JP3177432B2 - Polluted water purification method and polluted water purification device - Google Patents

Polluted water purification method and polluted water purification device

Info

Publication number
JP3177432B2
JP3177432B2 JP04657996A JP4657996A JP3177432B2 JP 3177432 B2 JP3177432 B2 JP 3177432B2 JP 04657996 A JP04657996 A JP 04657996A JP 4657996 A JP4657996 A JP 4657996A JP 3177432 B2 JP3177432 B2 JP 3177432B2
Authority
JP
Japan
Prior art keywords
polluted water
purification
purifying
water
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04657996A
Other languages
Japanese (ja)
Other versions
JPH08332497A (en
Inventor
俊司 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquatech Ltd
Original Assignee
Aquatech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatech Ltd filed Critical Aquatech Ltd
Priority to JP04657996A priority Critical patent/JP3177432B2/en
Priority to TW085103737A priority patent/TW368494B/en
Publication of JPH08332497A publication Critical patent/JPH08332497A/en
Application granted granted Critical
Publication of JP3177432B2 publication Critical patent/JP3177432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は汚濁水の浄化方法及
び汚濁水浄化装置に関し、詳しくは汚濁水を好気処理す
ると同時に、浮遊微細固形物を分離捕捉して嫌気処理す
る汚濁水の浄化方法及び汚濁水浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying polluted water and a polluted water purifying apparatus, and more particularly, to a method for purifying polluted water by aerobically treating polluted water and simultaneously separating and capturing suspended fine solids. And a polluted water purification device.

【0002】[0002]

【従来の技術】各種廃水またはそれらで汚染された河川
水等の汚濁水の浄化方法として、従来から種々の方法が
提案され実施されている。従来の汚濁水の浄化方法は、
(1)物理的・化学的処理方法と(2)生物的処理方法
に大別できる。物理的・化学的処理方法には、例えば、
汚濁水中の浮遊物等を沈澱、濾過等で分離除去する方
法、薬剤を用い汚濁水中の汚濁物を化学的に処理して無
害化する方法、または、凝集・沈澱させ分離除去する方
法等がある。また、生物的処理方法には、例えば、生物
膜や活性汚泥を用い、好気的に処理してフロック状で沈
澱、分離除去する方法または嫌気処理して消化(液化)
する方法等がある。生物的処理は、自然界の微生物の分
解作用を利用するもので反応が穏やかで、化学的薬剤を
用いることがなく薬剤による各種弊害を生じることがな
いため、多くの汚濁水の浄化処理に好んで採用され、各
種の開発が盛んである。活性汚泥を用いる方法では、主
にエアレーションと沈降分離との2工程を中心として各
種方式が提案され実施されている。また、担体に生物膜
を形成して行う方法では、各種の担体が提案され、例え
ば、特開昭63−310696号公報には、好気状態と
嫌気状態を同時に形成する中部中空の球形担体が提案さ
れている。更に、高表面積のハニカム形状の中空筒体を
用いて好気性及び嫌気性状態を形成させる好嫌気性処理
も提案されている。
2. Description of the Related Art Various methods have been proposed and implemented as methods for purifying polluted water such as various wastewaters or river water contaminated with them. Conventional polluted water purification methods are:
(1) Physical and chemical treatment methods and (2) Biological treatment methods. Physical and chemical treatment methods include, for example,
There is a method of separating and removing suspended matters in the polluted water by precipitation, filtration, etc., a method of chemically treating pollutants in the polluted water using chemicals, and a method of coagulating / precipitating and separating and removing them. . As the biological treatment method, for example, using a biofilm or activated sludge, aerobically treating to precipitate and separate and remove in floc form, or anaerobic treatment to digest (liquefy)
There is a method to do. Biological treatment uses the decomposing action of microorganisms in the natural world and has a mild reaction, does not use chemical agents and does not cause various adverse effects due to chemicals. It has been adopted and various developments are active. In the method using activated sludge, various methods have been proposed and implemented mainly on two processes of aeration and sedimentation separation. In the method of forming a biofilm on a carrier, various carriers have been proposed. For example, JP-A-63-310696 discloses a central hollow spherical carrier that simultaneously forms an aerobic state and an anaerobic state. Proposed. Furthermore, an anaerobic treatment in which an aerobic and anaerobic state is formed using a honeycomb-shaped hollow cylindrical body having a high surface area has also been proposed.

【0003】しかし、上記した従来の汚濁水の生物的処
理は、いずれも浄化処理の全工程において少なくとも5
〜11時間の長時間を要することが一般的である。例え
ば、活性汚泥法や、担体表面に形成される生物膜による
好気性処理は、前段に沈殿池を設けて所定の沈降処理を
した後、好気浄化域で数時間以上の滞留時間を要して処
理することにより初めて所定の環境基準値を満足させ得
るものである。活性汚泥法では、2時間程度のエアレー
ションで処理する方式があるが、BOD除去率が低下す
る等の不都合が生じるおそれがある。また、提案された
中空担体を用いる好嫌気浄化処理方法では、中空内部と
外部との連絡のために設けられる孔径が0.05〜1m
mで、中空内部への汚濁水の流出入が容易でなく担体
内部空間での嫌気性処理もより長期間を要し効率的で
ない。
[0003] However, the conventional biological treatment of polluted water is at least 5 times in all steps of the purification treatment.
Generally, it takes a long time of up to 11 hours. For example, the activated sludge method and the aerobic treatment using a biofilm formed on the surface of a carrier require a sedimentation basin in the previous stage, perform a prescribed settling treatment, and then require a residence time of several hours or more in the aerobic purification zone. The predetermined environmental standard value can be satisfied only by performing the processing. In the activated sludge method, there is a method of performing treatment by aeration for about 2 hours, but there is a possibility that inconvenience such as a decrease in a BOD removal rate may occur. Further, in the proposed anaerobic purification treatment method using a hollow carrier, the hole diameter provided for communication between the hollow interior and the outside is 0.05 to 1 m.
In m, inflow and outflow of the polluted water into the hollow interior is not easy, anaerobic treatment with carrier interior space also requires a longer period of time, not efficient.

【0004】汚濁水の生物的処理の一方法として、近
年、汚染河川水を浄化するために、河川敷を利用して河
川水を浄化するいわゆる礫間接触酸化法が提案され、実
施されている。この礫間接触酸化法は、河川の砂利等の
礫を有効利用して礫層を形成し、河川水を礫層中を流通
させ処理するもので、BOD(生化学的酸素要求量)、
SS(浮遊微細固形物)が大幅に低減され、汚染河川水
等汚濁水の浄化法として注目されている。発明者は、
上記礫間接触酸化法の浄化技術を、広大な河川敷を用い
る大型施設でなく一般的な水処理装置として実用化を図
り、効率よく汚濁水を浄化できる処理方法について鋭意
検討した。その結果、従来の汚濁水の処理とは全く異な
る浄化処理系を形成する分離材を開発し、先に、特開平
3−221110号公報で分離材とそれを用いた汚濁水
の処理を提案した。更に、特開平6−343990号公
報では、流通する流体としての汚濁水中の浮遊微細固形
物の挙動から、微細固形物を流体エネルギーを有効に利
用した形で分離除去する流離現象から、好適な流離分離
方法及び流離分離材を提案した。
[0004] As a method of biological treatment of polluted water, a so-called gravel contact oxidation method for purifying river water using a riverbed has been proposed and implemented in recent years to purify polluted river water. This inter-gravel contact oxidation method forms a gravel layer by effectively utilizing gravel such as gravel from a river, and processes and distributes river water through the gravel layer. BOD (biochemical oxygen demand),
SS (suspended fine solids) is greatly reduced, and is attracting attention as a method for purifying polluted water such as polluted river water. The inventor has
The purification technology of the intergranular contact oxidation method was put into practical use as a general water treatment device instead of a large facility using a vast riverbed, and a serious study was conducted on a treatment method that can efficiently purify polluted water. As a result, a separation material that forms a purification treatment system completely different from the conventional treatment of polluted water was developed, and a separation material and treatment of polluted water using the separation material were previously proposed in Japanese Patent Application Laid-Open No. 3-221110. . Further, in Japanese Patent Application Laid-Open No. Hei 6-343990, a suitable separation method is used in consideration of the behavior of suspended fine solids in polluted water as a flowing fluid, and the separation phenomenon of separating and removing fine solids in a form that effectively utilizes fluid energy. A separation method and a separation material were proposed.

