JP3178290B2 - Magneto ignition device - Google Patents

Magneto ignition device

Info

Publication number
JP3178290B2
JP3178290B2 JP02324995A JP2324995A JP3178290B2 JP 3178290 B2 JP3178290 B2 JP 3178290B2 JP 02324995 A JP02324995 A JP 02324995A JP 2324995 A JP2324995 A JP 2324995A JP 3178290 B2 JP3178290 B2 JP 3178290B2
Authority
JP
Japan
Prior art keywords
voltage
current
reverse
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02324995A
Other languages
Japanese (ja)
Other versions
JPH08218991A (en
Inventor
忠義 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP02324995A priority Critical patent/JP3178290B2/en
Publication of JPH08218991A publication Critical patent/JPH08218991A/en
Application granted granted Critical
Publication of JP3178290B2 publication Critical patent/JP3178290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの点火方式と
して高圧マグネト方式を用いるマグネト点火装置に関
し、特に、その1次コイルに流れる誘導電流を基にその
誘導電流を断続するスイッチング素子のための制御回路
に対し直流電源を給電する直流電源回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto ignition device using a high-pressure magneto system as an ignition system for an engine, and more particularly to a switching device for interrupting the induced current based on the induced current flowing through its primary coil. The present invention relates to a DC power supply circuit that supplies DC power to a control circuit.

【0002】[0002]

【従来の技術】汎用,小型のエンジンにおいては、一般
に、点火方式として高速回転性能に優れた高圧マグネト
方式が採用されている。この高速マグネト方式は、磁石
式交流発電機に点火コイルや断続器などを一体化したも
ので、接点を閉じて1次コイルの誘導電流(誘起電流)
を短絡電流として流し、その短絡電流が最大になる付近
で接点を開いて2次コイルに高電圧を発生させ、点火プ
ラグに火花を起さすものである。この1次コイルの誘導
電流を断続するための断続器は一般にパワートランジス
タ等の半導体スイッチング素子で、この半導体スイッチ
ング素子を開閉制御するには制御回路を必要としてい
る。このため、別巻線や電池類を用いずに、制御回路を
直流電源付勢するには、一般に、誘導電流を利用した直
流電源回路(順変換回路)をマグネト点火装置に付随さ
せている。
2. Description of the Related Art In general-purpose, small-sized engines, a high-pressure magneto system excellent in high-speed rotation performance is generally employed as an ignition system. This high-speed magneto system integrates an ignition coil and an interrupter into a magnet-type alternator, closes the contacts and induces an induced current (induced current) in the primary coil.
As a short-circuit current, and near the point where the short-circuit current is maximum, the contact is opened to generate a high voltage in the secondary coil, thereby causing a spark in the spark plug. The interrupter for interrupting the induction current of the primary coil is generally a semiconductor switching element such as a power transistor, and a control circuit is required to control the opening and closing of the semiconductor switching element. Therefore, in order to energize the control circuit with a DC power supply without using a separate winding or batteries, a DC power supply circuit (forward conversion circuit) using an induced current is generally attached to the magneto ignition device.

