JP3177678B2 - NOx adsorbent - Google Patents

NOx adsorbent

Info

Publication number
JP3177678B2
JP3177678B2 JP24346996A JP24346996A JP3177678B2 JP 3177678 B2 JP3177678 B2 JP 3177678B2 JP 24346996 A JP24346996 A JP 24346996A JP 24346996 A JP24346996 A JP 24346996A JP 3177678 B2 JP3177678 B2 JP 3177678B2
Authority
JP
Japan
Prior art keywords
ruthenium
nox
titanium oxide
nox adsorbent
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24346996A
Other languages
Japanese (ja)
Other versions
JPH1085587A (en
Inventor
友紀 西良
正義 市来
進 日数谷
一博 近藤
厚 福寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP24346996A priority Critical patent/JP3177678B2/en
Publication of JPH1085587A publication Critical patent/JPH1085587A/en
Application granted granted Critical
Publication of JP3177678B2 publication Critical patent/JP3177678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、道路トンネル換気
ガスなどのように、多量の湿分と数ppmの低濃度窒素
酸化物(NOx)が共存するガスからこの低濃度NOx
を効率的に吸着除去するNOx吸着剤に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low-concentration NOx from a gas in which a large amount of moisture coexists with low-concentration nitrogen oxides (NOx) of several ppm, such as road tunnel ventilation gas.
The present invention relates to a NOx adsorbent that efficiently adsorbs and removes NOx.

【0002】[0002]

【従来の技術】従来、上記のような低濃度NOxの吸着
剤としては、アナターゼ酸化チタン担体にルテニウム、
セリウム等を担持してなるNOx吸着剤や、非晶質酸化
チタンの表面改質剤としてマンガン塩を添加してなるM
n−Ti系表面改質酸化チタン担体にルテニウム、セリ
ウムを順次担持し、それに銀、銅、マンガンなどを添加
してなるNOx吸着剤などが提案されている。
2. Description of the Related Art Conventionally, adsorbents for low-concentration NOx as described above include ruthenium,
NOx adsorbents carrying cerium and the like, and manganese salts added as manganese salts as surface modifiers for amorphous titanium oxide
There has been proposed a NOx adsorbent or the like in which ruthenium and cerium are sequentially supported on an n-Ti-based surface-modified titanium oxide carrier, and silver, copper, manganese and the like are added thereto.

【0003】[0003]

【発明が解決しようとする課題】ルテニウムを用いるN
Ox吸着剤のNOx吸着能(NOx吸着速度やNOx吸
着容量等で表される)は、担持ルテニウム粒子表面およ
び/またはルテニウム−他成分界面の増加により向上で
きると考えられる。即ち、吸着剤上でルテニウムの分散
度が一定であれば、NOx吸着能はルテニウム担持量に
比例すると考えられる。
SUMMARY OF THE INVENTION N using ruthenium
It is considered that the NOx adsorption ability (expressed by NOx adsorption speed, NOx adsorption capacity, and the like) of the Ox adsorbent can be improved by increasing the surface of the supported ruthenium particles and / or the interface between ruthenium and other components. That is, if the degree of dispersion of ruthenium on the adsorbent is constant, the NOx adsorption ability is considered to be proportional to the amount of ruthenium carried.

【0004】しかしながら、上述のような従来の担持法
で得られた吸着剤では、図1に示すように、初期のNO
x吸着能は、担体に対する重量比2(wt%)以上のル
テニウム添加量で飽和し、ルテニウム添加量の増加によ
る効果は殆ど認められなくなる。
However, in the adsorbent obtained by the above-described conventional supporting method, as shown in FIG.
The x-adsorbing ability is saturated at a ruthenium addition amount of 2 (wt%) or more with respect to the weight of the carrier, and the effect of increasing the ruthenium addition amount is hardly recognized.

【0005】また、400℃加熱後のNOx吸着能は全
般に低く、ルテニウム添加量の増加による効果は殆ど認
められない。
[0005] Further, the NOx adsorbing ability after heating at 400 ° C is generally low, and the effect of increasing the amount of added ruthenium is hardly recognized.

【0006】以上の事実より、従来の担持法では、担持
量を増加させるとルテニウムの分散度が低下し、ルテニ
ウム粒子表面および界面がルテニウム担持量に比例せ
ず、そのため初期のNOx吸着能はルテニウム担持量に
比例しない。また、分散度が低下するほど熱凝集が起こ
りやすいため、400℃加熱後のNOx吸着能について
はルテニウム担持量が多いほど劣化幅が大きく、担持量
増加効果が認められなくなったと考えられる。
From the above facts, in the conventional loading method, as the loading amount increases, the degree of dispersion of ruthenium decreases, and the surface and interface of the ruthenium particles are not proportional to the loading amount of ruthenium. It is not proportional to the load. Further, since thermal aggregation is more likely to occur as the degree of dispersion decreases, it is considered that the NOx adsorbing ability after heating at 400 ° C. becomes larger as the amount of ruthenium supported increases, and the effect of increasing the supported amount cannot be recognized.

【0007】本発明は、ルテニウム担持量当たりのNO
x吸着能の初期値を引き上げると同時に、吸着・脱着の
繰り返し使用のおける性能低下を防止することを目的と
するものである。
[0007] The present invention provides a method for producing NO per ruthenium supported amount.
An object of the present invention is to increase the initial value of the x-adsorbing ability and at the same time, prevent a decrease in performance in repeated use of adsorption and desorption.

【0008】[0008]

【課題を解決するための手段】ルテニウムの担持量当た
りのルテニウム表面および/または界面を増加させるた
めには、ルテニウム粒子を高い分散度で担持させること
が重要である。
In order to increase the ruthenium surface and / or interface per the amount of ruthenium supported, it is important to support the ruthenium particles with a high degree of dispersion.

【0009】酸性点を有する多孔質担体を塩化ルテニウ
ム水溶液に浸漬した場合、ルテニウムイオンは担体の酸
性点に吸着されることが知られている。これを乾燥・焼
成すればルテニウムが高分散担持されたNOx吸着剤が
調製できる。しかし、吸着担持されたルテニウム周辺に
空き酸点が残っていたり、吸着担持していないフリーの
ルテニウムが残っていると、ルテニウムイオンは担持表
面を移動しやすく、乾燥・焼成および吸着剤の再生等の
加熱により凝集を来たし、ルテニウムの分散度が低下す
ることが考えられる。
It is known that when a porous carrier having an acidic point is immersed in an aqueous ruthenium chloride solution, ruthenium ions are adsorbed to the acidic point of the carrier. If this is dried and fired, a NOx adsorbent in which ruthenium is highly dispersed and supported can be prepared. However, if free acid sites remain around the adsorbed and supported ruthenium, or free ruthenium that is not adsorbed and supported remains, ruthenium ions can easily move on the supported surface, drying and firing, and regeneration of the adsorbent. It is considered that coagulation occurs due to the heating of, and the degree of dispersion of ruthenium decreases.

【0010】これを防止するには、安価な他の金属イオ
ンを担体の空き酸点に吸着担持させれば良い(図2参
照)。ここで添加する金属イオン種は担体への吸着性が
ルテニウムと同程度もしくは僅かに弱いものがよい。な
ぜならば、担体への吸着性が強すぎるとルテニウムイオ
ンを排除して添加金属が酸性点を埋めてしまい、逆に弱
すぎると空き酸性点に効果的に吸着されないため、ルテ
ニウムの表面拡散を防止できない。また、他の金属の添
加時期は吸着担持されたルテニウムの凝集が起こる前な
らばいつでも良いが、実用的にはルテニウムの吸着担持
操作と同時に行うのが望ましい。
In order to prevent this, other inexpensive metal ions may be adsorbed and carried on the free acid sites of the carrier (see FIG. 2). It is preferable that the metal ion species to be added have the same or slightly weaker adsorbability to ruthenium as the carrier. This is because if the adsorbability to the carrier is too strong, ruthenium ions are eliminated and the added metal fills the acidic sites, while if it is too weak, it is not effectively adsorbed to the free acidic sites, preventing the surface diffusion of ruthenium. Can not. The addition time of the other metal may be any time before the coagulation of the adsorbed and supported ruthenium occurs, but practically, it is preferable to perform the addition simultaneously with the operation of adsorbing and supporting the ruthenium.

【0011】本発明者らは、酸性担体への吸着性がルテ
ニウムイオンと同等の金属イオンとして、鉄イオン(F
2+および/またはFe3+)が好適であることを見
出した。そこで従来のルテニウム担持法に変え、担体に
ルテニウムと鉄を同時または逐次担持させ、これにセリ
ウムを担持させたNOx吸着剤を製作し、NOx飽和吸
着量を測定したところ、これは従来より高い初期NOx
吸着能を示し、ルテニウム担持量増加効果も高くなるこ
とが見出された。例えば、塩化ルテニウムと塩化鉄の混
合水溶液を担体に含浸、乾燥・焼成し、これにセリウム
を含浸担持させたNOx吸着剤(後述する試料A〜D)
を製作し、そのルテニウム担持量に対するNOx飽和吸
着量を測定したところ、これは、従来のルテニウム担持
法によるNOx吸着剤に比べ、高い初期NOx吸着能を
示し、ルテニウム担持量増加効果も高かった(図3参
照)。
[0011] The present inventors have proposed iron ions (F) as metal ions having the same adsorptivity to an acidic carrier as ruthenium ions.
e 2+ and / or Fe 3+ ) have been found to be suitable. So we changed to the conventional ruthenium loading method ,
Ruthenium and iron are supported simultaneously or sequentially, and
A NOx adsorbent carrying aluminum
When the deposition amount was measured, it was found that the initial NOx was higher than before.
It has been found that the compound has an adsorption ability and the effect of increasing the amount of supported ruthenium also increases. For example, a mixture of ruthenium chloride and iron chloride
The carrier is impregnated with the combined aqueous solution, dried and calcined.
NOx adsorbent loaded with carbon dioxide (Samples A to D described later)
And the NOx saturation absorption with respect to the amount of ruthenium carried
When the amount of deposition was measured, this was
Higher initial NOx adsorption capacity than NOx adsorbents
The effect of increasing the amount of ruthenium supported was also high (see FIG. 3).
See).

【0012】このことはルテニウム・鉄の混合担持によ
り、担持ルテニウムの分散度が向上したこと、および、
ルテニウム粒子間の酸性点に鉄がよく吸着担持されるた
め、乾燥・焼成時のルテニウム粒子の凝集を防止できた
ことを示している。
[0012] This means that the mixed loading of ruthenium and iron improves the degree of dispersion of the loaded ruthenium, and
This indicates that iron was well adsorbed and supported on the acidic points between the ruthenium particles, so that aggregation of the ruthenium particles during drying and firing could be prevented.

【0013】故に、本発明による手法の原理は、酸性点
を持つ担体に少量のイオンを高分散に吸着担持する全て
の場合に有効であると考えられる。
Therefore, it is considered that the principle of the method according to the present invention is effective in all cases in which a small amount of ions are adsorbed and supported on a carrier having an acidic point in a highly dispersed manner.

【0014】また、NOx吸着剤が繰り返しの使用に耐
えるためには、吸着剤再生時の加熱によるルテニウム粒
子の凝集を抑えると同時に、ルテニウムと界面を形成し
ている物質の熱変化を抑える必要がある。
Further, in order for the NOx adsorbent to withstand repeated use, it is necessary to suppress the agglomeration of the ruthenium particles due to heating during regeneration of the adsorbent and, at the same time, to suppress the thermal change of the substance forming the interface with ruthenium. is there.

【0015】そこで前述の手法で高活性な初期性能を持
つNOx吸着剤を調製した後、さらにマンガンを添加し
た(試料E)ところ、NOx吸着と300℃加熱再生の
繰り返しによる劣化を防止できた(図4参照)。
Therefore, after preparing a NOx adsorbent having high initial performance by the above-mentioned method, and further adding manganese (sample E), deterioration due to repeated NOx adsorption and regeneration by heating at 300 ° C. could be prevented. (See FIG. 4).

【0016】マンガンの添加はセリウムの担持までの全
ての工程が完了した後、セリウム原料と同じ硝酸塩で行
うことが望ましい。また、マンガンに代えて、銀、銅、
鉄の硝酸塩を用いることで同等の効果を得た。
It is desirable that the addition of manganese be performed using the same nitrate as the cerium raw material after all the steps up to the loading of cerium are completed. Also, instead of manganese, silver, copper,
The same effect was obtained by using iron nitrate.

【0017】本発明による第1のNOx吸着剤は、酸化
チタンもしくはMn−Ti系表面改質酸化チタンからな
る担体に、ルテニウムとセリウムを担持してなるNOx
吸着剤において、該担体にルテニウムと鉄を担持させ、
その後セリウムを担持させて得られることを特徴とする
ものである。
The first NOx adsorbent according to the present invention is a NOx adsorbent comprising ruthenium and cerium supported on a carrier made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide.
In the adsorbent, the carrier carries ruthenium and iron,
Thereafter, it is obtained by supporting cerium.

【0018】本発明による第2のNOx吸着剤は、酸化
チタンもしくはMn−Ti系表面改質酸化チタンからな
る担体に、ルテニウムとセリウムを担持してなるNOx
吸着剤において、該担体にルテニウムと、鉄、ニッケル
およびクロムのうち少なくとも一種とを担持させ、その
後セリウムを担持させて得られることを特徴とするもの
である。
A second NOx adsorbent according to the present invention is a NOx adsorbent comprising ruthenium and cerium supported on a carrier comprising titanium oxide or a Mn-Ti-based surface-modified titanium oxide.
The adsorbent is obtained by supporting ruthenium and at least one of iron, nickel and chromium on the carrier, and then supporting cerium.

【0019】第1のNOx吸着剤を製造するには、塩化
鉄を0.01〜1(モル/l)、望ましくは0.5〜
0.3(モル/l)含むルテニウム担持用溶液に、酸化
チタンもしくはMn−Ti系表面改質酸化チタンからな
る担体を浸漬し、150〜300℃で焼成し、その後セ
リウムを担持させる方法が好ましい。
In order to produce the first NOx adsorbent, iron chloride is used in an amount of 0.01 to 1 (mol / l), preferably 0.5 to 1 (mol / l).
A method is preferred in which a carrier made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide is immersed in a ruthenium supporting solution containing 0.3 (mol / l), baked at 150 to 300 ° C, and then cerium is supported. .

【0020】第2のNOx吸着剤を製造するには、鉄、
ニッケルおよびクロムのうち少なくとも一種の塩化物を
合計濃度0.01〜2(モル/l)、望ましくは0.0
5〜0.5(モル/l)で含むルテニウム担持用溶液
に、酸化チタンもしくはMn−Ti系表面改質酸化チタ
ンからなる担体を浸漬し、150〜300℃で焼成し、
その後セリウムを担持させる方法が好ましい。
To produce the second NOx adsorbent, iron,
A total concentration of at least one chloride of nickel and chromium of 0.01 to 2 (mol / l), preferably 0.02
A carrier made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide is immersed in a ruthenium-supporting solution containing 5 to 0.5 (mol / l), and baked at 150 to 300 ° C.
Thereafter, a method of supporting cerium is preferable.

【0021】上記第2のNOx吸着剤の製造方法におい
て、酸化チタンもしくはMn−Ti系表面改質酸化チタ
ンからなる担体に、ルテニウムと、鉄、ニッケルおよび
クロムのうち少なくとも一種とを担持し、得られたルテ
ニウム担持物を、硝酸セリウムを2.0〜3.2(モル
/l)、望ましくは2.8〜3.2(モル/l)含む水
溶液に浸漬し、250〜380℃、望ましくは300〜
350℃で焼成することによってセリウムを担持するの
が好ましい。
In the second method for producing a NOx adsorbent, ruthenium and at least one of iron, nickel and chromium are supported on a support made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide. The obtained ruthenium carrier is immersed in an aqueous solution containing 2.0 to 3.2 (mol / l), preferably 2.8 to 3.2 (mol / l) of cerium nitrate, at 250 to 380 ° C, preferably 300 ~
It is preferable to carry cerium by firing at 350 ° C.

【0022】第1または第2のNOx吸着剤において、
Mn−Ti系表面改質酸化チタンからなる担体は、例え
ば、非晶質チタニアにマンガン化合物を添加し焼成する
ことによって得られる。
In the first or second NOx adsorbent,
The support made of a Mn-Ti-based surface-modified titanium oxide is obtained, for example, by adding a manganese compound to amorphous titania and firing.

【0023】第1または第2のNOx吸着剤において、
担体へのルテニウムと鉄の担持は同時であっても逐次で
あってもよい。
In the first or second NOx adsorbent,
The loading of ruthenium and iron on the carrier may be simultaneous or sequential.

【0024】第1または第2のNOx吸着剤は、さらに
銀、マンガン、銅および鉄のうち少なくとも1種を含ん
でいてもよい。
[0024] The first or second NOx adsorbent may further contain at least one of silver, manganese, copper and iron.

【0025】銀、マンガン、銅および/または鉄を含む
第1または第2のNOx吸着剤を製造するには、酸化チ
タンもしくはMn−Ti系表面改質酸化チタンからなる
担体に、ルテニウムと、鉄、ニッケルおよびクロムのう
ち少なくとも一種とを担持し、得られたルテニウム担持
物を、硝酸セリウムを2.0〜3.2(モル/l)、望
ましくは2.8〜3.2(モル/l)含む水溶液に浸漬
し、250〜380℃、望ましくは300〜350℃で
焼成し、ついで、得られたセリウム担持物を、銀、マン
ガン、銅および鉄のうち少なくとも1種の硝酸塩を0.
3〜1.5(モル/l)、望ましくは0.5〜1.0
(モル/l)含む水溶液に浸漬し、250〜380℃、
望ましくは300〜350℃で焼成する方法が好まし
い。
In order to produce the first or second NOx adsorbent containing silver, manganese, copper and / or iron, ruthenium and iron are added to a carrier made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide. , Nickel and chromium, and the obtained ruthenium-supported material was converted from cerium nitrate to 2.0 to 3.2 (mol / l), preferably 2.8 to 3.2 (mol / l). ), And calcined at 250 to 380 ° C., preferably 300 to 350 ° C., and the obtained cerium carrier is mixed with at least one nitrate of at least one of silver, manganese, copper and iron.
3 to 1.5 (mol / l), preferably 0.5 to 1.0
(Mol / l), immersed in an aqueous solution containing 250 to 380 ° C,
Desirably, a method of firing at 300 to 350 ° C. is preferable.

【0026】第1または第2のNOx吸着剤は、これを
不燃性繊維プレフォーム体に保持してなる板状NOx吸
着剤とすることも好ましい。
It is also preferable that the first or second NOx adsorbent is a plate-like NOx adsorbent obtained by holding the NOx adsorbent on a noncombustible fiber preform.

【0027】本発明によるNOx吸着剤は、道路トンネ
ル換気ガスなどのように、多量の湿分と数ppmの低濃
度NOxが共存するガスからこの低濃度NOxを効率的
に吸着除去するのに効果的である。
The NOx adsorbent according to the present invention is effective in efficiently adsorbing and removing low-concentration NOx from a gas in which a large amount of moisture coexists with a low concentration of several ppm NOx, such as a road tunnel ventilation gas. It is a target.

【0028】[0028]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例 試料A〜Eの調製 試料A 硝酸塩加水分解法で得られた酸化チタンコロイド溶液
(固形分32重量部)を0.5mm厚さのセラミックス
ペーパーに含浸保持させ、110℃乾燥して非晶質酸化
チタンを165g/m2 保持した板状物を得た。これを
1.0(モル/l)の硝酸マンガン水溶液に6分間浸漬
し110℃で乾燥した。この板状物を450℃で3時間
空気気流中で焼成し、表面改質板状酸化チタン担体を得
た。
EXAMPLES Preparation of Samples A to E Sample A A titanium oxide colloid solution (solid content of 32 parts by weight) obtained by a nitrate hydrolysis method was impregnated and held in a ceramic paper having a thickness of 0.5 mm, dried at 110 ° C., and dried to form an amorphous material. A plate-like material holding 165 g / m 2 of high quality titanium oxide was obtained. This was immersed in a 1.0 (mol / l) manganese nitrate aqueous solution for 6 minutes and dried at 110 ° C. This plate was fired at 450 ° C. for 3 hours in an air stream to obtain a surface-modified plate-shaped titanium oxide support.

【0029】この板状担体をルテニウム17(g/
l)、鉄4(g/l)の塩化ルテニウム・塩化鉄(II)
混合水溶液に5分間浸漬し、110℃で乾燥した後、2
30℃で1時間焼成した。さらにこれをセリウム400
(g/l)の硝酸セリウム水溶液に10分間浸漬し、1
10℃で乾燥した後、330℃で3時間焼成し、試料A
を調製した。
This plate-like carrier was coated with ruthenium 17 (g / g).
l), iron 4 (g / l) ruthenium chloride / iron (II) chloride
After immersion in a mixed aqueous solution for 5 minutes and drying at 110 ° C.,
It was baked at 30 ° C. for 1 hour. Furthermore, this is cerium 400
(G / l) in cerium nitrate aqueous solution for 10 minutes,
After drying at 10 ° C., it was baked at 330 ° C. for 3 hours.
Was prepared.

【0030】試料B 試料Aの浸漬液のルテニウム濃度を12(g/l)とし
た以外、試料Aと同様にして試料Bを調製した。
Sample B Sample B was prepared in the same manner as Sample A, except that the ruthenium concentration of the immersion liquid of Sample A was 12 (g / l).

【0031】試料C 試料Aの浸漬液のルテニウム濃度を7(g/l)とした
以外、試料Aと同様にして試料Cを調製した。
Sample C Sample C was prepared in the same manner as Sample A, except that the ruthenium concentration of the immersion liquid of Sample A was 7 (g / l).

【0032】試料D 試料Aの浸漬液のルテニウム濃度を3(g/l)とした
以外、試料Aと同様にして試料Dを調製した。
Sample D Sample D was prepared in the same manner as Sample A, except that the ruthenium concentration of the immersion liquid of Sample A was 3 (g / l).

【0033】試料E 試料Cと同様の条件で調製したものをさらに0.5(モ
ル/l)の硝酸マンガン水溶液に10分間浸漬し、11
0℃で乾燥した後330℃で3時間焼成して試料Eを調
製した。
Sample E A sample prepared under the same conditions as in Sample C was further immersed in a 0.5 (mol / l) aqueous solution of manganese nitrate for 10 minutes.
After drying at 0 ° C., the sample was fired at 330 ° C. for 3 hours to prepare Sample E.

【0034】試料A〜Eの担持物組成、および、200
ppmのNOを含むガス中でのNOx飽和吸着量(初
期)を表1に示す。
The carrier compositions of Samples A to E and 200
Table 1 shows the NOx saturated adsorption amount (initial) in a gas containing ppm NO.

【0035】[0035]

【表1】 [Table 1]

【0036】比較例 試料A' 〜D' の調製 試料A' 資料Aで用いたものと同様の表面改質板状酸化チタン担
体をルテニウム17(g/l)の塩化ルテニウム水溶液
に5分間浸漬し、110℃で乾燥した後、230℃で1
時間焼成した。これをセリウム400(g/l)の硝酸
セリウム水溶液に10分間浸漬し、110℃で乾燥した
後330℃で3時間焼成し、試料A' を調製した。
Comparative Example Preparation of Samples A 'to D' Sample A 'A surface-modified plate-like titanium oxide carrier similar to that used in Sample A was immersed in a ruthenium chloride aqueous solution of ruthenium 17 (g / l) for 5 minutes. After drying at 110 ° C.,
Fired for hours. This was immersed in a cerium nitrate aqueous solution of cerium 400 (g / l) for 10 minutes, dried at 110 ° C., and baked at 330 ° C. for 3 hours to prepare a sample A ′.

【0037】た。[0037]

【0038】試料B' 試料A' の浸漬液のルテニウム濃度を12(g/l)と
した以外、試料Aと同様にして試料B' を調製した。
Sample B 'Sample B' was prepared in the same manner as Sample A, except that the ruthenium concentration of the immersion liquid of Sample A 'was 12 (g / l).

【0039】試料C' 試料A' の浸漬液のルテニウム濃度を7(g/l)とし
た以外、試料Aと同様にして試料C' を調製した。
Sample C 'Sample C' was prepared in the same manner as Sample A, except that the ruthenium concentration of the immersion liquid of Sample A 'was changed to 7 (g / l).

【0040】試料D' 試料A' の浸漬液のルテニウム濃度を3(g/l)とし
た以外、試料Aと同様にして試料D' を調製した。
Sample D 'Sample D' was prepared in the same manner as Sample A, except that the ruthenium concentration of the immersion liquid of Sample A 'was changed to 3 (g / l).

【0041】試料A' 〜D' の担持物組成、および、2
00ppmのNOを含むガス中でのNOx飽和吸着量
(初期および400℃10時間加熱後)を表2に示す。
The carrier composition of Samples A ′ to D ′, and 2
Table 2 shows the NOx saturated adsorption amount (initial and after heating at 400 ° C. for 10 hours) in a gas containing 00 ppm of NO.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】図4から明らかなように、本発明の手法
によって担体にルテニウムを高分散状態に担持させ、マ
ンガンで構造の安定化を図ったNOx吸着剤は従来法に
よるものと比べ、高い活性と安定性を示すことがわか
る。
As is clear from FIG. 4, the NOx adsorbent in which ruthenium is supported on the carrier in a highly dispersed state by the method of the present invention and the structure is stabilized with manganese is higher than that of the conventional method. It turns out that it shows activity and stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来NOx吸着剤のルテニウム添加効果を示す
グラフである。
FIG. 1 is a graph showing a ruthenium addition effect of a conventional NOx adsorbent.

【図2】ルテニウム凝集防止イメージを示す概略図であ
る。
FIG. 2 is a schematic view showing an image of preventing ruthenium aggregation.

【図3】NOx吸着剤のルテニウム添加効果の比較を示
すグラフである。
FIG. 3 is a graph showing a comparison of a ruthenium addition effect of a NOx adsorbent.

【図4】耐久性の比較を示すグラフである。FIG. 4 is a graph showing a comparison of durability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 一博 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 福寿 厚 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (56)参考文献 特開 平8−192045(JP,A) 特開 平8−196900(JP,A) 特開 平7−60114(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/00 - 20/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiro Kondo 5-3-28 Nishikujo, Konohana-ku, Osaka-shi Inside Tachibashi Shipbuilding Co., Ltd. (72) Atsushi Fukuju 5-3-3 Nishikujo, Konohana-ku, Osaka No. 28 Inside Tachibana Shipbuilding Co., Ltd. (56) References JP-A-8-192045 (JP, A) JP-A 8-196900 (JP, A) JP-A-7-60114 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) B01J 20/00-20/34

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化チタンもしくはMn−Ti系表面改
質酸化チタンからなる担体に、ルテニウムとセリウムを
担持してなるNOx吸着剤において、該担体にルテニウ
ムと鉄を担持させ、その後セリウムを担持させて得られ
ることを特徴とするNOx吸着剤。
1. A NOx adsorbent comprising ruthenium and cerium supported on a carrier made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide, wherein ruthenium and iron are supported on the carrier, and then cerium is supported. A NOx adsorbent characterized by being obtained by:
【請求項2】 酸化チタンもしくはMn−Ti系表面改
質酸化チタンからなる担体に、ルテニウムとセリウムを
担持してなるNOx吸着剤において、該担体にルテニウ
ムと、鉄、ニッケルおよびクロムのうち少なくとも一種
とを担持させ、その後セリウムを担持させて得られるこ
とを特徴とするNOx吸着剤。
2. A NOx adsorbent comprising ruthenium and cerium supported on a carrier made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide, wherein the carrier comprises at least one of ruthenium, iron, nickel and chromium. Characterized in that the NOx adsorbent is obtained by supporting cerium and then supporting cerium.
【請求項3】 請求項1または2記載のNOx吸着剤
に、さらに銀、マンガン、銅および鉄のうち少なくとも
1種を加えてなるNOx吸着剤。
3. A NOx adsorbent obtained by further adding at least one of silver, manganese, copper and iron to the NOx adsorbent according to claim 1.
【請求項4】 請求項1〜3のいずれか1項記載のNO
x吸着剤が不燃性繊維プレフォーム体に保持されてなる
ことを特徴とする板状NOx吸着剤。
4. The NO according to claim 1, wherein
A plate-like NOx adsorbent, wherein the x-sorbent is held by a noncombustible fiber preform.
【請求項5】 塩化鉄を0.01〜1(モル/l)含む
ルテニウム担持用溶液に、酸化チタンもしくはMn−T
i系表面改質酸化チタンからなる担体を浸漬し、150
〜300℃で焼成し、その後セリウムを担持させること
を特徴とするNOx吸着剤の製造法。
5. A solution for supporting ruthenium containing 0.01 to 1 (mol / l) of iron chloride, wherein titanium oxide or Mn-T
A carrier made of i-type surface-modified titanium oxide is immersed in
A method for producing a NOx adsorbent, characterized in that the NOx adsorbent is calcined at a temperature of up to 300 ° C. and then cerium is supported.
【請求項6】 鉄、ニッケルおよびクロムのうち少なく
とも一種の塩化物を合計濃度0.01〜2(モル/l)
で含むルテニウム担持用溶液に、酸化チタンもしくはM
n−Ti系表面改質酸化チタンからなる担体を浸漬し、
150〜300℃で焼成し、その後セリウムを担持させ
ることを特徴とするNOx吸着剤の製造法。
6. A total concentration of at least one chloride of iron, nickel and chromium of 0.01 to 2 (mol / l).
The titanium oxide or M
dipping a carrier made of n-Ti-based surface-modified titanium oxide,
A method for producing a NOx adsorbent, characterized in that the NOx adsorbent is calcined at 150 to 300 ° C. and then cerium is supported.
【請求項7】 酸化チタンもしくはMn−Ti系表面改
質酸化チタンからなる担体に、ルテニウムと、鉄、ニッ
ケルおよびクロムのうち少なくとも一種とを担持し、得
られたルテニウム担持物を、硝酸セリウムを2.0〜
3.2(モル/l)含む水溶液に浸漬し、250〜38
0℃で焼成することを特徴とするNOx吸着剤の製造
法。
7. A support made of titanium oxide or a Mn-Ti-based surface-modified titanium oxide, on which ruthenium and at least one of iron, nickel and chromium are supported. 2.0 ~
Immersed in an aqueous solution containing 3.2 (mol / l),
A method for producing a NOx adsorbent, characterized by firing at 0 ° C.
【請求項8】 酸化チタンもしくはMn−Ti系表面改
質酸化チタンからなる担体に、ルテニウムと、鉄、ニッ
ケルおよびクロムのうち少なくとも一種とを担持し、得
られたルテニウム担持物を、硝酸セリウムを2.0〜
3.2(モル/l)含む水溶液に浸漬し、250〜38
0℃で焼成し、ついで、得られたセリウム担持物を、
銀、マンガン、銅および鉄のうち少なくとも1種の硝酸
塩を0.3〜1.5(モル/l)含む水溶液に浸漬し、
250〜380℃で焼成することを特徴とするNOx吸
着剤の製造法。
8. A support made of titanium oxide or a Mn—Ti-based surface-modified titanium oxide, on which ruthenium and at least one of iron, nickel and chromium are supported. 2.0 ~
Immersed in an aqueous solution containing 3.2 (mol / l),
Baking at 0 ° C., then the obtained cerium carrier
Dipping in an aqueous solution containing 0.3 to 1.5 (mol / l) of at least one nitrate of silver, manganese, copper and iron;
A method for producing a NOx adsorbent, characterized by firing at 250 to 380 ° C.
【請求項9】 請求項1〜4いずれか1項記載のNOx
吸着剤にNOxを含むガスを接触させることにより、該
ガス中のNOxを吸着させることを特徴とするNOx除
去法。
9. The NOx according to claim 1, wherein:
A NOx removal method characterized by contacting a gas containing NOx with an adsorbent to adsorb NOx in the gas.
JP24346996A 1996-09-13 1996-09-13 NOx adsorbent Expired - Fee Related JP3177678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24346996A JP3177678B2 (en) 1996-09-13 1996-09-13 NOx adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24346996A JP3177678B2 (en) 1996-09-13 1996-09-13 NOx adsorbent

Publications (2)

Publication Number Publication Date
JPH1085587A JPH1085587A (en) 1998-04-07
JP3177678B2 true JP3177678B2 (en) 2001-06-18

Family

ID=17104360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24346996A Expired - Fee Related JP3177678B2 (en) 1996-09-13 1996-09-13 NOx adsorbent

Country Status (1)

Country Link
JP (1) JP3177678B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132890A1 (en) * 2001-07-06 2003-01-16 Daimler Chrysler Ag Solid used for adsorption and desorption of nitrogen oxides found in internal combustion engine exhaust gases comprises a porous support; a metal component selected from alkali metals, alkaline earth
JP3572548B2 (en) 2002-05-24 2004-10-06 日本酸素株式会社 Gas purification method and apparatus

Also Published As

Publication number Publication date
JPH1085587A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP4028939B2 (en) Catalyst production method
JP4873822B2 (en) Hydrocarbon trap / catalyst composition
JP3130903B2 (en) Catalyst for purifying waste gas from internal combustion engine, method for producing catalyst and method for purifying waste gas
US5840649A (en) NOx adsorbents
US20100137127A1 (en) PRODUCTION PROCESS FOR NOx ADSORPTION MATERIAL AND NOx ADSORPTION MATERIAL
JP2800499B2 (en) Hydrocarbon adsorbent
JP2007245050A (en) Nitrogen oxide adsorbing material, method for manufacturing the same and method for removing nitrogen oxide by using the same
JP4346215B2 (en) Method for producing exhaust gas purification catalyst
JP3177678B2 (en) NOx adsorbent
US4940686A (en) Catalyst for oxidation of carbon monoxide
KR20090031934A (en) Nitrogen oxides adsorber and process for production thereof
JP2004331444A (en) Manufacturing method of titania-coated alumina particle
JP3208637B2 (en) NOx adsorbent and method for producing the same
KR102054289B1 (en) Filter impregnated alkali metal compound for removing NO2 and air purifier including thereof
JP3185046B2 (en) NOx adsorbent and method for producing the same
JP3237873B2 (en) Adsorbent / desorbent for humidity control and method for producing the same
RU2228902C1 (en) Catalyst preparation process
JP3198107B2 (en) Adsorbent and method for producing the same
JPH09876A (en) Carbon dioxide affinity material having water-vapor resistance
JPS62193633A (en) Reducing agent for nitrogen oxide
JPH06190282A (en) Catalyst for purification of exhaust gas
JPH07308573A (en) Treating agent for air pollution material
JP3375360B2 (en) Method for producing exhaust gas purifying catalyst
JPH05269375A (en) Carrier active carbon for deodrization and production thereof
JP3306932B2 (en) Exhaust gas purification method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010213

LAPS Cancellation because of no payment of annual fees