【0005】[0005]

【発明が解決しようとする課題】上記の発明者提案の流
離部材及び流離分離方法は、汚濁水を表面では好気処理
し、また、SSを比較的短時間で効率的に流離部材に捕
捉して分離除去できると同時に、捕捉した有機性SSを
内部空隙で嫌気処理して液状可溶化できることから、汚
濁水を簡便に短時間でしかも一段で浄化処理することが
でき、極めて優れた処理方法である。この方法は、主に
SS除去を目的としてなされたものであったが、流離部
材の表面積が上記した礫間接触酸化法より拡大されるこ
とから、流離部材表面での好気処理が向上することによ
りBOD除去率も効果的に向上することが確認された。
しかしながら、あらゆる汚濁水に適用可能でありどの
ような要望にも対応し得るという点では充分とはいえな
かった。特に、多量のBODを含有する汚濁水を所定の
BOD除去率で短時間で浄化処理できるものとしては、
充分満足できるものではなかった。そのため、発明者は
汚濁水の浄化処理について、上記提案の方法及び各種従
来法による汚濁水の浄化処理について再検討し、短時間
で浄化処理でき、且つ、どのような汚濁水でもBOD及
びSSを共に高除去率で低減できる浄化処理方法の確立
を目的に、更に研究を重ねた。その結果、特に所定の浄
化部材を用いると共に、浄化域内を所定間隔で散気する
ことにより、いかなる汚濁水でも短い滞留時間で流通さ
せてBOD及びSSを効果的に除去できることを見出
し、本発明を完成した。
The separation member and the separation method proposed by the inventor described above perform aerobic treatment on the surface of polluted water, and efficiently capture SS in the separation member in a relatively short time. At the same time, the captured organic SS can be subjected to anaerobic treatment in the internal voids and solubilized in a liquid state, so that polluted water can be purified in a short time and in a single step. is there. This method has been mainly was made for the purpose of SS removal, since the surface area of Ryuri member is contacted oxidation by Ri拡 size between gravel mentioned above, improved aerobic treatment with Ryuri member surface It was confirmed that the BOD removal rate was also effectively improved by performing the method.
However, it is applicable to any polluted water, it can not be said to be sufficient in terms of what may correspond to demands. In particular, those which can purify polluted water containing a large amount of BOD at a predetermined BOD removal rate in a short time include:
It was not satisfactory enough. Therefore, the inventor reconsidered the purification method of the polluted water by the method proposed above and the purification method of the polluted water by various conventional methods, and was able to purify the polluted water in a short time, and to reduce the BOD and SS of any polluted water. Further studies were conducted with the aim of establishing a purification treatment method that can reduce both at a high removal rate. As a result, it has been found that BOD and SS can be effectively removed by circulating any polluted water with a short residence time by using a predetermined purification member and diffusing air in the purification area at predetermined intervals. completed.

【0006】[0006]

【課題を解決するための手段】本発明によれば、汚濁水
を流通浄化するための浄化域を、汚濁水を流入出する流
入部と流出部との間に形成し、該浄化域に、表面に相当
直径1〜5cmの開孔部を複数有し且つ内部に互いに連
通する複数の連絡路を有し上記開孔部の各々が少なくと
も該連絡路の一に連続してなる塊状浄化材を充填し、
塊状浄化材が充填された浄化域に上記流入部において整
流化した汚濁水を流通させて、汚濁水を塊状浄化材
触させると同時に、該浄化域底部から所定間隔で酸素含
有ガスを微細気泡として上昇させ、汚濁水流が該上昇酸
素含有ガス微細気泡とほぼ直交して接触するようにし
て、酸素含有ガスの微細気泡のない無散気区域に配置さ
れている塊状浄化材に捕捉・集積された汚濁水中のSS
(浮遊微細固形物)が、酸素含有ガスの微細気泡のある
散気区域に配置されている塊状浄化材に捕捉・集積され
たSSよりも長時間、塊状浄化材内部に滞留するように
したことを特徴とする汚濁水浄化方法が提供される。上
記本発明の汚濁水浄化方法において、浄化域の汚濁水の
滞留時間が10〜120分であることが好ましく、更
に、酸素含有ガスを微細気泡として上昇させる所定間隔
が5〜100cmの範囲とすることが好ましく、被処理
汚濁水の汚濁度によりれらの範囲内で変化させて使
用することができる。
According to the present invention, a purifying zone for purifying and polluting polluted water is provided.
Formed between the join the club and the outlet portion, to the purifying zone, each of said openings having a plurality of communication paths communicating with each other plurality has and inside an opening of corresponding diameter 1~5cm the surface There was filled with massive purifying member comprising in succession to one of at least said communication path, said
At the above-mentioned inflow section, the purification area filled with
The flowing polluted water is circulated to bring the polluted water into contact with the massive purifying material , and at the same time, the oxygen-containing gas is raised as fine bubbles at predetermined intervals from the bottom of the purifying area, whereby the polluted water flow is raised. substantially orthogonal to the oxygen-containing gas fine bubbles so as to contact
And placed in a non-aerated area without fine bubbles of oxygen-containing gas.
SS in polluted water captured and accumulated in bulk purification material
(Floating fine solids) with fine bubbles of oxygen-containing gas
It is captured and accumulated by the bulk purification material located in the diffusion area.
So that it stays inside the bulk purification material for a longer time than the SS
A method for purifying polluted water is provided. In the polluted water purifying method of the present invention, it is preferable that the residence time of the polluted water of purification of area is 10 to 120 minutes, further, the range predetermined intervals to increase the oxygen-containing gas as fine bubbles of 5~100cm it is preferable to, the turbidity of the treated polluted water, used vary within the scope of these
It is possible to use.

【0007】本発明によれば、上記の汚濁水処理方法に
おいて処理された浄化水を、更に、前記と同様の塊状浄
化材を同様に充填した無散気浄化域に流通させて処理す
ることを特徴とする汚濁水浄化方法が提供される。この
場合、前記無散気浄化域が、前記浄化域内の流出部側の
後段に形成されることが好ましい。
According to the present invention, the purified water treated in the above-mentioned method for treating polluted water is further passed through a non-diffusive purification region similarly filled with the same bulk purification material as above to be treated. A method for purifying polluted water is provided. In this case, it is preferable that the non-diffusive purifying area is formed at a stage subsequent to the outflow portion in the purifying area.

【0008】また、本発明によれば、有蓋または無蓋で
あり、周壁を有する所定容積の汚濁水処理装置であっ
て、汚濁水の流入部、処理水の流出部、該流入部及び該
流出部にそれぞれ配設された整流部材、該流入部と該流
出部との間に配置された浄化域を有してなり、該浄化域
底部に流入部から流出部方向とほぼ直交して散気管が所
定間隔を有して配設され、且つ、表面に相当直径1〜5
cmの開孔部を複数有し且つ内部に互いに連通する複数
の連絡路を有し、該開孔部の各々が少なくとも該連絡路
の一に連続してなる塊状浄化材を充填してなり、酸素含
有ガスの微細気泡のない無散気区域に配置されている塊
状浄化材内部に捕捉・集積される汚濁水中のSS(浮遊
微細固形物)が、酸素含有ガスの微細気泡のある散気区
域に配置されている塊状浄化材内部に捕捉・集積される
SSよりも塊状浄化材内部に長時間滞留するように構成
したことを特徴とする汚濁水浄化装置が提供される。上
記本発明の汚濁水浄化装置において、前記塊状浄化材
が、小径骨材を接合着して相当径約7〜15cmのほぼ
球形に形成されてなるものであることが好ましく、ま
た、前記所定間隔が、5〜100cmであることが好ま
しい。
[0008] Also, according to the present invention, a lidded or no lid, a polluted water treatment apparatus of a predetermined volume that have a peripheral wall, inlet of polluted water, outflow of the treated water, flow join the club and the outflow A rectifying member disposed in each of the sections, and a purification zone disposed between the inflow section and the outflow section. Are disposed at a predetermined interval, and have an equivalent diameter of 1 to 5 on the surface.
a plurality of communication paths communicating with each other plurality has and inside the openings of cm, Ri each the open hole portion is Na filled with massive purifying member comprising in succession to one of at least said communication passage , Including oxygen
Lumps located in non-aerated areas without gaseous microbubbles
SS (floating) in polluted water that is captured and accumulated inside
Fine solids) is an aeration zone with fine bubbles of oxygen-containing gas.
Captured and accumulated inside the bulk purification material located in the area
Structured so that it stays longer inside the bulk purification material than SS
Polluted water purifying apparatus is provided, characterized in that the. In the polluted water purifying apparatus of the present invention, the massive purifying member is is preferably made of formed substantially spherical equivalent diameter of about 7~15cm by joining wearing small aggregate, The predetermined distance Is preferably 5 to 100 cm.

【0009】本発明によれば、前記汚濁水浄化装置を用
、汚濁水を流入部から導入して浄化域を流通させると
共に、浄化域の流入部側の前段部で散気管から酸素含有
ガスを散気し、流出部側の後段部では散気管から散気す
ることなく浄化処理することを特徴とする汚濁水の浄化
方法が提供される。この場合、前記前段部と後段部とが
浄化域を1:1〜5:1に区分することが好ましい。
According to the present invention, the above-mentioned polluted water purifying apparatus is used.
In addition , the polluted water is introduced from the inflow section to circulate through the purification area, and the oxygen-containing gas is diffused from the diffuser pipe at the upstream part of the purification area on the inlet side, and diffused from the diffuser pipe at the rear part on the outflow side. Provided is a method for purifying polluted water, which is characterized by performing purification treatment without concern. In this case, it is preferable that the front part and the rear part divide the purification zone into 1: 1 to 5: 1.

【0010】更に、本発明によれば、上記の汚濁水浄化
装置と同様に形成された第1及び第2の浄化装置であっ
て、第1の浄化装置の流出部と第2の浄化装置の流入部
とが連絡してなることを特徴とする汚濁水浄化装置が提
供される。
Further, according to the present invention, there are provided first and second purifiers formed in the same manner as the above-mentioned contaminated water purifier, wherein the outflow part of the first purifier and the second purifier are provided. A polluted water purification device is provided, which is in communication with an inflow portion.

【0011】更にまた、本発明によれば、上記の第1及
び第2の浄化装置からなる汚濁水浄化装置を用い、第1
の浄化装置において汚濁水を流入部から導入して浄化域
を流通させると共に散気管から酸素含有ガスを散気して
汚濁水を浄化処理して流出部から浄化処理水を流出して
第2の浄化装置に導入し、第2の浄化装置においては散
気管から散気することなく第1の汚濁水浄化装置からの
浄化処理水を更に浄化処理することを特徴とする汚濁水
の浄化方法が提供される。なお、本発明における開孔部
の相当直径は、開孔された空間周部の任意の2点を結ぶ
直線の最長部分であり、また、塊状浄化材の相当径は、
塊状体の体積とほぼ等しい体積を有する球形体の直径を
意味する。
Further, according to the present invention, the first and second purification devices are used for a polluted water purification device ,
In the purification device of the present invention, the polluted water is introduced from the inflow section to circulate through the purification area, and at the same time, the oxygen-containing gas is diffused from the air diffuser to purify the polluted water. A method for purifying polluted water, wherein the method is introduced into a purifier and further purifies the purified water from the first polluted water purifier without diffusing from an air diffuser in a second purifier. Is done. The equivalent diameter of the opening in the present invention is the longest part of a straight line connecting any two points of the perimeter of the opened space, and the equivalent diameter of the bulk purification material is
It refers to the diameter of a sphere having a volume approximately equal to the volume of the mass.

【0012】本発明の汚濁水浄化方法は上記のように構
成され、汚濁水を流通させて浄化処理する浄化域には、
所定の塊状浄化材が充填されており、汚濁水流通中にお
いてそれら塊状浄化材が、(1)表面での好気処理用の
生物膜の形成体として、(2)表面の開孔部方向にSS
を移動させ汚濁水からその開孔部に流離捕捉するための
流速差(速度勾配)を形成するための抵抗体として、及
び(3)開孔部で捕捉したSSをその内部に滞留させ嫌
気処理するための嫌気処理域として機能することから、
汚濁水中に浮遊する無機質及び有機質の微細固形物、溶
解汚濁物等に有効に作用して汚濁水を浄化することがで
きる。即ち、本発明において、塊状浄化材はその表面に
は生物膜が形成される一方、所定間隔で微細気泡の空気
等の酸素含有ガス(以下、単に酸素ガスとする)が底部
から汚濁水流れに直交するように散気されて上昇する。
そのため、浄化域を流通する汚濁水と酸素ガスとは十分
に接触混合すると同時に汚濁水流には乱流域が形成され
る。従って、浄化域における底部から酸素ガスが散気さ
れる散気区域に充填配設された浄化材周辺では、境膜等
境界層の生成が抑制され、間断なく新たに充分な酸素ガ
スが供給されることから、迅速に且つ効率的に好気処理
が進行し、汚濁水中に溶解している溶解性汚濁物BOD
が容易に好気処理され除去低減される。
The method for purifying polluted water according to the present invention is constituted as described above, and the purifying zone for purifying and treating polluted water includes
A predetermined mass purification material is filled, and the mass purification material is used as a biofilm for aerobic treatment on the surface (1) in the direction of the opening on the surface (2) during the flow of polluted water. SS
As a resistor for forming a flow velocity difference (velocity gradient) for separating and capturing from the polluted water into the opening of the polluted water, and (3) anaerobic treatment by retaining SS trapped in the opening in the opening. Function as an anaerobic treatment area for
It can effectively act on inorganic and organic fine solids and dissolved pollutants floating in the polluted water to purify the polluted water. That is, in the present invention, a biofilm is formed on the surface of the bulk purification material, while oxygen-containing gas (hereinafter simply referred to as “oxygen gas”) such as air of microbubbles flows into the polluted water flow from the bottom at predetermined intervals. It is diffused and rises at right angles.
Therefore, the polluted water and oxygen gas flowing through the purification zone are sufficiently contacted and mixed, and at the same time, a turbulent flow zone is formed in the polluted water flow. Therefore, the generation of a boundary layer such as a boundary film is suppressed around the purification material filled and disposed in the diffusion area where oxygen gas is diffused from the bottom of the purification area, and a sufficient amount of oxygen gas is supplied without interruption. Therefore, the aerobic treatment proceeds quickly and efficiently, and the soluble pollutant BOD dissolved in the polluted water
Is easily aerobic treated and reduced.

【0013】また、塊状浄化材は、ミクロ的に観れば、
汚濁水流通域の抵抗体であり、浄化材側近の流速を低下
させ、浄化材周辺に汚濁水流中に流速差(速度勾配)を
生じさせると同時に層流域が形成される。上記のように
酸素ガスが散気される散気区域では乱流域となり易いの
に対し、酸素ガス無散気区域では層流域が形成される。
このため、浄化域の無散気区域においては、汚濁水中に
浮遊する微細固形物(SS)は、生じた流速差(速度勾
配)により回転エネルギーを付与され移動し、流速の遅
い塊状浄化材周辺の層流域に到達する。また、上記の酸
素ガス散気区域において、SSは一部は塊状浄化材の表
面の生物膜に吸着して好気的に処理されるが、大部分は
乱流域のランダムな流れにより隣接する無散気区域方向
に弾き出され、最終的に無散気区域において塊状浄化材
周辺の層流域に流離到達する。更に、塊状浄化材周辺の
層流域に流離到達したSSは、その表面の開孔部に捕捉
され、開孔部に連続する内部の連絡路内に集積される。
塊状浄化材の連絡路内は流れが殆どなく停滞域であるた
め、SSはそのまま滞留して嫌気処理されて液状可溶化
する。液状可溶化された後は、その自重により連絡路内
を下方向に流れ連絡路に連通する下方の他の開孔部に達
し、流通汚濁水中に流出して溶解し、最終的に、散気区
域における浄化材表面で好気処理されて浄化除去され
る。
[0013] In addition, when viewed from a microscopic point of view, the bulk purifying material is
It is a resistor in the polluted water flow area, reduces the flow velocity near the purification material, and generates a flow velocity difference (velocity gradient) in the polluted water flow around the purification material, and at the same time, a laminar flow area is formed. As described above, the laminar flow region is formed in the oxygen gas non-diffusing region, while the oxygen gas is easily diffused in the diffusion region where the oxygen gas is diffused.
For this reason, in the non-aeration area of the purification area, the fine solids (SS) floating in the polluted water move by being given rotational energy by the generated flow velocity difference (velocity gradient), and move around the mass purification material having a low flow velocity. Reaches the laminar basin. In the above oxygen gas diffusion zone, some of the SS is adsorbed on the biofilm on the surface of the massive purification material and is treated aerobically, but most of the SS is adjoined by random flow in the turbulent flow area. It is ejected in the direction of the aeration zone, and finally reaches the laminar flow area around the bulk purification material in the non-aeration zone. Further, the SS that has flowed off to the laminar flow region around the bulk purification material is captured by the opening on the surface thereof, and is accumulated in an internal communication path that is continuous with the opening.
Since there is almost no flow in the communication path of the bulk purification material and the stagnation area, the SS remains as it is, is subjected to anaerobic treatment, and is solubilized in liquid. After being solubilized in liquid form, it flows downward in the communication channel due to its own weight, reaches another opening below the communication channel, flows out into the polluted water, dissolves, and finally diffuses air. The surface of the purification material in the area is aerobicly treated and purified and removed.

【0014】また、本発明の汚濁水の浄化処理は、汚濁
水中の溶解性BODと浮遊SSとを同一浄化域におい
て、それぞれ異なる浄化に好適な処理域を提供し処理す
るため効率的な浄化が行われる。即ち、溶解性BODに
対しては、塊状浄化材表面で酸素ガスを供給して好気処
理が迅速に行われるようにし、一方、SSに対しては、
塊状浄化材の開孔部で捕捉されるようにし、且つ、捕捉
後は塊状浄化材内部の連絡路に滞留させて嫌気処理す
る。このSSの嫌気処理は、浄化域を流通する汚濁水の
浄化処理滞留時間とはほぼ無関係に行うことできるた
め、浄化域での汚濁水の滞留時間は著しく短縮される。
従って、滞留時間が短かくできるため処理装置もコンパ
クト化でき、従来に比し著しく効率よく汚濁水を浄化処
理できる。例えば、従来の浄化処理の滞留時間は、礫間
接触酸化処理では浄化域を流通距離約20mの長距離を
要し約60〜80分間であり、活性汚泥法では平均的に
約3〜10時間の長時間を要している。これに対し、本
発明の汚濁水浄化処理は、流通距離約5〜10mにおい
て約10〜120分で各種所定の流出基準を満足する充
分な浄化処理ができる。本発明の汚濁水浄化処理におけ
る上記滞留時間の短縮は、従来の汚濁水処理がSSも溶
解性BODも同一レベルで扱い処理していたのに対し、
本発明においてはBODの好気処理域として機能する浄
化材が、同時にSSの嫌気処理域として機能する空間を
付与すると共に、浄化域内で散気区域と無散気区域とを
設けることにより、好気処理域での好気処理が迅速に効
率よく行われると同時に、SSがその嫌気処理域に集積
し易く、且つ、嫌気処理のための滞留時間も十分に取れ
るように形態条件を見出し設定したことによるものであ
る。
Further, in the purification treatment of polluted water of the present invention, efficient purification is performed because the soluble BOD and the suspended SS in the polluted water are provided and treated in the same purification zone by providing different treatment zones suitable for different purification. Done. That is, for the soluble BOD, oxygen gas is supplied on the surface of the massive purification material so that the aerobic treatment is quickly performed. On the other hand, for the SS,
Anaerobic treatment is performed by trapping at the opening of the massive purifying material and, after the trapping, retaining in the communication path inside the massive purifying material. Since the anaerobic treatment of the SS can be performed almost independently of the retention time of the polluted water flowing through the purification area, the retention time of the polluted water in the purification area is significantly reduced.
Therefore, since the residence time can be shortened, the processing apparatus can be made compact, and the polluted water can be purified much more efficiently than in the past. For example, the residence time of the conventional purification treatment is about 60 to 80 minutes in the contact oxidation treatment between gravels, requiring a long distance of about 20 m in the purification area, and about 3 to 10 hours on average in the activated sludge method. It takes a long time. On the other hand, the polluted water purification treatment of the present invention can perform a sufficient purification treatment that satisfies various predetermined outflow standards in about 10 to 120 minutes at a circulation distance of about 5 to 10 m. The shortening of the residence time in the polluted water purification treatment of the present invention is due to the fact that the conventional polluted water treatment treats both SS and soluble BOD at the same level,
In the present invention, the purifying material that functions as an aerobic treatment area for the BOD provides a space that simultaneously functions as an anaerobic treatment area for the SS, and provides a diffused area and a non-aerated area within the purified area. Form conditions were found and set so that aerobic treatment in the aerobic treatment area was quickly and efficiently performed, and SS was easily accumulated in the anaerobic treatment area, and sufficient residence time for anaerobic treatment was obtained. It is because of that.

【0015】本発明の汚濁水処理は上記したような作用
機構により汚濁水が浄化処理され、適用可能な汚濁水と
しては特に制限されるものでなく、BOD、SS、アン
モニア成分、カビ臭物質等の各種水質汚染物質を任意濃
度で含有するものを処理することができる。例えば、B
OD20〜30mg/リットル、SS20mg/リット
ル以上、アンモニア成分1mg/リットル以上、カビ臭
物質等の水質汚染物を含有する一般的汚濁水、また、B
ODが30mg/リットル以上、通常約50〜150m
g/リットルの都市排水や、特にBOD200〜100
0mg/リットルの汚濁の著しい水産加工排水等の汚濁
水まで、従来の浄化処理に比し短時間で効果的に浄化す
ることができ、汚濁水全般の浄化処理に好適である。な
お、本発明におけるSSとは、上記するように浮遊微細
固形物でありJISにおいて1μm径を通過させる濾紙
で濾過した時に濾紙上の残渣物をいう。本発明は、これ
らSS中に有機物が約60重量%以上含有される汚濁水
を好適に浄化処理することができる。
In the treatment of polluted water of the present invention, the polluted water is purified by the above-mentioned action mechanism, and the applicable polluted water is not particularly limited, and BOD, SS, ammonia component, moldy odor substance, etc. Can be treated at any concentration. For example, B
General polluted water containing water contaminants such as OD 20 to 30 mg / L, SS 20 mg / L or more, ammonia component 1 mg / L or more, musty odor substance, and B
OD is 30mg / l or more, usually about 50-150m
g / l of urban drainage, especially BOD 200-100
It is possible to effectively purify polluted water such as effluent processed wastewater of 0 mg / liter, which is remarkably polluted, in a shorter time than conventional purification treatment, and is suitable for purification treatment of polluted water in general. The SS in the present invention is a suspended fine solid as described above, and refers to a residue on a filter paper when filtered with a filter paper passing through a diameter of 1 μm according to JIS. According to the present invention, it is possible to suitably purify polluted water containing about 60% by weight or more of organic matter in the SS.

【0016】[0016]

【発明の実施の形態】本発明について、実施の形態に基
づき図面を参照にしながら更に詳細に説明する。但し、
本発明は下記の実施の形態に制限されるものでない。図
1は本発明の一実施例の塊状浄化材を充填した浄化装置
の断面説明図であり、図2は図1の装置内に充填した塊
状浄化材の模式説明図である。図1において、汚濁水浄
化装置10は、無蓋の直方形状の処理槽で、所定の外周
部に少なくとも一対の流入水路11及び排出水路12を
相対するようにし、その中間部に空間の浄化域Sを設け
て配置する。浄化域Sの大きさは、特に制限されるもの
でなく、流入させる浄化すべき汚濁水量等処理条件及び
浄化装置を設置する用地等の環境条件に合わせて適宜選
択することができる。例えば、小型の装置であれば、幅
約1〜2m、長さ約1〜10m、深さ約1〜2mに形成
し、大型の河川汚濁水の浄化施設であれば、巾は被処理
汚濁水量に合わせて任意に選択し、流通長さ約3〜10
m、深さ約2〜5mに形成する。また、要すれば小型装
置を複数並列または直列に連結させて用いることもでき
る。なお、汚濁水浄化装置の形状及び大きさは任意であ
り、通常、直方体形状に形成する。作製が簡便なためで
ある。また、図1においては、無蓋な処理槽であるが、
上部に蓋を設置し有蓋とすることもできる。大型の浄化
施設の場合は、上記のように複数の処理槽を連結して設
置してもよく、更に、下記するように浄化材を空間部に
充填配置し浄化域を形成した後、その上部に土盛りして
整地し各種施設に利用することもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail based on embodiments with reference to the drawings. However,
The present invention is not limited to the following embodiments. FIG. 1 is an explanatory sectional view of a purification device filled with a block purification material according to one embodiment of the present invention, and FIG. 2 is a schematic explanatory diagram of a block purification material filled in the device of FIG. In FIG. 1, a polluted water purifying apparatus 10 is an open-topped rectangular processing tank having at least a pair of an inflow water channel 11 and a discharge water channel 12 opposed to a predetermined outer peripheral portion, and a space purification area S in an intermediate portion thereof. Are arranged. The size of the purification area S is not particularly limited, and can be appropriately selected in accordance with processing conditions such as an amount of polluted water to be purified to be introduced and environmental conditions such as a site where a purification device is installed. For example, in the case of a small apparatus, the width is about 1 to 2 m, the length is about 1 to 10 m, and the depth is about 1 to 2 m. Arbitrarily selected according to the distribution length of about 3-10
m and a depth of about 2 to 5 m. If necessary, a plurality of small devices can be connected in parallel or in series. The shape and size of the polluted water purification device are arbitrary, and are usually formed in a rectangular parallelepiped shape. This is because the production is simple. Moreover, in FIG. 1, although it is a processing tank without a lid,
A lid can be placed on the top to make it a lid. In the case of a large-scale purification facility, a plurality of treatment tanks may be connected and installed as described above. Further, after forming a purification area by filling and arranging a purification material in a space as described below, the upper part thereof is formed. It can also be used for various facilities after laying earth on the ground.

【0017】流入水路11は、浄化処理する被処理汚濁
水を浄化装置に導入するためのものであり、排出水路1
2は浄化後の浄化水を集水して河川等に流出するための
ものである。流入水路11及び排出水路12の間に配置
された浄化域Sの下部、通常、処理槽底部に、所定間隔
で複数の散気管13を、流入水路11から排出水路12
へと汚濁水が流通する方向にほぼ直交するように、処理
槽の幅方向にほぼ幅全域に亘って配設する。これによ
り、ほぼ全浄化域Sは酸素ガス散気区域A(図面の斜線
部分)及び無散気区域ANとに交互に区分される。散気
区域においては、散気管13から曝気用の酸素ガスの微
細気泡が汚濁水の流通を横切るように上昇し、汚濁水が
酸素ガスと十分に接触する。一方、無散気区域ANにお
いては、酸素ガス微細気泡の上昇がないようにすること
が好ましい。なお、図面においては、説明の便宜上、散
気区域Aと無散気区域ANとに境界線があるように示し
ているが、境界は明確なものでなく散気されるゾーンと
散気されないゾーンが形成されていることを意味してい
る。また、図1には、便宜上、浄化域Sの中間部分では
A区域及びAN区域の各区域の区分を省略して図示して
いる。上記したような浄化域Sにおいて、散気区域Aと
無散気区域ANとに区分して浄化処理することは、浄化
域S全域への酸素ガス供給が汚濁水の浄化効率を向上さ
せることなく逆に低下させることを、発明者が知見した
ことに基づくものである。即ち、一般に、好気処理を効
率よく迅速に行わせるためには、十分な酸素の供給が必
要であり、また、本発明で用いる塊状浄化材の内部は汚
濁水の流通がなく捕捉されたSSの嫌気処理は外部とは
関係なしに十分に行うことができることが推測できる。
従って、本発明の浄化材を用いBOD除去率を向上させ
るためには、通常、浄化域S全域へ酸素ガスを供給する
ことが常套手段であるのに対し、全域での酸素ガスを供
給することなく、所定間隔を有して散気管13を配設す
ることにより、BOD及びSSの除去率を共に相乗的に
向上させることができることは、発明者が初めて見出し
たものである。
The inflow water channel 11 is for introducing the polluted water to be purified into the purification device.
Numeral 2 is for collecting purified water after purification and flowing out to rivers and the like. A plurality of air diffusers 13 are provided at predetermined intervals at a lower portion of the purification zone S disposed between the inflow water channel 11 and the discharge water channel 12, usually at the bottom of the treatment tank.
The processing tank is disposed over the entire width in the width direction of the treatment tank so as to be substantially orthogonal to the direction in which the polluted water flows. As a result, the substantially entire purification area S is alternately divided into an oxygen gas diffusion area A (shaded area in the drawing) and a non-diffusion area AN. In the air diffusion area, fine bubbles of oxygen gas for aeration rise from the air diffuser 13 so as to cross the flow of the polluted water, and the polluted water sufficiently contacts the oxygen gas. On the other hand, in the non-diffusing area AN, it is preferable that the oxygen gas fine bubbles do not rise. In the drawings, for convenience of explanation, a boundary line is shown between the aeration area A and the non-aeration area AN. However, the boundary is not clear, and a zone where air is diffused and a zone where air is not diffused. Is formed. Also, in FIG. 1, for convenience, in the middle part of the purification zone S, the divisions of the A zone and the AN zone are not shown. In the purification area S as described above, the purification treatment is performed by dividing the air into the air diffusion area A and the non-aeration area AN without supplying oxygen gas to the entire purification area S without improving the purification efficiency of the polluted water. On the contrary, it is based on what the inventor has found to decrease. That is, generally, in order to efficiently perform the aerobic treatment efficiently and quickly, it is necessary to supply a sufficient amount of oxygen. Further, the inside of the massive purification material used in the present invention has a trapped SS without the flow of polluted water. It can be guessed that the anaerobic treatment can be performed irrespective of the outside.
Therefore, in order to improve the BOD removal rate using the purifying material of the present invention, it is usual to supply oxygen gas to the entire purification region S, whereas to supply oxygen gas to the entire region. It has been found for the first time by the inventor that by arranging the air diffusers 13 at predetermined intervals, both the BOD and SS removal rates can be synergistically improved.

【0018】上記のように浄化域Sを散気区域Aと無散
気区域ANとの区分して浄化効率を高めるために処理槽
底部に配設される散気管13の間隔は、約5〜100c
mとすることが好ましい。散気管13の配設間隔は被処
理汚濁水の汚濁度により異なり、上記の間隔の範囲内
で、汚濁水のBOD及びSS濃度に応じて適宜選択する
ことができる。通常、BODが約200mg/リットル
までの汚濁水であれば約50cm間隔で配設することに
より、BOD及びSSの除去率85%以上の高効率で浄
化することができる。散気管13の配設間隔が5cm未
満の場合は、SS除去率が低下するため好ましくない。
一方、100cmを超える間隔では、BOD除去率が十
分でなく除去率を高めようとすると滞留時間が2〜3時
間または3時間以上となり好ましくない。また、散気管
13の配設は、例えば、処理槽底部に予め約5cm間隔
に配設しておき、被処理汚濁水のBOD及びSS濃度に
応じて、酸素ガスを供給する散気管の数及び位置を適宜
選択して浄化域Sに散気することができる。この場合、
各散気管13への酸素ガス供給は、配管等に開閉弁を配
置する等の公知の制御手段を用いて行うことができる。
また、散気管13の形状、材質等は、特に制限されるも
のでなく公知の各種散気管を用いて行うことができる。
通常、約5cm径のポリ塩化ビニル製管体の全周面また
は上半周面に約0.5〜3cm間隔に適宜穿設孔を設け
て使用することができる。
As described above, in order to divide the purifying zone S into the diffused zone A and the non-diffused zone AN to enhance the purification efficiency, the interval between the diffuser tubes 13 provided at the bottom of the processing tank is about 5 to 5. 100c
m is preferable. The arrangement interval of the diffuser tubes 13 differs depending on the degree of turbidity of the polluted water to be treated, and can be appropriately selected within the range of the interval according to the BOD and the SS concentration of the contaminated water. Usually, if the BOD is polluted water up to about 200 mg / liter, it can be purified at high efficiency with a removal rate of BOD and SS of 85% or more by arranging it at intervals of about 50 cm. If the interval between the air diffusers 13 is less than 5 cm, the SS removal rate decreases, which is not preferable.
On the other hand, if the interval exceeds 100 cm, the BOD removal rate is not sufficient, and if the removal rate is to be increased, the residence time is undesirably 2-3 hours or 3 hours or more. The arrangement of the diffuser tubes 13 is, for example, previously arranged at an interval of about 5 cm at the bottom of the treatment tank, and the number of diffuser tubes for supplying oxygen gas and the number of diffuser tubes according to the BOD and SS concentration of the contaminated water to be treated are determined. The position can be appropriately selected to diffuse air to the purification region S. in this case,
The supply of oxygen gas to each diffuser 13 can be performed using a known control means such as disposing an on-off valve in a pipe or the like.
Further, the shape, material, and the like of the air diffuser 13 are not particularly limited, and the air diffuser 13 can be formed using various known air diffusers.
Usually, a perforated hole can be provided at intervals of about 0.5 to 3 cm on the entire circumferential surface or the upper half circumferential surface of a polyvinyl chloride pipe having a diameter of about 5 cm.

【0019】本発明の汚濁水浄化装置10において、上
記浄化域Sの外周部に配置される流入水路11及び排出
水路12の浄化域側面に、それぞれ流入水整流壁14及
び排出水整流壁15を配置する。この整流壁14及び1
5は、金網やコンクリートブロック等で抵抗部を有する
ように形成すればよい。汚濁水は、これらの流入水整流
壁14を通過して排出水整流壁15を経て流出するま
で、浄化域S内をほぼピストンフローで平行移動するよ
うに流通するため浄化効率の向上を図ることができる。
また、汚濁水浄化装置10の浄化域Sには塊状浄化材1
が充填される。塊状浄化材1の充填率は50〜70%、
即ち、浄化域Sにおける塊状浄化材1間の空隙率が30
〜50%となるように充填する。塊状浄化材1は、前記
特開平6−343990号公報に記載したものと同様で
あり、図2に示したように、相当径数センチメートルの
骨材2を集合し、各骨材の接点をセメントやエポキシ
接着剤等の接合剤で接合して相当径約7〜15cmのほ
ぼ球形状の塊状体に形成されたものを使用することが好
ましい。この場合、塊状浄化材1の相当径は、前記した
通り塊状体の体積とほぼ等しい体積を有する球形体の直
径を言う。上記のように形成される塊状浄化材1は、骨
材2をほぼ球形状に集合して接合したものであり、実際
の表面は無数の凹凸が存在し表面積が大きくなり、生物
膜形成面積が増大する。また、同時に、特に散気区域A
においては乱流が形成され易くなり、散気される酸素ガ
スと汚濁水との接触が増加し好気処理が迅速に効率よく
行われ、また、SSの無散気区域方向への移動も多くな
る。
In the polluted water purifying apparatus 10 of the present invention, an inflow water straightening wall 14 and a discharged water straightening wall 15 are respectively provided on the side of the purification area of the inflow water channel 11 and the discharge water channel 12 arranged on the outer periphery of the purification area S. Deploy. The rectifying walls 14 and 1
5 may be formed to have a resistance portion with a wire mesh, a concrete block, or the like. Until the polluted water passes through the inflow water rectification wall 14 and flows out through the discharge water rectification wall 15, it flows in the purification area S so as to move substantially in parallel with the piston flow, so that purification efficiency is improved. Can be.
In addition, the purification area S of the polluted water purification apparatus 10 has
Is filled. The filling rate of the bulk cleaning material 1 is 50 to 70%,
That is, the porosity between the bulk cleaning materials 1 in the cleaning area S is 30.
Fill to 50%. The mass purification material 1 is the same as that described in the above-mentioned JP-A-6-343990, and as shown in FIG. 2, aggregates 2 having an equivalent diameter of several centimeters are collected, and the contact points of the aggregates are determined. good is possible to use those formed in substantially spherical massive body of considerable diameter 7~15cm joined by bonding agent such as cement or epoxy <br/> adhesive
Good . In this case, the equivalent diameter of the bulk cleaning material 1 refers to the diameter of a sphere having a volume substantially equal to the volume of the bulk as described above. The mass purification material 1 formed as described above is obtained by assembling and joining the aggregates 2 in a substantially spherical shape. The actual surface has an infinite number of irregularities and a large surface area. Increase. In addition, at the same time, in particular,
In this case, turbulence is likely to be formed, the contact between the diffused oxygen gas and the polluted water increases, aerobic treatment is performed quickly and efficiently, and the SS often moves toward the non-diffused area. Become.

【0020】上記のようにして形成される塊状浄化材1
において、接合された各骨材2間に形成される間隙は、
骨材の大きさにより変化し、所定の間隙を得るためには
骨材の大きさ等を適宜選択することができる。通常、セ
ンチメートルオーダーの骨材であれば、約1〜3cmの
間隙が形成され、その間隙の表面部分は本発明の開孔部
3を構成する。また、その内部間隙は複数の連絡路を構
成すると共に、塊状浄化材1内部で互いに連通して、表
面部の開孔部3、3・・に連続して、塊状浄化材1内を
貫通している。開孔部3の形状は、用いる骨材表面や形
状等により変化し不定であり、特に特定されるものでな
い。前記したように、開孔部の相当直径は形成される開
孔空間周部の任意の2点を結ぶ直線の最長部分をいい、
本発明において、骨材及び接合部等を選択することによ
り約1〜5cmとなるように形成する。開孔部3の相当
直径が5cmを超えると開孔部3に連続する連絡路内に
も流れが生じ、SSをその内部で捕捉して停滞状態とす
ることができない。一方、SSは開孔部に捕捉された
後、開孔内部の連絡路に停滞し嫌気状態で分解され液化
され、その後、自重で連通するより下方の開孔部3を経
て塊状浄化材1から流出するが、開孔部3が1cm未満
の小径であると分解された液状物が塊状浄化材外に流出
できないため好ましくない。
Lump purifying material 1 formed as described above
In, the gap formed between the joined aggregates 2 is
The size varies depending on the size of the aggregate, and the size of the aggregate can be appropriately selected to obtain a predetermined gap. Usually, if the aggregate is of the order of centimeters, a gap of about 1 to 3 cm is formed, and the surface portion of the gap constitutes the opening 3 of the present invention. The internal gap forms a plurality of communication paths and communicates with each other inside the massive purifying material 1 and penetrates through the massive purifying material 1 continuously with the openings 3, 3,... ing. The shape of the opening 3 varies depending on the surface and shape of the aggregate used and is indefinite, and is not particularly specified. As described above, the equivalent diameter of the opening refers to the longest portion of a straight line connecting any two points of the periphery of the opening space formed,
In the present invention, it is formed so as to be about 1 to 5 cm by selecting an aggregate and a joint. If the equivalent diameter of the opening 3 exceeds 5 cm, a flow also occurs in the communication path that is continuous with the opening 3, and the SS cannot be trapped inside the stagnation state to be in a stagnant state. On the other hand, after being caught in the opening, the SS stays in the communication path inside the opening, is decomposed and liquefied in an anaerobic state, and then passes from the bulk purification material 1 through the opening 3 below the lower part, which communicates with its own weight. However, if the opening 3 has a small diameter of less than 1 cm, the decomposed liquid cannot flow out of the bulk purification material, which is not preferable.

【0021】本発明の汚濁水浄化装置10は上記のよう
にして形成され、汚濁水を流入水路11を経て流入水整
流壁14から排出水整流壁15へ浄化域S内を均等に流
通させることで、浄化することができる。前記したよう
に、浄化域Sを流通する汚濁水中のSSは、塊状浄化材
1内に捕捉、集積され滞留して嫌気処理され、汚濁水中
の他の可溶汚濁物、例えば、溶解BOD物、アンモニア
成分、陰イオン界面活性剤、カビ臭物質等は、各浄化材
の外表面に形成される生物膜により、硝化、不溶化、分
解等好気処理される。本発明の汚濁水浄化装置10の浄
化域Sにおいては、流入部11から導入された汚濁水が
図中矢印で示したようにほぼ水平方向に流通し、散気管
13から噴出される曝気用酸素ガスは微細気泡として汚
濁水の流通方向とほぼ直交して上昇し、汚濁水と酸素ガ
スとが、常時、広範囲で効率的に接触する散気区域Aを
形成する。この散気区域Aにおいては、汚濁水への酸素
の溶解効率が高まり、汚濁水中の溶解酸素量が増大し、
同時に塊状浄化材1表面においては、汚濁水流と曝気酸
素ガスとが同時に接触し境膜等の境界層の形成が抑制さ
れ、各浄化材1の表面に形成される微生物膜と高溶解酸
素量の汚濁水とが十分に接触し好気生物処理が促進さ
れ、BOD、アンモニア成分、カビ臭物質が高率で除去
される。
The polluted water purifying apparatus 10 of the present invention is formed as described above, Ru was evenly distributed purifying zone in S the polluted water from the inflow water channel 11 through to incoming water rectifying wall 14 to the discharge water rectifying wall 15 By doing so, it can be purified. As described above, the SS in the polluted water flowing through the purification area S is captured in the bulk purification material 1, accumulated, stays and is subjected to anaerobic treatment, and other soluble pollutants in the polluted water, for example, dissolved BOD substances, Ammonia components, anionic surfactants, moldy odor substances and the like are subjected to aerobic treatment such as nitrification, insolubilization and decomposition by a biofilm formed on the outer surface of each purification material. In the purification zone S of the polluted water purification device 10 of the present invention, the polluted water introduced from the inflow portion 11 flows in a substantially horizontal direction as indicated by the arrow in the figure, and the aeration oxygen discharged from the air diffuser 13. The gas rises almost perpendicularly to the flow direction of the polluted water as fine bubbles, so that the polluted water and the oxygen gas always form a diffused area A where the gas comes into efficient contact over a wide area at all times. In this aeration area A, the efficiency of dissolving oxygen in the polluted water increases, and the amount of dissolved oxygen in the polluted water increases,
At the same time, on the surface of the mass purification material 1, the polluted water stream and the aerated oxygen gas come into contact at the same time, the formation of a boundary layer such as a boundary film is suppressed, and the microbial film formed on the surface of each purification material 1 and the high dissolved oxygen content Sufficient contact with polluted water promotes aerobic biological treatment, and removes BOD, ammonia components, and moldy odor substances at a high rate.

【0022】本発明の浄化方法において、上記したよう
に浄化域Sの散気区域Aでは、SSの塊状浄化材1内部
への捕捉集積も行われるが、主に、浄化材1周面域で境
界膜の形成が抑制され塊状浄化材1表面に形成される生
物膜には十分な溶解酸素が供給され好気処理を効率的迅
速に行うことができる。一方、無散気区域ANでは、主
にSSの塊状浄化材1内部への捕捉、集積、滞留が効率
よく行われ、且つ、汚濁水の浄化装置の滞留時間とは無
関係にSSの嫌気処理が十分な滞留時間でもって行われ
る。従って、本発明の浄化域Sは、好気と嫌気の場を無
数に有し、SSの除去と嫌気処理、及び、溶解性BO
D、アンモニア成分、カビ臭等の好気処理とが高効率で
迅速に行われることになり、汚濁水の浄化を従来の数十
〜50倍の流速で行うことができる。例えば、一般的に
溶解性BODが主体である汚濁水であれば約10分とい
う短時間の滞留時間で、また、BOD約300mg/リ
ットル以上の有機質汚染物を多量に含有する汚濁水であ
っても約1.5時間で浄化することができる。また、汚
濁水の流速を速くできることにより、相乗的にほぼ水平
流の汚濁水と上昇流の微細気泡との接触が拡大され、浄
化率がより一層増大する。散気管13からの酸素ガスの
通気量は、汚濁水の汚濁度や汚濁水の流通速度等により
適宜選択することができる。通常、汚濁水量の約2〜1
5倍となるようにする。
In the purification method of the present invention, as described above, in the air diffusion zone A of the purification zone S, the SS is also trapped and accumulated inside the massive purification material 1, but mainly in the peripheral surface area of the purification material 1. Sufficient dissolved oxygen is supplied to the biofilm formed on the surface of the massive purification material 1 with the formation of the boundary film suppressed, and the aerobic treatment can be performed efficiently and quickly. On the other hand, in the non-aeration area AN, SS is mainly efficiently captured, accumulated, and retained inside the massive purification material 1, and the anaerobic treatment of SS is performed independently of the residence time of the polluted water purification device. It is performed with sufficient residence time. Therefore, the purification zone S of the present invention has countless aerobic and anaerobic fields, removes SS, performs anaerobic treatment, and dissolves BO.
Aerobic treatment of D, ammonia components, mold odor and the like is performed quickly and with high efficiency, and the purification of polluted water can be performed at a flow rate several tens to 50 times that of the conventional method. For example, generally, polluted water mainly composed of soluble BOD has a short residence time of about 10 minutes, and is a polluted water containing a large amount of organic contaminants having a BOD of about 300 mg / liter or more. Can be purified in about 1.5 hours. Further, since the flow rate of the polluted water can be increased, the contact between the substantially horizontal polluted water and the fine bubbles in the ascending flow is synergistically expanded, and the purification rate is further increased. The amount of oxygen gas flowing from the air diffuser 13 can be appropriately selected depending on the degree of contamination of the polluted water, the flow rate of the polluted water, and the like. Usually, about 2 to 1 of the amount of polluted water
5 times.

【0023】図3は、本発明の他の実施例を示す断面説
明図である。図3において、浄化槽10は、上記した同
様の塊状浄化材1を充填し、散気管13を所定間隔で配
設して散気区域A及び無散気区域ANが交互に構成され
上記の浄化装置と同様に形成されており、浄化槽10で
浄化処理された汚濁水処理水は、連絡通路を経て、更
に、浄化槽20に導入される。浄化槽20は、浄化槽1
0の散気管13と同様の多孔管を同様に浄化槽の全幅に
配設するが、浄化処理時には散気せず浄化槽の浄化域全
域が無散気区域ANとして構成される。配設された散気
管23は、浄化槽20の排泥処理のためのものであり、
その間隔は浄化槽10と同様でもよいが、通常、約50
〜100cmである。図3に示したような、上記図1の
形式の散気区域を形成した浄化槽10と無散気区域のみ
の浄化槽20とを直列に連続させて汚濁水を処理する浄
化方法は、例えば、浄化処理後の流出水の水質としてS
Sが30ppm以下や、より厳しく10ppm以下であ
ることが要求されるような排出基準である場合に、特に
好適に用いることができる。図1の形式の散気区域を形
成する浄化装置においては、流入する被処理汚濁水の水
質、特に含有されるSS量により異なるが、一般的には
浄化処理後の流出水中のSSを10〜30ppm以下に
することは困難であるためである。即ち、浄化槽10の
みの処理で得られるSS30ppm以上含有する処理水
を浄化槽20に流通させ処理することにより、無散気状
態の浄化域でSS除去を選択的に行うことができSS濃
度を30ppm以下、要すれば10ppm以下に低減す
ることができるためである。
FIG. 3 is an explanatory sectional view showing another embodiment of the present invention. In FIG. 3, the purifying tank 10 is filled with the same bulk purifying material 1 as described above, and diffuser tubes 13 are arranged at predetermined intervals to form diffuser sections A and non-diffuse sections AN alternately. The treated polluted water purified in the septic tank 10 is further introduced into the septic tank 20 via the communication passage. The septic tank 20 is the septic tank 1
A perforated pipe similar to the air diffuser pipe 13 is similarly disposed over the entire width of the septic tank, but does not diffuse during the purification process, and the entire purification area of the septic tank is configured as a non-aerated area AN. The diffuser pipe 23 is provided for treating the sludge in the septic tank 20.
The interval may be the same as that of the septic tank 10, but is usually about 50
100100 cm. As shown in FIG. 3, a purification method for treating polluted water by serially connecting a purification tank 10 having an aeration area of the type shown in FIG. 1 and a purification tank 20 having only a non-aeration area in series is, for example, a purification method. The quality of the effluent after treatment is S
It can be used particularly preferably when the emission standard requires that S be 30 ppm or less, or more strictly 10 ppm or less. In the purification apparatus that forms the aeration area of the type shown in FIG. 1, the SS in the effluent water after the purification treatment is generally 10 to 10, although it varies depending on the quality of the inflowing polluted water, particularly the amount of contained SS. This is because it is difficult to reduce the content to 30 ppm or less. That is, by treating and treating the treated water containing 30 ppm or more of SS obtained by the treatment of only the septic tank 10 through the septic tank 20, SS can be selectively removed in the purification region in a non-diffused state, and the SS concentration is 30 ppm or less. This is because it can be reduced to 10 ppm or less if necessary.

【0024】図4は、本発明の他の実施例を示す断面説
明図である。図4において、浄化槽30は、図1と同様
に流入水路11、排出水路12、流入水整流壁14及び
排出水整流壁15を有する同一処理槽において、流入水
整流壁14と排出水整流壁15との間に形成される空間
に散気領域10’と無散気領域20’とが連続形成され
る。散気領域10’及び無散気領域20’のいずれにも
上記した同様の塊状浄化材1が充填されると共に、散気
管13及び23が所定間隔で配設される。散気領域1
0’においては上記図1の浄化装置10の浄化域Sと同
様に散気区域A及び無散気区域ANが交互に形成され、
無散気領域20’においては図3の浄化槽20と同様に
形成され散気管23は浄化処理時には散気することなく
無散気区域ANとして形成される。散気管23が、無散
気領域の排泥処理のために用いることも同様である。図
4の浄化槽30は、図3で示した別々の浄化槽10及び
20が連絡路で接続されていたのに対し、連絡路を介す
ることなく散気領域10’及び無散気領域20’が連続
的に直結され、散気領域で処理された汚濁水がそのまま
無散気領域20’に流通すること以外は同様であり、S
S濃度の排出基準が厳しい場合に好適に用いることがで
きる。この方式は、処理槽が単一であり、しかも空間部
は同様に散気管13または23を所定間隔で配設し浄化
材1を充填して形成し、散気管への酸素ガスの供給を領
域10’及び20’の区分比率により適宜選択して行え
ばよいため、建設が簡便となり建設費も低減でき極めて
実用的である。この場合、散気領域10’と無散気領域
20’の区分比率は、被処理汚濁水の含有SS量及びB
OD等の溶解性汚濁物量の汚濁度、処理槽の容積、汚濁
水の流入量、浄化域滞留時間等浄化処理条件等により適
宜選択することができる。通常、1:1〜5:1とする
ことが好ましい。散気領域の比率が1未満であるとSS
及びBOD等溶解性汚濁物の双方を効率的に除去して汚
濁水を浄化することができない。また、散気領域の比率
が5を超えるとSS残存濃度が30ppm未満にするこ
とができない。なお、SS濃度基準が緩やかな場合は、
無散気領域の区分比率をゼロとし図1と同様にして用い
ることができる。
FIG. 4 is an explanatory sectional view showing another embodiment of the present invention. 4, in the same treatment tank having the inflow water channel 11, the discharge water channel 12, the inflow water straightening wall 14, and the discharge water straightening wall 15 as in FIG. A diffused area 10 'and a non-diffused area 20' are continuously formed in a space formed between the two. Both the diffused region 10 'and the non-diffused region 20' are filled with the above-described bulk purifying material 1, and diffuser tubes 13 and 23 are arranged at predetermined intervals. Aeration area 1
At 0 ', a diffused area A and a non-diffused area AN are alternately formed as in the purification area S of the purification apparatus 10 in FIG.
In the non-aeration region 20 ', the air diffusion tube 23 is formed in the same manner as the septic tank 20 in FIG. The same applies to the case where the diffuser tube 23 is used for the muddy exhaust treatment in the non-diffused region. In the septic tank 30 of FIG. 4, the separate septic tanks 10 and 20 shown in FIG. 3 are connected by a communication path, but the air diffusion region 10 ′ and the non-aeration area 20 ′ are continuous without passing through the communication path. The same is true except that the contaminated water directly connected and treated in the diffused area directly flows to the non-diffused area 20 ′.
It can be used suitably when the emission standard of S concentration is strict. In this method, a single treatment tank is used, and a space is formed by similarly arranging diffuser tubes 13 or 23 at a predetermined interval and filling the purifying material 1 to supply oxygen gas to the diffuser tubes. Since it is only necessary to appropriately select according to the classification ratio of 10 ′ and 20 ′, the construction is simple and the construction cost can be reduced, which is extremely practical. In this case, the division ratio between the diffused region 10 'and the non-diffused region 20' is determined by the SS content and the B
It can be appropriately selected according to the turbidity of the amount of soluble pollutants such as OD, the volume of the treatment tank, the inflow amount of the polluted water, the purification zone residence time, etc. Usually, it is preferable to set the ratio to 1: 1 to 5: 1. If the ratio of the diffused area is less than 1, SS
And water-soluble pollutants such as BOD cannot be efficiently removed to purify polluted water. On the other hand, if the ratio of the diffusion region exceeds 5, the SS residual concentration cannot be reduced to less than 30 ppm. If the SS concentration standard is loose,
With the division ratio of the non-diffused region set to zero, it can be used in the same manner as in FIG.

【0025】[0025]

【実施例】実施例1 先ず、図2に示したものと同様な塊状浄化材1を、骨材
2として約2〜3cm径の礫を用い、それらの複数を相
互に合わせ接着し、相当径が約10cmでほぼ球形状の
塊状浄化材1を作製した。塊状浄化材1の表面には、ほ
ぼ1〜5cmの相当径を有する開孔部3が多数形成され
た。次いで、幅1.0m、長さ6.8m、高さ1.2m
の直方体の浄化槽に、底部に約50cm間隔で散気管1
3を11本配設し、その上部に上記で作製した塊状浄化
材1を空隙率40%で充填し、図1と同様な浄化装置1
0を作製した。塊状浄化材1の充填した浄化域は5mで
あり、実質的な浄化域容量は5.50m3であった。上
記で作製した浄化装置10に、平均SS85.1mg/
リットル(変動42.5〜151.2mg/リット
ル)、平均BOD127.3mg/リットル(変動6
4.2〜203.7mg/リットル)、大腸菌119,
200個/ミリリットルの被処理汚濁水を、滞留時間1
時間で流量2.2m3/時(塊状浄化材1内部の連絡路
の空隙には汚濁水の流通が実質的に無いため)を流通さ
せ連続的に浄化処理した。浄化処理において、常時、散
気管13より曝気用空気を噴出した。曝気風量は汚濁水
流量の10倍の22Nm3/時で曝気した。連続浄化処
理を5か月行った後に、引き続き約24時間の連続浄化
処理の流出水を対象に連続検査した。その結果、流出水
は24時間の平均値でSS24.5mg/リットル(除
去率71.2%)、BOD28.1mg/リットル(除
去率78.0%)、大腸菌17,000個/ミリリット
ル(除去率86.0%)であった。
EXAMPLE 1 First, a mass-like purifying material 1 similar to that shown in FIG. 2 was used as an aggregate 2 by using rubble having a diameter of about 2 to 3 cm. Approximately 10 cm in diameter, and a substantially spherical massive purifying material 1 was produced. A large number of apertures 3 having an equivalent diameter of approximately 1 to 5 cm were formed on the surface of the massive cleaning material 1. Then, width 1.0m, length 6.8m, height 1.2m
A diffuser 1 at the bottom with a spacing of about 50 cm
11 are disposed, and the lump purifying material 1 prepared above is filled at an upper portion thereof with a porosity of 40%.
0 was produced. The purification area filled with the bulk purification material 1 was 5 m, and the actual purification area capacity was 5.50 m 3 . In the purification device 10 produced above, the average SS 85.1 mg /
Liter (variation 42.5 to 151.2 mg / liter), average BOD 127.3 mg / liter (variation 6
4.2-203.7 mg / l), E. coli 119,
200 pieces / milliliter of polluted water to be treated, residence time 1
A flow rate of 2.2 m 3 / hour was passed per hour (because there is substantially no flow of polluted water in the gap of the communication path inside the massive purification material 1), and the purification treatment was continuously performed. In the purification process, air for aeration was always jetted from the air diffuser 13. The aeration amount was 22 Nm 3 / hour, which was 10 times the flow rate of the polluted water. After performing the continuous purification treatment for 5 months, continuous inspection was performed on the effluent from the continuous purification treatment for about 24 hours. As a result, the effluent was 244.5 mg / liter (removal rate 71.2%), BOD 28.1 mg / liter (removal rate 78.0%), and 17,000 Escherichia coli / ml (removal rate) on average over 24 hours. 86.0%).