【0003】図4は特公昭61-39508号公報に開示された
従来の整流回路を備えたマグネト点火装置を示す回路図
である。図4において、磁石付きフライホイール(図示
せず)の回転により誘導起電力が発生するため、マグネ
トコイル1の出力は交流出力であり、a点の電位がb点
に対して正(順電圧)の場合には、制御回路3から主ト
ランジスタ(スイッチング素子)2に流入するベース電
流ibにより主トランジスタ2はオン状態にあり、コレ
クタ電流icが流れ、誘導電流は短絡電流となる。その
後、図5(b)に示すようなコレクタ電流ibが最大値
Pに達したとき、これを制御回路3が検知してベース電
流ibを遮断するため、その結果、主トランジスタ2が
オフするので、図5(a)に示すようにコイル1にスパ
イク状の高電圧(例えば300 〜400 V)が発生し、点火
プラグの点火ギャップ6に火花が飛ぶ。a点の電位がb
点に対して負(逆電圧)の場合には、主トランジスタ2
の逆方向耐圧VECO (約20V程度)に至るまでは逆電流
ieは殆ど流れず、a−b間の逆電圧がVECO 以上にな
ったときアバランシェ電流ieが流れ、熱エネルギーと
して消費される。逆電圧時において逆電流ieの一部を
抵抗7,ダイオード8を介して第1のコンデンサC1に
充電する。これにより第1のコンデンサC1の端子電圧
C1は図5(c)に示すように変化する。次いでa点の
電位がb点に対して再び正になると、コンデンサC1の
負極の電位が底上げされ、その蓄積電荷がダイオード
9,抵抗20を介して第2のコンデンサC2へ転流して
充電される。このとき、第2のコンデンサC2の電荷は
コンデンサC1の電荷とマグネトコイル1からの電荷の
和となり、その端子電圧VC2は図5(d)に示すように
なる。この電圧VC2を直流電源として利用し、レギュレ
ータ回路11を介して制御回路3に給電する。なお、抵
抗7は逆電流を大きく流さないように、抵抗20は主ト
ランジスタ2の負荷エネルギーを大きく消費し過ぎない
ように選定される。
FIG. 4 is a circuit diagram showing a magneto ignition device having a conventional rectifier circuit disclosed in Japanese Patent Publication No. 61-39508. In FIG. 4, since an induced electromotive force is generated by rotation of a flywheel with magnet (not shown), the output of the magneto coil 1 is an AC output, and the potential at point a is positive (forward voltage) with respect to point b. In the case of (1), the main transistor 2 is turned on by the base current ib flowing into the main transistor (switching element) 2 from the control circuit 3, the collector current ic flows, and the induced current becomes a short-circuit current. Thereafter, when the collector current ib as shown in FIG. 5B reaches the maximum value P, the control circuit 3 detects this and shuts off the base current ib. As a result, the main transistor 2 is turned off. As shown in FIG. 5 (a), a spike-like high voltage (for example, 300 to 400 V) is generated in the coil 1, and a spark flies in the ignition gap 6 of the spark plug. The potential at point a is b
If the point is negative (reverse voltage), the main transistor 2
The reverse current ie hardly flows until the reverse breakdown voltage V ECO (about 20 V) is reached, and when the reverse voltage between a and b exceeds V ECO , the avalanche current ie flows and is consumed as heat energy. . At the time of the reverse voltage, a part of the reverse current ie is charged to the first capacitor C1 via the resistor 7 and the diode 8. Thus, the terminal voltage V C1 of the first capacitor C1 changes as shown in FIG. Next, when the potential at the point a becomes positive again with respect to the point b, the potential of the negative electrode of the capacitor C1 is raised, and the accumulated charge is transferred to the second capacitor C2 via the diode 9 and the resistor 20 to be charged. . At this time, the charge of the second capacitor C2 is the sum of the charge of the capacitor C1 and the charge from the magneto coil 1, and the terminal voltage V C2 is as shown in FIG. This voltage V C2 is used as a DC power supply to supply power to the control circuit 3 via the regulator circuit 11. The resistor 7 is selected so that the reverse current does not flow significantly, and the resistor 20 is selected so that the load energy of the main transistor 2 is not excessively consumed.

【0004】このように、マグネト逆電圧により第1の
コンデンサC1を充電し、その電荷を順電圧時にコンデ
ンサC2に転流させて制御回路のための直流電源として
利用しているから、別巻線,電池類を設ける必要がな
く、従来は無駄に消費されたエネルギーを有効に活用で
きる。また、主トランジスタ2を流れる逆電流による熱
損失が低減し、信頼性の向上及び放熱構造の小型化が可
能である。
As described above, the first capacitor C1 is charged by the magneto-reverse voltage, and the charge is diverted to the capacitor C2 at the time of forward voltage and used as a DC power supply for the control circuit. There is no need to provide batteries, and conventionally, wastefully consumed energy can be effectively used. Further, heat loss due to the reverse current flowing through the main transistor 2 is reduced, so that reliability can be improved and the heat radiation structure can be downsized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図3に
示す従来のマグネト点火装置にあっては、次のような問
題点がある。
However, the conventional magneto ignition device shown in FIG. 3 has the following problems.

【0006】 逆電圧時に一旦充電した第1のコンデ
ンサ1の電荷を順電圧時に第2のコンデンサ2へ移し換
えしているため、転流用の第1のコンデンサ1を必要と
し、結果的に回路構成の複雑化や部品点数の増大を招い
ている。
Since the charge of the first capacitor 1 once charged at the time of the reverse voltage is transferred to the second capacitor 2 at the time of the forward voltage, the first capacitor 1 for commutation is required, and as a result, the circuit configuration And the number of parts increases.

【0007】 また、マグネト順電圧期間のときに転
流が生じるため、第2のコンデンサ2の端子電圧VC2
この期間に図5(d)に示すようなリップルを呈してい
る。そのため、端子電圧VC2をそのまま制御回路3の直
流電源とすると、電源不安定があるので、マグネト順電
圧期間にコレクタ電流ibの最大値Pを検知しベース電
流ibを遮断する制御回路3の制御信頼性が問題とな
る。この問題を回避するために、図4に示すレギュレー
タ回路11で所定電圧に平滑化して安定化させている。
そのため、レギュレータ回路11の追加によって直流電
源回路の部品点数の増加を余儀無くされている。
In addition, since commutation occurs during the magneto forward voltage period, the terminal voltage V C2 of the second capacitor 2 exhibits a ripple as shown in FIG. 5D during this period. Therefore, if the terminal voltage V C2 is used as it is as the DC power supply of the control circuit 3, there is power supply instability. Therefore, the control of the control circuit 3 which detects the maximum value P of the collector current ib and cuts off the base current ib during the magneto forward voltage period. Reliability matters. In order to avoid this problem, the regulator circuit 11 shown in FIG.
Therefore, the addition of the regulator circuit 11 necessitates an increase in the number of components of the DC power supply circuit.

【0008】 マグネト順電圧期間には、逆電圧時に
第1のコンデンサC1に一旦充電された電荷が第2のコ
ンデンサC2へ転流すると共に、順電流の一部が第1及
び第2のコンデンサC1,C2へ流れ込むため、マグネ
ト順電圧期間では主トランジスタ2に流れるコレクタ電
流icの値が若干減ることになり、主トランジスタ2の
遮断時に生じる高電圧の値もやや低くなる。そのため、
抵抗20の抵抗値を大きくする方が主トランジスタ2の
負荷エネルギーの消費が少なくなるものの、逆に、電荷
転流の時定数が大きくなり、第2のコンデンサC2の充
電効率は良くなく、二律背反した問題点をもたらしてい
る。
In the magneto forward voltage period, the charge once charged in the first capacitor C1 is transferred to the second capacitor C2 at the time of the reverse voltage, and a part of the forward current is transferred to the first and second capacitors C1. , C2, the value of the collector current ic flowing through the main transistor 2 is slightly reduced during the magneto forward voltage period, and the value of the high voltage generated when the main transistor 2 is cut off is also slightly reduced. for that reason,
Increasing the resistance value of the resistor 20 reduces the load energy consumption of the main transistor 2, but conversely increases the time constant of the charge commutation, so that the charging efficiency of the second capacitor C2 is not good. Bringing problems.

【0009】そこで上記問題点に鑑み、本発明の課題
は、マグネト点火装置の1次コイルに流れる逆電流の一
部から制御回路のための直流電流を得る直流電源回路に
おいて、電荷転流用のコンデンサを排除し、回路構成の
簡略化及び部品点数の削減による低コスト化を達成する
と共に、スイッチング素子を遮断する順電圧期間では電
源電圧の安定化を図ることにある。
In view of the above problems, it is an object of the present invention to provide a DC power supply circuit for obtaining a DC current for a control circuit from a part of a reverse current flowing through a primary coil of a magneto ignition device. To achieve cost reduction by simplifying the circuit configuration and reducing the number of parts, and to stabilize the power supply voltage during the forward voltage period in which the switching element is cut off.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明の講じた手段は、逆電圧時に逆電流を蓄電手
段に充電せしめ、順電圧時には充電せず、直流電源とし
て定電圧で長く放電するようにしたことを特徴とする。
即ち、本発明は、磁石の回転により交流の誘導電圧を生
じる1次コイルと、その誘導電圧のうち順電圧の生成時
に1次コイル間を短絡する断続手段と、その短絡により
高電圧を誘起する2次コイルと、上記断続手段を開閉制
御する制御手段と、その制御手段に直流電流を給電する
直流電源手段とを備えて成るマグネト点火装置におい
て、上記直流電源手段としては、誘導電圧のうち逆電圧
時に生じる逆電流のみを整流する整流手段と、その整流
手段の整流経路に間挿された蓄電手段と、蓄電手段に対
し並列接続であって定電圧整流手段及び電流制限手段か
らなる直列回路とを有しており、その定電圧整流手段の
端子間電圧を制御手段の直流電源とすることを特徴とす
る。
Means for Solving the Problems To solve the above problems, the means adopted in the present invention is to charge the storage means with a reverse current at the time of reverse voltage, do not charge at the time of forward voltage, and use a constant voltage as a DC power supply. It is characterized by a long discharge.
That is, the present invention provides a primary coil that generates an AC induced voltage by rotation of a magnet, an intermittent unit that short-circuits the primary coils when a forward voltage is generated from the induced voltage, and induces a high voltage by the short circuit. In a magneto ignition device comprising a secondary coil, control means for controlling the opening and closing of the intermittent means, and DC power supply means for supplying a DC current to the control means, the DC power supply means includes a reverse of an induced voltage. Rectifying means for rectifying only the reverse current generated at the time of voltage, power storage means interposed in a rectification path of the rectification means, and a series circuit connected in parallel to the power storage means and comprising a constant voltage rectification means and a current limiting means. And the voltage between the terminals of the constant voltage rectification means is used as a DC power supply of the control means.

【0011】ここで、整流手段は逆電流の流入側接合ダ
イオードと逆電流の流出側接合ダイオード、蓄電手段は
唯一のコンデンサ、定電圧整流手段は唯一の定電圧ダイ
オード、電流制限手段は唯一の抵抗とすることが望まし
い。
Here, the rectifying means is a reverse current inflow junction diode and a reverse current outflow junction diode, the storage means is a single capacitor, the constant voltage rectification means is a single constant voltage diode, and the current limiting means is a single resistor. It is desirable that

【0012】[0012]

【作用】1次コイルに逆電圧が発生すると、その逆電圧
の値が断続手段の降伏電圧値等に達する以前から、逆電
流が整流手段を介して流れ、蓄電手段が充電される。逆
電圧が高くなると、断続手段の降伏等によりその経路を
介して逆電流が流れるが、整流手段を介しても流れ続け
る。ここで、蓄電手段に対し並列接続であって定電圧整
流手段及び電流制限手段からなる直列回路が蓄電手段に
対し並列接続されているので、逆電流の一部はその直列
回路を介してバイパスし、蓄電手段を過電流から保護し
ている。また、この直列回路には電流制限手段が含まれ
ているため、逆電圧値のうち定電圧整流手段の定電圧値
との残余電圧値を担うことができ、定電圧整流手段の破
壊を防止できると共に、実質的に蓄電手段の端子間電圧
は逆電圧の値になり、1逆電圧期間でも豊富な蓄電量を
確保できる。このため、1逆電圧期間の後期では逆電圧
に近い蓄電圧値になっているので、順電圧期間において
蓄電手段から電源として放電しても、その蓄電電圧が定
電圧値以下になるまでは緩やかな下降曲線を描く。この
ため、順電流(短絡電流)が最大値になるまでの期間で
は整流手段の定電圧が制御手段に直流電源として給電さ
れているので、直流電源の安定化が達成されている。
When a reverse voltage is generated in the primary coil, a reverse current flows through the rectifier before the value of the reverse voltage reaches the breakdown voltage of the intermittent means, and the power storage means is charged. When the reverse voltage increases, a reverse current flows through the path due to breakdown of the intermittent means or the like, but continues to flow even through the rectifying means. Here, since a series circuit composed of the constant voltage rectification means and the current limiting means is connected in parallel to the power storage means and connected in parallel to the power storage means, a part of the reverse current is bypassed through the series circuit. The power storage means is protected from overcurrent. In addition, since the series circuit includes the current limiting means, the residual voltage value of the constant voltage rectifying means and the residual voltage value of the reverse voltage value can be taken, and the destruction of the constant voltage rectifying means can be prevented. At the same time, the voltage between the terminals of the power storage means is substantially a reverse voltage value, and a rich amount of stored power can be secured even during one reverse voltage period. For this reason, in the latter half of one reverse voltage period, the storage voltage value is close to the reverse voltage, so even if the power is discharged from the power storage means as a power supply in the forward voltage period, it is gradual until the storage voltage falls below the constant voltage value. Draw a descent curve. Therefore, during the period until the forward current (short-circuit current) reaches the maximum value, the constant voltage of the rectifier is supplied to the controller as a DC power supply, so that the DC power supply is stabilized.

【0013】[0013]

【実施例】次に、本発明の実施例を添付図面に基づいて
説明する。
Next, an embodiment of the present invention will be described with reference to the accompanying drawings.

【0014】図1は本発明の実施例に係るマグネト点火
装置の回路構成を示す回路図である。
FIG. 1 is a circuit diagram showing a circuit configuration of a magneto ignition device according to an embodiment of the present invention.

【0015】本例のマグネト点火装置は、磁石付きフラ
イホイール10の回転により交流の誘導電圧を生じるマ
グネトコイル1の1次コイル1aと、交流の誘導電圧の
うち順電圧の生成時に1次コイル1a間を短絡するため
のスイッチング部12と、その短絡により高電圧を誘起
するマグネトコイル1の2次コイル1bと、スイッチン
グ部12を開閉制御するための制御回路14と、制御回
路14に直流電流を給電する直流電源回路(順変換回
路)16とを備えて成る。ここで、スイッチング部12
は、1次コイル1aの両端(a点とb点)間に接続さ
れ、短絡電流を断続するパワートランジスタQと、a点
とb点間に接続された分圧抵抗rとトランジスタQのベ
ース電流を遮断するためのサイリスタTHを有してい
る。また、制御回路14はサイリスタTHのゲート信号
を生成し、サイリスタTHのターンオンとターオフを制
御する。
The magneto ignition device of the present embodiment includes a primary coil 1a of a magneto coil 1 which generates an AC induced voltage by rotation of a flywheel 10 with a magnet, and a primary coil 1a when a forward voltage is generated from the AC induced voltage. A switching unit 12 for short-circuiting between the two, a secondary coil 1b of the magneto coil 1 for inducing a high voltage by the short-circuit, a control circuit 14 for opening and closing the switching unit 12, and a DC current to the control circuit 14. And a DC power supply circuit (forward conversion circuit) 16 for supplying power. Here, the switching unit 12
Is a power transistor Q connected between both ends (points a and b) of the primary coil 1a and interrupts a short-circuit current, a voltage dividing resistor r connected between the points a and b, and a base current of the transistor Q. Thyristor TH for shutting off the thyristor. Further, the control circuit 14 generates a gate signal of the thyristor TH and controls turn-on and turn-off of the thyristor TH.

【0016】この直流電源回路16は、誘導電圧のうち
逆電圧時に生じる逆電流のみを整流するための流入側接
合ダイオードD1及び流出側接合ダイオードD2と、そ
れらダイオードD1,D2の間の整流経路に設けられた
有極性の蓄電用コンデンサCと、蓄電用コンデンサCに
対し並列接続であって、6Vの定電圧整流ダイオード
(ツェナーダイオード)ZD及び抵抗Rから成る直列回
路とを有している。定電圧整流ダイオード(ツェナーダ
イオード)ZDの端子間電圧が制御回路14に直流電源
電圧として給電されている。
The DC power supply circuit 16 includes an inflow-side junction diode D1 and an outflow-side junction diode D2 for rectifying only a reverse current generated at the time of a reverse voltage among the induced voltages, and a rectification path between the diodes D1 and D2. It has a provided polar storage capacitor C and a series circuit which is connected in parallel to the storage capacitor C and includes a 6V constant voltage rectifier diode (Zener diode) ZD and a resistor R. The voltage between the terminals of the constant voltage rectifier diode (Zener diode) ZD is supplied to the control circuit 14 as a DC power supply voltage.

【0017】フライホイール10の回転によってマグネ
トコイル1の1次コイル1aの両端(a点とb点)間に
は図3に示すような順電圧V+ と逆電圧V- が交番的に
繰り返す誘導電圧Vabが誘導される。a点の電位がb点
に対して正(順電圧V+ )の場合には、制御回路3の制
御によりスイッチング部12はオン状態にあり、誘導電
流はスイッチング部12を短絡電流Iaとして流れる。
そして、図3(b)に示すような短絡電流Iaが最大値
Pに達したとき、これを制御回路14が検知してサイリ
スタTHをターンオンにするため、パワートタランジス
タQのベース電流が遮断し、トランジスタQがオフ状態
になる。その結果、図3に示すようにマグネトコイル1
の2次コイル1bにスパイク状の高電圧(例えば300 〜
400 V)が発生し、点火プラグの点火ギャップ6に火花
が飛ぶ。
The forward voltage V + and the reverse voltage as between both ends of the primary coil 1a of magneto coils 1 (a point and point b) shown in FIG. 3 by the rotation of the flywheel 10 V - is repeated alternately induced A voltage V ab is induced. When the potential at the point a is positive with respect to the point b (forward voltage V + ), the switching unit 12 is in the ON state under the control of the control circuit 3, and the induced current flows through the switching unit 12 as the short-circuit current Ia.
When the short circuit current Ia as shown in FIG. 3B reaches the maximum value P, the control circuit 14 detects this and turns on the thyristor TH, so that the base current of the power transistor Q is cut off. , The transistor Q is turned off. As a result, as shown in FIG.
Is applied to the secondary coil 1b at a spike-like high voltage (for example, 300 to
400 V), and sparks fly into the ignition gap 6 of the spark plug.

【0018】a点の電位がb点に対して負(逆電圧
- )の場合には、トランジスタQの逆方向耐圧VECO
(約20V程度)に至るまではトランジスタQに逆電流が
殆ど流れないものの、直流電源回路16に対しては図3
に示す逆電流Ibが流れる。また逆電圧がVECO 以上に
なったときトランジスタQにアバランシェ電流が流れ、
熱エネルギーとして消費されると共に、直流電源回路1
6にも逆電流Ibが流れる。このため、コンデンサCは
逆電流Ibによって充電され、その端子間電圧VCは図
3に示すように瞬時に逆電圧程度になる。逆電流Ibの
消滅後は図3に示すように放電電流IC が推移し、端子
間電圧VC は緩やかな時定数で漸減する。定電圧ダイオ
ードZDのツェナー電圧6Vまで下降する迄は、図3に
示すように、定電圧ダイオードZDの端子間電圧VZD
6Vのままである。この定電圧6Vの期間を長くするに
は、コンデンサCの容量を大きくし、大きな蓄電量と長
い時定数とすれば良い。また、フライホイール10の回
転数が大きくなり、負極性パルスの周期が短くなると、
必然的に端子間電圧VZDが6V以下になる期間は消滅す
る。
[0018] Negative (reverse voltage V -) with respect to potential point b at the point a in the case of the reverse breakdown voltage V ECO transistor Q
(About 20 V), the reverse current hardly flows through the transistor Q.
The reverse current Ib shown in FIG. When the reverse voltage exceeds V ECO , an avalanche current flows through the transistor Q,
It is consumed as heat energy and the DC power supply circuit 1
6, the reverse current Ib also flows. Therefore, the capacitor C is charged by the reverse current Ib, the terminal voltage V C is reversed voltage approximately instantaneously as shown in FIG. After the disappearance of the reverse current Ib, the discharge current I C changes as shown in FIG. 3, and the inter-terminal voltage V C gradually decreases with a gentle time constant. Until the Zener voltage of the constant voltage diode ZD falls to 6 V, as shown in FIG. 3, the terminal voltage V ZD of the constant voltage diode ZD remains at 6 V. In order to lengthen the period of the constant voltage 6V, the capacity of the capacitor C may be increased, and a large amount of charge and a long time constant may be set. When the rotation speed of the flywheel 10 increases and the period of the negative pulse decreases,
Inevitably, the period during which the inter-terminal voltage V ZD becomes 6 V or less disappears.

【0019】逆電流IbはコンデンサCに充電されると
共に、定電圧ダイオードZD及び抵抗Rからなる直列回
路を介して流れる。この直列回路を介して逆電流の一部
はバイパスされているので、コンデンサCを過電流から
保護している。また、この直列回路には抵抗Rが含まれ
ているため、その電圧降下によって定電圧ダイオードZ
Dを過電圧から保護している。1逆電圧期間の後期では
逆電圧に近い蓄電圧値になっているので、順電圧期間に
おいて定電圧値以下になるまでは緩やかな下降曲線を描
く。このため、順電流(短絡電流)が最大値になる時点
は定電圧期間に収まっているので、直流電源の安定化に
より制御回路14の動作信頼性を保証できる。
The reverse current Ib charges the capacitor C and flows through a series circuit including a constant voltage diode ZD and a resistor R. Since a part of the reverse current is bypassed through this series circuit, the capacitor C is protected from overcurrent. Further, since the series circuit includes the resistor R, the voltage drop causes the constant voltage diode Z
D is protected from overvoltage. Since the stored voltage value is close to the reverse voltage in the latter half of one reverse voltage period, a gradual falling curve is drawn until the voltage becomes equal to or lower than the constant voltage value in the forward voltage period. For this reason, the point in time when the forward current (short-circuit current) reaches the maximum value falls within the constant voltage period, and the operation reliability of the control circuit 14 can be guaranteed by stabilizing the DC power supply.

【0020】上記の直流電源回路16は、逆電圧時に逆
電流を唯一の蓄電コンデンサCに充電せしめ、順電圧時
には全く充電せず、順電圧時の電源電圧のリップルを無
くしている。また、抵抗の電圧降下を利用して逆電圧全
体が蓄電コンデンサCに印加するようにし、逆電圧時に
高い充電電圧に設定してあるから、順電圧時において定
電圧ダイオードZDの定電圧で長く放電させ、電源電圧
の安定化を図っている。更に、本例では、ダイオードD
1,D2の整流回路により逆電圧時にトランジスタQか
ら逆電流を積極的に整流しているため、トランジスタQ
に流れるアバランシェ電流の抑制の効果が従前に増して
大きく、トランジスタQでの熱損失が低減し、信頼性の
向上及び放熱構造の小型化を図ることができる。
The above-mentioned DC power supply circuit 16 charges only a single storage capacitor C with a reverse current at the time of reverse voltage, does not charge at all at the time of forward voltage, and eliminates ripples in the power supply voltage at the time of forward voltage. Further, since the entire reverse voltage is applied to the storage capacitor C by utilizing the voltage drop of the resistor, and the charging voltage is set to a high value at the time of the reverse voltage, the constant voltage of the constant voltage diode ZD discharges a long time at the time of the forward voltage. In this way, the power supply voltage is stabilized. Further, in this example, the diode D
1 and D2, the reverse current is actively rectified from the transistor Q at the time of reverse voltage.
The effect of suppressing the avalanche current flowing through the transistor Q is larger than before, the heat loss in the transistor Q is reduced, the reliability can be improved, and the heat radiation structure can be downsized.

【0021】[0021]

【発明の効果】以上説明したように、本発明は、逆電圧
時に逆電流を蓄電手段に充電せしめ、順電圧時には充電
せず、直流電源として定電圧で長く放電するようにした
ことを特徴とする。従って、次のような効果を奏する。
As described above, the present invention is characterized in that the storage means is charged with a reverse current at the time of reverse voltage, is not charged at the time of forward voltage, and is discharged at a constant voltage as a DC power supply for a long time. I do. Therefore, the following effects are obtained.

【0022】 電荷転流用のコンデンサが不要である
から、回路構成の簡略化と部品点数の削減により低コス
ト化に寄与する。
Since a capacitor for charge transfer is not required, simplification of the circuit configuration and reduction in the number of components contribute to cost reduction.

【0023】 順電圧期間では蓄電手段に充電せず、
また電荷転流も行われないので、直流電源電圧の順電圧
期間でのリップルは生じない。このため電源電圧の安定
化により制御手段の制御信頼性を確保できる。
In the forward voltage period, the power storage means is not charged,
Also, since no charge commutation is performed, no ripple occurs during the forward voltage period of the DC power supply voltage. Therefore, control reliability of the control means can be secured by stabilizing the power supply voltage.

【0024】 順電圧期間での断続手段に流れる短絡
電流が直流電源手段に消費されないので、高電圧の値が
低くならず、直流電源回路を随伴するも点火特性を損な
わずに済む。
Since the short-circuit current flowing through the intermittent means during the forward voltage period is not consumed by the DC power supply means, the value of the high voltage does not decrease, and the DC power supply circuit can be used without impairing the ignition characteristics.

【0025】 整流手段により逆電圧時に逆電流を積
極的に整流して取り出しているため、断続手段に流れる
逆電流の抑制の効果が従前に増して顕著になるので、断
続手段の発熱を抑制でき、素子信頼性の向上及び放熱構
造の小型化に寄与する。
Since the reverse current is actively rectified and taken out at the time of the reverse voltage by the rectifying means, the effect of suppressing the reverse current flowing through the intermittent means becomes more remarkable and the heat generation of the intermittent means can be suppressed. This contributes to improvement in element reliability and downsizing of the heat dissipation structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るマグネト点火装置の回路
構成を示す回路図である。
FIG. 1 is a circuit diagram showing a circuit configuration of a magneto ignition device according to an embodiment of the present invention.

【図2】同実施例におけるスイッチング部の具体例を示
す回路図である。
FIG. 2 is a circuit diagram showing a specific example of a switching unit in the embodiment.

【図3】同実施例における各部の電圧及び電流波形を示
す波形図である。
FIG. 3 is a waveform chart showing voltage and current waveforms of respective parts in the embodiment.

【図4】特公昭61-39508号公報に開示された従来の整流
回路を備えたマグネト点火装置を示す回路図である。
FIG. 4 is a circuit diagram showing a magneto ignition device having a conventional rectifier circuit disclosed in Japanese Patent Publication No. 61-39508.

【図5】図4に示すマグネト点火装置における各部の電
圧及び電流波形を示す波形図である。
FIG. 5 is a waveform diagram showing voltage and current waveforms of respective parts in the magneto ignition device shown in FIG.

【符号の説明】[Explanation of symbols]

1…マグネトコイル 1a…1次コイル 1b…2次コイル 6…点火ギャップ 10…磁石付きフライホイール 12…スイッチング部 14…制御回路 16…直流電源回路 D1…流入側接合タイオード D2…流出側接合タイオード ZD…定電圧ダイオード C…蓄電用コンデンサ R…抵抗 Q…パワートランジスタ r…分圧抵抗 TH…サイリスタ。 DESCRIPTION OF SYMBOLS 1 ... Magneto coil 1a ... Primary coil 1b ... Secondary coil 6 ... Ignition gap 10 ... Flywheel with a magnet 12 ... Switching part 14 ... Control circuit 16 ... DC power supply circuit D1 ... Inflow side junction diode D2 ... Outflow side junction diode ZD ... constant voltage diode C ... storage capacitor R ... resistor Q ... power transistor r ... voltage dividing resistor TH ... thyristor.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁石の回転により交流の誘導電圧を生じ
る1次コイルと、前記誘導電圧のうち順電圧の生成時に
前記1次コイル間を短絡する断続手段と、その短絡によ
り高電圧を誘起する2次コイルと、前記断続手段を開閉
制御する制御手段と、前記制御手段に直流電流を給電す
る直流電源手段とを備えて成るマグネト点火装置におい
て、 前記直流電源手段は、前記誘導電圧のうち逆電圧時に生
じる逆電流のみを整流する整流手段と、前記整流手段の
整流経路に間挿された蓄電手段と、前記蓄電手段に対し
並列接続であって定電圧整流手段及び電流制限手段から
なる直列回路とを有しており、前記定電圧整流手段の端
子間電圧を前記制御手段の直流電源とすることを特徴と
するマグネト点火装置。
1. A primary coil for generating an AC induced voltage by rotation of a magnet, an intermittent means for short-circuiting between the primary coils when a forward voltage is generated among the induced voltages, and a high voltage is induced by the short-circuit. In a magneto ignition device comprising: a secondary coil; control means for controlling opening and closing of the intermittent means; and DC power supply means for supplying a DC current to the control means. Rectifying means for rectifying only the reverse current generated at the time of voltage, power storage means interposed in the rectification path of the rectification means, and a serial circuit connected in parallel to the power storage means and comprising a constant voltage rectification means and a current limiting means Wherein the voltage between the terminals of the constant voltage rectifying means is used as a DC power supply for the control means.
【請求項2】 請求項1に記載のマグネト点火装置にお
いて、前記整流手段は逆電流の流入側接合ダイオードと
逆電流の流出側接合ダイオードであり、前記蓄電手段は
唯一のコンデンサであり、前記定電圧整流手段は唯一の
定電圧ダイオードであり、前記電流制限手段は唯一の抵
抗であることを特徴とするマグネト点火装置。
2. The magneto-ignition device according to claim 1, wherein the rectifier is a reverse current inflow junction diode and a reverse current outflow junction diode, the power storage means is a sole capacitor, The magnet igniter according to claim 1, wherein the voltage rectifying means is a single constant voltage diode, and the current limiting means is a single resistor.
JP02324995A 1995-02-13 1995-02-13 Magneto ignition device Expired - Lifetime JP3178290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02324995A JP3178290B2 (en) 1995-02-13 1995-02-13 Magneto ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02324995A JP3178290B2 (en) 1995-02-13 1995-02-13 Magneto ignition device

Publications (2)

Publication Number Publication Date
JPH08218991A JPH08218991A (en) 1996-08-27
JP3178290B2 true JP3178290B2 (en) 2001-06-18

Family

ID=12105333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02324995A Expired - Lifetime JP3178290B2 (en) 1995-02-13 1995-02-13 Magneto ignition device

Country Status (1)

Country Link
JP (1) JP3178290B2 (en)

Also Published As

Publication number Publication date
JPH08218991A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US5739677A (en) Vehicle power generating system
US5719484A (en) Vehicle power generating system and method for controlling the same
US6462965B1 (en) Switching power supply
JP3491797B2 (en) Power generator for vehicles
US4788486A (en) Vehicular power supply system having a plurality of power supply voltages
US20040246641A1 (en) Inverter control unit for motor driving and air-conditioner employing the same
US4696280A (en) High-tension capacitor-discharge ignition apparatus for internal combustion engines
US4537174A (en) Output supply control apparatus for internal combustion engine magneto generator
US5714871A (en) Power device for internal combustion engine
EP0766003B1 (en) Ignition system for internal combustion engines
JP3178290B2 (en) Magneto ignition device
US6876177B2 (en) Load dump transient voltage controller
JPH0681498B2 (en) Snubber circuit
EP1087643A2 (en) Lamp lighting control circuit
JPH08504318A (en) Electronic switch mode power supply for powering storage batteries
JP3605970B2 (en) Magneto ignition device
JP2956061B2 (en) Power supply for vehicles
JP3101124B2 (en) Magneto ignition device
JPH0343416Y2 (en)
CA1131308A (en) Electrical supply system for an internal combustion engine
JP2696255B2 (en) Switching power supply
JP2811791B2 (en) Self-excited oscillation contactless ignition device for internal combustion engines
SU960460A2 (en) Transistorized capacitor ignition system
JP2792023B2 (en) Contactless ignition device for internal combustion engine
JP2781600B2 (en) Latch-up protection circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term