73%であった。得られた重合体の
性状を表2に示した。Examples 4 to 9 and Comparative Examples 4 to 7 Polymerization was carried out under exactly the same polymerization conditions as shown in Example 2 (Table 1), and the reaction products discharged from the discharge port of the polymerization machine were as shown in Table 2.
The mixture was pulverized while being mixed with an aqueous alkali solution shown in Table 2 and subjected to a catalyst deactivation treatment under the temperature conditions shown in Table 2. The temperature (cooling) conditions were adjusted by the temperature and amount of the aqueous alkaline solution used, and further by multistage addition at different temperatures. After cooling, the mixture was stirred at the indicated temperature for 60 minutes, centrifuged and dried to obtain a final polymer. In all cases, the polymerization yield was approximately 73%. Table 2 shows the properties of the obtained polymer.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
Claims (4)
隣接炭素原子を有し、置換基を全く有しないか水素原子
の一部がアルキル基で置換された環状エーテル或いは環
状ホルマールをコモノマーとして、三フッ化ホウ素又は
その配位化合物よりなる触媒を用いて共重合し、ポリオ
キシメチレン共重合物を得る方法において、反応系中の
重合停止及び連鎖移動作用を有する不純物の総量を全モ
ノマーに対して1×10-2 mol%以下とし、且つ重合反応
に使用する触媒の量を全モノマーに対して1×10-3〜7
×10-3 mol%として共重合を行い、共重合後、生成物を
30秒以内に45℃〜15℃の温度まで冷却し、少なくとも10
℃以上の温度で触媒を失活化することを特徴とする実質
上線状のメルトインデックス値(190 ℃、荷重2160g)2.
0g/10min以下である高重合度ポリオキシメチレン共重合
体の製造方法。1. Trifluoroxane as a main monomer and a cyclic ether or cyclic formal having a carbon atom adjacent thereto and having no substituent or a hydrogen atom partially substituted with an alkyl group as a comonomer. In a method of obtaining a polyoxymethylene copolymer by copolymerization using a catalyst comprising boron halide or its coordination compound, the total amount of impurities having a polymerization termination and chain transfer action in the reaction system is 1 to all monomers. X 10 -2 mol% or less, and the amount of catalyst used in the polymerization reaction is 1 x 10 -3 to 7 with respect to all monomers.
× 10 -3 mol% and copolymerized.
Cool to a temperature of 45 ° C to 15 ° C within 30 seconds, at least 10
A substantially linear melt index value (190 ° C., load 2160 g) characterized in that the catalyst is deactivated at a temperature of not less than ℃ 2.
A method for producing a polyoxymethylene copolymer having a high degree of polymerization of 0 g / 10 min or less .
求項1記載の製造方法。 2. The process according to claim 1, wherein the polymerization temperature is in the range of 60 to 105 ° C.
The method according to claim 1.
合物を溶解した低温溶液により行われる請求項1又は2
記載の製造方法。 3. The cooling of the polymerization product after the copolymerization becomes basic.
3. The method according to claim 1, which is performed by a low-temperature solution in which the compound is dissolved.
The manufacturing method as described.
は水溶液を用いる請求項3記載の製造方法。 4. A water-soluble solvent for dissolving a basic compound.
4. The method according to claim 3, wherein an aqueous solution is used.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4050597A JP2948015B2 (en) | 1992-03-09 | 1992-03-09 | Method for producing polyoxymethylene copolymer having high polymerization degree |
EP93301696A EP0559496B1 (en) | 1992-03-06 | 1993-03-05 | Process for producing polyoxymethylene copolymers |
ES93301696T ES2106278T3 (en) | 1992-03-06 | 1993-03-05 | PROCEDURE FOR THE PRODUCTION OF POLYOXYMETHYLENE COPOLYMERS. |
DK93301696.6T DK0559496T3 (en) | 1992-03-06 | 1993-03-05 | Process for preparing polyoxymethylene copolymers |
DE69313324T DE69313324T2 (en) | 1992-03-06 | 1993-03-05 | Process for the preparation of polyoxymethylene copolymers |
US08/026,130 US5344911A (en) | 1992-03-06 | 1993-03-05 | Process for producing polyoxymethylene copolymer having reduced amount of unstable terminal groups |
AT93301696T ATE157374T1 (en) | 1992-03-06 | 1993-03-05 | METHOD FOR PRODUCING POLYOXYMETHYLENE COPOLYMERS |
TW082101809A TW241276B (en) | 1992-03-06 | 1993-03-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4050597A JP2948015B2 (en) | 1992-03-09 | 1992-03-09 | Method for producing polyoxymethylene copolymer having high polymerization degree |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05247158A JPH05247158A (en) | 1993-09-24 |
JP2948015B2 true JP2948015B2 (en) | 1999-09-13 |
Family
ID=12863385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4050597A Expired - Fee Related JP2948015B2 (en) | 1992-03-06 | 1992-03-09 | Method for producing polyoxymethylene copolymer having high polymerization degree |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2948015B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19983463B8 (en) * | 1998-09-24 | 2007-12-06 | Asahi Kasei Kabushiki Kaisha | Polyoxymethylene copolymer and a composition containing it |
JP5814414B2 (en) * | 2014-03-31 | 2015-11-17 | ポリプラスチックス株式会社 | Process for producing polyacetal copolymer |
JP6473067B2 (en) * | 2015-10-28 | 2019-02-20 | 旭化成株式会社 | Composite parts, polyoxymethylene resin parts, and resin compositions |
-
1992
- 1992-03-09 JP JP4050597A patent/JP2948015B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05247158A (en) | 1993-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3017376B2 (en) | Method for producing polyoxymethylene terpolymer having high polymerization degree | |
US5844059A (en) | Process for preparing polyacetal copolymer | |
TWI573811B (en) | Method for producing polyacetal copolymer | |
JP2003522260A (en) | Method for producing polyoxymethylene | |
EP0559496B1 (en) | Process for producing polyoxymethylene copolymers | |
JPH0737504B2 (en) | Process for producing acetal polymer or copolymer | |
JP2948015B2 (en) | Method for producing polyoxymethylene copolymer having high polymerization degree | |
KR100249257B1 (en) | Thermally stable polyoxymethylene copolymer | |
JP3086423B2 (en) | Method for producing polyacetal resin | |
US5688897A (en) | Method for producing a stabilized oxymethylene copolymer | |
JP2948014B2 (en) | Method for producing polyoxymethylene copolymer | |
JP2003026746A (en) | Method for manufacturing polyacetal copolymer | |
JP5594483B2 (en) | Method for producing oxymethylene polymer and apparatus suitable for the purpose | |
JP3230554B2 (en) | Production method of polyoxymethylene with excellent color tone and thermal stability | |
JPS62129311A (en) | Production of oxymethylene copolymer | |
JP3208373B2 (en) | Method for producing polyacetal copolymer | |
JP3093148B2 (en) | Method for producing polyacetal copolymer | |
JP3181535B2 (en) | Method for producing polyacetal copolymer | |
JP2009532510A (en) | Process for producing polyoxymethylene homopolymer and copolymer and apparatus corresponding thereto | |
JPH07228649A (en) | Production of polyoxymethylene copolymer | |
JP3051797B2 (en) | Method for producing polyoxymethylene copolymer | |
JPH10292039A (en) | Production of stabilized polyacetal copolymer | |
JPH09216926A (en) | Production of polyoxymethylene copolymer | |
JP2764471B2 (en) | Method for producing stabilized oxymethylene copolymer | |
KR100248646B1 (en) | Process for producing polyacetal copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |