JP3177486B2 - Manufacturing method of non-sintered electrode - Google Patents

Manufacturing method of non-sintered electrode

Info

Publication number
JP3177486B2
JP3177486B2 JP22512297A JP22512297A JP3177486B2 JP 3177486 B2 JP3177486 B2 JP 3177486B2 JP 22512297 A JP22512297 A JP 22512297A JP 22512297 A JP22512297 A JP 22512297A JP 3177486 B2 JP3177486 B2 JP 3177486B2
Authority
JP
Japan
Prior art keywords
manufacturing
nickel
porous
porous metal
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22512297A
Other languages
Japanese (ja)
Other versions
JPH1069906A (en
Inventor
和昭 尾崎
誠 神林
利秀 森
満和 桑木
佳則 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22512297A priority Critical patent/JP3177486B2/en
Publication of JPH1069906A publication Critical patent/JPH1069906A/en
Application granted granted Critical
Publication of JP3177486B2 publication Critical patent/JP3177486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池に用い
られる非焼結式極板の連続的な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing a non-sintered electrode plate used in an alkaline storage battery.

【0002】[0002]

【従来の技術】従来、上記極板としては、多孔度85%
前後のニッケル焼結体を用いた所謂焼結式極板が一般的
に用いられていた。しかし、近年、上記焼結式極板より
高容量化,軽量化,低価格化を図るべく、特開昭58−
161252号公報に示すように、多孔度95%以上の
高多孔体である発泡ニッケルや金属繊維焼結体等を用
い、これら金属多孔体に水酸化ニッケル或いは酸化カド
ミウムを主成分とする活物質を充填して極板を作製する
所謂非焼結式製造方法が開発されている。
2. Description of the Related Art Conventionally, the electrode plate has a porosity of 85%.
So-called sintered electrode plates using the front and rear nickel sintered bodies have been generally used. However, in recent years, Japanese Patent Application Laid-Open No.
As shown in Japanese Patent No. 161252, a highly porous material having a porosity of 95% or more, such as foamed nickel or sintered metal fiber, is used, and an active material containing nickel hydroxide or cadmium oxide as a main component is used for the metal porous material. A so-called non-sintering type manufacturing method of filling an electrode plate has been developed.

【0003】この非焼結式極板の製造方法においてはバ
ッチ式製造方法と連続式製造方法とがあるが、生産性の
向上を図るためには連続式製造方法のほうが好ましい。
しかしながら非焼結式製造方法に用いられる金属多孔体
は、大きな張力が加わった場合に切断することがあるこ
と、及びメッキ上の課題等から連続物の製造が難しい。
加えて、活物質のスラリー量を管理する必要性から、工
程途中で抜き取り検査が必要となる。これらのことを考
え合わせると、極板の製造工程を連続化して生産性を向
上させるためには、基体の接続技術が極めて重要とな
る。
There are a batch type manufacturing method and a continuous type manufacturing method in this non-sintered type electrode plate manufacturing method, but a continuous type manufacturing method is more preferable in order to improve productivity.
However, it is difficult to produce a continuous body of the porous metal body used in the non-sintering type production method because of a possibility of cutting when a large tension is applied and problems in plating.
In addition, because of the necessity of controlling the slurry amount of the active material, a sampling inspection is required during the process. Considering these facts, in order to improve the productivity by making the manufacturing process of the electrode plate continuous, the connection technology of the base is extremely important.

【0004】[0004]

【発明が解決しようとする課題】ここで、金属多孔体の
一般的な接続方法としては、シーム溶接,レーザー溶接
等金属の一部分を溶かして接続させる方法が知られてい
る。
Here, as a general connection method of a porous metal body, a method of melting and connecting a part of a metal, such as seam welding or laser welding, is known.

【0005】ところが、金属多孔体は高多孔度であるた
め、金属多孔体同士を重ね合わせた際に双方の間に空間
が出来やすくなる。このため、上記の方法で接続した場
合には、スパーク等が生じて溶接強度が小さくなる部位
が生じる。加えて、金属多孔体は波状となっているた
め、溶接が出来ない部分を生じ、これによっても溶接強
度が小さくなる部位が生じる。これらのことから、上記
溶接方法では接続強度にバラつきが生じるという課題を
有している。
However, since the porous metal body has a high porosity, a space is easily formed between the porous metal bodies when they are overlapped. For this reason, when the connection is made by the above-described method, a portion where the welding strength is reduced due to a spark or the like occurs. In addition, since the porous metal body is corrugated, a portion where welding cannot be performed is generated, and a portion where the welding strength is reduced also occurs. For these reasons, the welding method has a problem that the connection strength varies.

【0006】そこで、溶接のバラつきを解消するため
に、予め金属多孔体を加圧して低多孔度にするという方
法が考えられる。しかしながら、このような方法では製
造工程が複雑化する。加えて、特開昭53−25839
号公報に示すように、溶接を行なうには大がかりな装置
が必要である。
Therefore, in order to eliminate variations in welding, there is a method in which a porous metal body is pressurized in advance to reduce the porosity. However, such a method complicates the manufacturing process. In addition, JP-A-53-25839
As shown in the publication, a large-scale apparatus is required to perform welding.

【0007】一方、金属多孔体の他の接続方法として
は、金属針等(ex,ホッチキス)で機械的に接続する
方法もある。しかしながら、接続後の圧延および切断工
程において上記金属針等の金属片が存在すれば、引っ掛
かり等を生じるため、連続的に生産を行なうには不都合
が生じる。また巾の広い金属多孔体を金属針等で接続す
るには、大がかりな設備が必要となるという課題を有し
ていた。
On the other hand, as another connection method of the metal porous body, there is a method of mechanically connecting with a metal needle or the like (ex, stapler). However, if the metal pieces such as the metal needles are present in the rolling and cutting steps after the connection, they may be caught or the like, so that there is an inconvenience in performing continuous production. In addition, there is a problem that a large-scale facility is required to connect a wide metal porous body with a metal needle or the like.

【0008】本発明はかかる現状に鑑みてなされたもの
であり、上記諸欠点を解消できることになる非焼結式電
極の製造方法を提供することを目的とする。
The present invention has been made in view of the above situation, and an object of the present invention is to provide a method of manufacturing a non-sintered electrode capable of solving the above-mentioned disadvantages.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、平均孔径300μm以下の2枚の金属多孔
体の端部を重ね合わせた後、これらを加圧して基体を作
製する第1ステップと、上記基体に活物質を連続的に充
填する第2ステップとを有することを特徴とする。
According to the present invention, in order to achieve the above object, two metal porous bodies having an average pore diameter of 300 μm or less are overlapped with each other, and then pressurized to form a substrate. The method is characterized by including one step and a second step of continuously filling the base with the active material.

【0010】[0010]

【作用】図3に示すように、金属多孔体1・2の表面に
は微細な凹部3と凸部4とが多数存在しているので、2
枚の多孔体を重ね合わせると、一方金属多孔体の凸部4
と他方の金属多孔体の凹部3とが重なり合う。そして、
この状態で加圧すると図4に示すように、上記凸部4が
上記凹部3に嵌入して重ね合わせ部分においてカシメ部
が多数形成されることになる。この結果、非常に強い接
合強度を得ることができると共に、カシメ部が重ね合わ
せ部分において均一に形成されるので接続強度のバラつ
きを小さくすることができる。加えて、単に加圧するだ
けであるので、製造工程が複雑化することもなく、且つ
大掛かりな装置が不要となるので設備費用が増大するこ
ともない。
As shown in FIG. 3, a large number of fine concave portions 3 and convex portions 4 are present on the surfaces of the porous metal bodies 1 and 2;
When the two porous bodies are overlapped, the convex part 4 of the porous metal body
And the concave portion 3 of the other porous metal body overlap. And
When pressure is applied in this state, as shown in FIG. 4, the convex portion 4 is fitted into the concave portion 3, and a large number of caulked portions are formed at the overlapped portion. As a result, a very high bonding strength can be obtained, and since the caulked portion is formed uniformly in the overlapped portion, the variation in the connection strength can be reduced. In addition, since the pressure is merely applied, the manufacturing process does not become complicated, and no large-scale apparatus is required, so that the equipment cost does not increase.

【0011】そして、金属多孔体の平均孔径を300μ
m以下とすることによって、凹凸部を一層多く存在させ
ることが可能となり、接合強度が大きくなり、且つ接続
強度のバラツキを小さくすることができる。
The average pore diameter of the porous metal body is set to 300 μm.
By setting it to m or less, it becomes possible to make more uneven portions exist, the bonding strength increases, and the variation in connection strength can be reduced.

【0012】[0012]

【実施例】【Example】

[実施例]図1及び図2に示すように、目付500g/m2
で初期厚みt2=2mm,巾t1=100mm,平均孔径20
0μmの発泡ニッケルを2枚用いて、これらを重ね巾t3
=5mmで重ね合わせる。次に、上記重ね合わせ部分(厚
さは計4mmとなっている)を、加圧後の厚みが2.0mm
となるように加圧してニッケル芯体を作製した。
[Example] As shown in FIGS. 1 and 2, the basis weight was 500 g / m 2.
And initial thickness t 2 = 2 mm, width t 1 = 100 mm, average pore diameter 20
Using two pieces of foamed nickel having a thickness of 0 μm, they are overlapped with each other to have a width t 3.
= 5mm. Next, the overlapped portion (total thickness is 4 mm) is pressed to a thickness of 2.0 mm.
To produce a nickel core.

【0013】また、上記実施例において、平均孔径が2
50μm及び300μmで、その他は同一の発泡ニッケル
を用いて、同様にしてニッケル芯体を作製した。 [比較例]上記実施例において、平均孔径が350μm
及び400μmで、その他は同一の発泡ニッケルを用い
て、同様にしてニッケル芯体を作製した。 (実験)上記のようにして作製したニッケル芯体を、図
1の2点鎖線に示すように5等分に切断し、巾20mmの
サンプル5個ずつ作製した。そして、これらのサンプル
の引っ張り強度を調べたので、その結果を下記表1に示
す。
In the above embodiment, the average pore diameter is 2
Nickel core bodies were produced in the same manner using 50 μm and 300 μm, and the same foamed nickel as the others. Comparative Example In the above example, the average pore size was 350 μm.
A nickel core was produced in the same manner, using the same foamed nickel except that the thickness was 400 μm. (Experiment) The nickel core produced as described above was cut into five equal parts as shown by the two-dot chain line in FIG. 1 to produce five samples each having a width of 20 mm. Then, the tensile strength of these samples was examined, and the results are shown in Table 1 below.

【0014】尚、発泡ニッケル単体の引っ張り強度は5
Kg/cmである。
The tensile strength of the foamed nickel alone is 5
Kg / cm.

【0015】[0015]

【表1】 [Table 1]

【0016】上記表1より、平均孔径が300μm以下
のものを用いることにより、引っ張り強度を大きくする
ことができると共に、強度のバラつきも少なくなる。こ
れは、平均孔径が小さいと、単位面積当たりの凸部が増
大するため、カシメ部が多数できることに起因するもの
である。したがって、発泡ニッケルの平均孔径は300
μm以下とする必要がある。
According to Table 1, the use of a material having an average pore size of 300 μm or less can increase the tensile strength and reduce the variation in strength. This is because, when the average pore diameter is small, the number of convex portions per unit area increases, so that a large number of caulked portions are formed. Therefore, the average pore size of the foamed nickel is 300
It is necessary to be less than μm.

【0017】尚、上記実施例においては発泡ニッケルの
接続方法のみを示しているが、非焼結式電極を製造する
場合には、活物質充填工程が必要であるので、その一例
を以下に示す。
In the above embodiment, only the method of connecting foamed nickel is shown. However, in the case of manufacturing a non-sintered electrode, an active material filling step is required. .

【0018】上記のようにして作製したニッケル芯体
(基体)を活物質スラリー(水酸化ニッケルを主体と
し、これに糊料としてメチルセルロースを含む)が充填
された槽にディップした後、余分な活物質スラリーをス
クレバで掻き落として作製する。
After the nickel core (substrate) prepared as described above is dipped in a tank filled with an active material slurry (mainly nickel hydroxide, which contains methylcellulose as a paste), excess active material is added. The material slurry is made by scraping off with a scrubber.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、金
属多孔体の表面に形成された多数の凸部が凹部に嵌入
し、重ね合わせ部分においてカシメ部が無数に形成され
ることになる。したがって、非常に強い接合強度を得る
ことができると共に、金属多孔体間の接続強度のバラつ
きを小さくすることができる。加えて、単に加圧するだ
けで接続するので、製造工程が複雑化することなく、且
つ大掛かりな装置が不要となる。
As described above, according to the present invention, a large number of convex portions formed on the surface of the porous metal body are fitted into the concave portions, and an infinite number of caulked portions are formed at the overlapping portion. . Therefore, a very high joining strength can be obtained, and the variation in the connection strength between the porous metal bodies can be reduced. In addition, since connection is made by simply applying pressure, the manufacturing process is not complicated, and a large-scale device is not required.

【0020】これらのことから、非焼結式電極の品質を
飛躍的に向上することができ、且つ製造工程の簡素化や
設備費用の低減を図ることができる等の効果を奏する。
[0020] From the above, there are effects that the quality of the non-sintered electrode can be remarkably improved, the manufacturing process can be simplified, and the equipment cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発泡ニッケルを重ね合わせる方法を示す平面図FIG. 1 is a plan view showing a method of superimposing foamed nickel.

【図2】発泡ニッケルを重ね合わせる方法を示す側面図FIG. 2 is a side view showing a method of superimposing foamed nickel.

【図3】発泡ニッケルの表面状態を示す説明図FIG. 3 is an explanatory view showing a surface state of foamed nickel.

【図4】2つの発泡ニッケルの凸部が凹部に嵌入した状
態を示す説明図
FIG. 4 is an explanatory view showing a state where two convex portions of nickel foam are fitted into concave portions.

【符号の説明】[Explanation of symbols]

1・2 金属多孔体 3 凹部 4 凸部 5 発泡ニッケル 1.2 Porous metal body 3 Concave part 4 Convex part 5 Foamed nickel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑木 満和 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会 社内 (72)発明者 中山 佳則 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会 社内 (56)参考文献 特開 昭54−148234(JP,A) 特開 昭61−143941(JP,A) 特開 昭57−43361(JP,A) 特開 昭50−36936(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/34 H01M 4/64 - 4/84 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuwa Kuwaki 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. In-house (72) Yoshinori Nakayama 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. In-house (56) References JP-A-54-148234 (JP, A) JP-A-61-143941 (JP, A) JP-A-57-43361 (JP, A) JP-A Sho 50 −36936 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24-4/34 H01M 4/64-4/84

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均孔径300μm以下の2枚の金属多
孔体の端部を重ね合わせた後、これらを加圧して基体を
作製する第1ステップと、上記基体に活物質を連続的に
充填する第2ステップとを有することを特徴とする非焼
結式電極の製造方法。
1. A first step in which two metal porous bodies having an average pore diameter of 300 μm or less are overlapped and then pressurized to form a substrate, and the substrate is continuously filled with an active material. And a second step.
JP22512297A 1997-08-21 1997-08-21 Manufacturing method of non-sintered electrode Expired - Lifetime JP3177486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22512297A JP3177486B2 (en) 1997-08-21 1997-08-21 Manufacturing method of non-sintered electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22512297A JP3177486B2 (en) 1997-08-21 1997-08-21 Manufacturing method of non-sintered electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1119976A Division JP2999777B2 (en) 1989-05-12 1989-05-12 Manufacturing method of non-sintered electrode

Publications (2)

Publication Number Publication Date
JPH1069906A JPH1069906A (en) 1998-03-10
JP3177486B2 true JP3177486B2 (en) 2001-06-18

Family

ID=16824318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22512297A Expired - Lifetime JP3177486B2 (en) 1997-08-21 1997-08-21 Manufacturing method of non-sintered electrode

Country Status (1)

Country Link
JP (1) JP3177486B2 (en)

Also Published As

Publication number Publication date
JPH1069906A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
JP4527844B2 (en) Manufacturing method of battery electrode plate
JP3177486B2 (en) Manufacturing method of non-sintered electrode
JPS6340252A (en) Manufacture of electrode for battery
EP0693752A1 (en) Method of forming grids for nuclear fuel assembly and grids formed by same method
JPH11120994A (en) Electrode having interleaf film and its manufacture
JPH0275155A (en) Manufacture of battery electrode plate
JPH08321303A (en) Electrode for alkaline secondary battery
JPH02299151A (en) Manufacture of unsintered electrode
JP3356181B2 (en) Manufacturing method of battery electrode
JPH02250261A (en) Manufacture of paste type electrode for alkaline storage battery
JP2708123B2 (en) Manufacturing method of paste electrode
JPH01120761A (en) Manufacture of alkaline storage battery plate
JP3515652B2 (en) Method for producing porous metal body
JPH09199137A (en) Electrode for storage battery
JPH04345754A (en) Manufacture of battery having spiral electrode
JP2765905B2 (en) Manufacturing method of battery electrode
JPH0869801A (en) Manufacture of electrode support body
JPH07153468A (en) Electrode plate for storage battery
JPH01292754A (en) Electrode for alkaline storage battery and manufacture thereof
JPH04188563A (en) Manufacture of paste-form positive nickel electrode
JP3035384B2 (en) Alkaline secondary battery
JPH06231762A (en) Dispersion liquid of hydrogen storage alloy powder
JPH1125991A (en) Positive electrode plate for alkaline storage battery and its manufacture
JP3432865B2 (en) Method for producing sintered substrate for alkaline storage battery
JPH01236578A (en) Electrode plate for battery and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9