【0026】実施例2 上記の図3と同様な形式で浄化処理を行った。即ち、実
施例1の浄化槽10の後段に、浄化槽20を排泥用散気
管23を50cm間隔で底部に配設した以外は、浄化槽
10と全く同様に浄化域を形成して配管により連絡させ
た。上記で作製した浄化装置10及び浄化槽20に、平
均SS110.4mg/リットル(変動39.2〜21
1.7mg/リットル)、平均BOD347.7mg/
リットル(変動137.9〜1090.4mg/リット
ル)、大腸菌131,700個/ミリリットルの被処理
汚濁水を、浄化装置10と浄化槽20とを連続して滞留
時間1.5時間で流量2.2m3/時を流通させ連続し
て浄化処理した。浄化処理において、常時、散気管13
より曝気用空気を噴出した。曝気風量は汚濁水流量の1
0倍の22Nm3/時で曝気した。1年間連続して浄化
処理した結果、流出水は、1年間の平均値でSS4.8
mg/リットル(除去率95.7%)、BOD15.6
mg/リットル(除去率95.5%)、大腸菌7,03
1個/ミリリットル(除去率94.7%)であった。上
記の1年間の浄化処理後、通常通り、汚濁水を2.2m
3/時で通水しながら、浄化槽10の散気管13からの
散気をすると同時に、浄化槽20の散気管23から2
2.0Nm3/時で空気を噴出し排泥処理した。その結
果、18.0kgの汚泥が得られた。汚泥中の有機物含
有量は約20〜28%であって、通常の河川敷土砂と同
様であった。
Example 2 Purification was performed in the same manner as in FIG. That is, except that the septic tank 20 was disposed at the bottom of the septic tank 20 at intervals of 50 cm at the bottom of the septic tank 10 of Example 1, a purification area was formed in exactly the same manner as the septic tank 10 and connected by piping. . An average SS of 110.4 mg / liter (fluctuations of 39.2 to 21
1.7 mg / liter), average BOD 347.7 mg /
Liter (variation 137.9 to 1090.4 mg / liter) and 131,700 E. coli / milliliter of the polluted water to be treated were flowed through the purification apparatus 10 and the purification tank 20 continuously at a flow rate of 2.2 m with a residence time of 1.5 hours. 3 / hour was passed and purification treatment was continuously performed. In the purification process, the air diffuser 13
More aeration air was spouted. Aeration air volume is 1 of polluted water flow rate
Aeration was performed at a rate of 22 Nm 3 / hour, which is 0 times. As a result of continuous purification treatment for one year, the effluent has an average value of SS 4.8 per year.
mg / liter (removal rate 95.7%), BOD 15.6
mg / liter (removal rate 95.5%), E. coli 7,03
It was 1 / ml (removal rate 94.7%). After the above-mentioned one-year purification treatment, the polluted water is 2.2 m as usual.
3 / hour, water is diffused from the diffuser 13 of the septic tank 10 while passing water at the same time.
Air was ejected at 2.0 Nm 3 / hour to perform a mud discharge treatment. As a result, 18.0 kg of sludge was obtained. The organic matter content in the sludge was about 20-28%, similar to ordinary riverbed and sand.

【0027】実施例3 幅1.5m、浄化域長さ5m、高さ1.5mの直方体の
浄化槽に、底部に約50cm間隔で散気管13を8本配
設し、その上部に上記で作製した塊状浄化材1を空隙率
40%で充填し図1と同様な浄化装置10を2槽直列に
連続して浄化処理槽を構成した。浄化域容量は22.5
3であり、浄化通水容量9.0m3であった。上記で作
製した浄化装置10に連続して、平均SS28.8mg
/リットル(変動6.3〜69.0mg/リットル)、
平均BOD50.9mg/リットル(変動7.5〜9
3.5mg/リットル)、大腸菌168,833個/ミ
リリットルの被処理汚濁水を、滞留時間1時間で平均流
量3.9m3/時で流通させ連続的に浄化処理した。浄
化処理において、常時、散気管13より曝気用空気を噴
出した。曝気風量は汚濁水流量の約5倍の20Nm3
時で曝気した。5か月間連続処理した後に、引き続き約
24時間の連続浄化処理して得られた流出水について連
続検査した。その結果、24時間の平均値でSS1.5
mg/リットル(除去率92.6%)、BOD3.3m
g/リットル(除去率89.7%)、大腸菌52個/ミ
リリットル(除去率99.9%)であった。
Example 3 Eight air diffusers 13 are provided at the bottom at intervals of about 50 cm in a rectangular parallelepiped purification tank having a width of 1.5 m, a purification area length of 5 m, and a height of 1.5 m. The lumped purifying material 1 was filled with a porosity of 40%, and two purifying apparatuses 10 similar to those in FIG. Purification area capacity is 22.5
m 3 , and the purification flow capacity was 9.0 m 3 . Continuously with the purification device 10 produced above, the average SS 28.8 mg
/ Liter (variation 6.3-69.0 mg / liter),
Average BOD 50.9 mg / liter (fluctuation 7.5 to 9
(3.5 mg / liter), and 168,833 E. coli bacteria / ml of treated polluted water were passed through at an average flow rate of 3.9 m 3 / hour for a retention time of 1 hour to continuously purify. In the purification process, air for aeration was always jetted from the air diffuser 13. The aeration volume is about 5 times the flow rate of polluted water, 20 Nm 3 /
Aerated at times. After the continuous treatment for 5 months, the effluent obtained by the continuous purification treatment for about 24 hours was continuously inspected. As a result, SS1.5 was averaged over 24 hours.
mg / liter (removal rate 92.6%), BOD 3.3m
g / liter (removal rate: 89.7%) and E. coli 52 cells / milliliter (removal rate: 99.9%).

【0028】実施例4 上記の図4と同様な形式で浄化処理を行った。即ち、幅
1.5m、長さ18.5m、高さ2mの直方体の浄化槽
に、底部に約5cm間隔で散気管13(23)を320
本配設し、その上部に実施例1と同様の塊状浄化材1を
空隙率40%で充填し、図4と同様な浄化装置30を作
製した。浄化域容量は48m3であった。この場合、散
気領域10’の長さを10mとし、無散気領域20’長
さを6mとした。上記で作製した浄化装置30に、平均
SS132.3mg/リットル、平均BOD366.1
mg/リットル、大腸菌125,200個/ミリリット
ルの被処理汚濁水を、滞留時間1.5時間で流量12m
3/時で流通させ連続して浄化処理した。浄化処理にお
いて、常時、散気領域10’の散気管13より曝気用空
気を噴出した。曝気風量は汚濁水流量の10倍の120
Nm3/時で曝気した。8か月間連続して浄化処理した
後に、引き続き24時間連続浄化処理して得られた流出
水を連続検査した。その結果、24時間の平均値でSS
4.1mg/リットル(除去率96.9%)、BOD1
3.9mg/リットル(除去率96.2%)、大腸菌1
02個/ミリリットル(除去率99.9%)であった。
上記の8か月の浄化処理後、通常通り、汚濁水を12m
3/時で通水しながら、散気領域10’の散気管13か
らの散気をすると同時に、無散気領域20’の散気管2
3から60Nm3/時で空気を噴出し排泥処理した。こ
の8ケ月の中で3回の排泥処理を行い、第3回目の結
果、105.2kgの汚泥が得られた。汚泥中の有機物
含有量は約20〜28%であって、通常の河川敷土砂と
同様であった。
Example 4 Purification was performed in the same manner as in FIG. That is, a diffuser 13 (23) is attached to the bottom of a cubic septic tank having a width of 1.5 m, a length of 18.5 m, and a height of 2 m at intervals of about 5 cm at a bottom of 320.
This was disposed, and the upper part thereof was filled with the same bulk purification material 1 as in Example 1 at a porosity of 40%, thereby producing a purification device 30 similar to that of FIG. The purification area capacity was 48 m 3 . In this case, the length of the diffused area 10 'was 10 m, and the length of the non-diffused area 20' was 6 m. In the purification device 30 prepared above, the average SS was 132.3 mg / liter, and the average BOD was 366.1.
mg / litre, 125,200 E. coli / ml of treated contaminated water with a residence time of 1.5 hours and a flow rate of 12 m
It was circulated at 3 / h and continuously purified. In the purification process, air for aeration was always blown out from the air diffuser 13 in the air diffusion region 10 '. The amount of aeration air is 10 times the flow rate of polluted water, 120
Aeration was performed at Nm 3 / hour. After a continuous purification treatment for 8 months, the effluent obtained by the continuous purification treatment for 24 hours was continuously inspected. As a result, the average value for 24 hours was SS
4.1 mg / liter (removal rate 96.9%), BOD1
3.9 mg / liter (removal rate 96.2%), Escherichia coli 1
It was 02 pieces / milliliter (removal rate 99.9%).
After the above-mentioned eight-month purification treatment, the polluted water is reduced to 12 m as usual.
3 / hour, water is diffused from the diffuser 13 in the diffuser region 10 'while water is flowing at a time, and the diffuser 2 is diffused in the diffuser region 20'.
Air was ejected at a rate of 3 to 60 Nm 3 / hour to perform a mud discharge treatment. The sludge treatment was performed three times in the eight months. As a result of the third treatment, 105.2 kg of sludge was obtained. The organic matter content in the sludge was about 20-28%, which was similar to ordinary riverbed and sand.

【0029】[0029]

【発明の効果】本発明の汚濁水浄化方法は、所定の塊状
浄化材を充填した浄化域を形成すると共に、その浄化域
に散気管を所定の間隔で、所定位置に配設することによ
り、同一浄化処理域に好気処理と嫌気処理が同時に多数
存在させ、汚濁水が浄化槽を流通しながら複数回の好気
処理と嫌気処理を受けることになり、効率的に短時間で
迅速に浄化処理される。また、浄化材が表面に開孔部を
有すると共に、浄化域での散気管の配設間隔で形成され
る散気区域と無散気区域とが相乗的に作用し、汚濁水中
のSSを浄化材の開孔部に捕捉して容易に除去すること
ができる。更に、捕捉されたSSは、浄化材内部に滞留
できることから浄化域を流通する汚濁水の滞留時間とは
別の滞留時間で嫌気処理されるため、汚濁水は極めて短
時間の滞留時間で高効率で浄化処理される。また、従来
の浄化処理に比し、酸素溶解効率を向上させること、被
処理汚濁水と生物膜との接触効率を増大させることによ
り好気処理を迅速に効果的に行うことができる。
According to the method for purifying polluted water of the present invention, a purification zone filled with a predetermined block purification material is formed, and diffuser tubes are arranged at predetermined positions at predetermined intervals in the purification zone. A large number of aerobic and anaerobic treatments are simultaneously present in the same purification treatment area, and polluted water undergoes multiple aerobic and anaerobic treatments while flowing through the septic tank. Is done. In addition, the purifying material has an opening on the surface, and a diffused area and a non-diffused area formed at intervals of diffuser pipes in the purified area act synergistically to purify SS in polluted water. It can be easily removed by trapping in the opening of the material. Furthermore, since the trapped SS can stay inside the purification material, it is subjected to anaerobic treatment at a residence time different from the residence time of the polluted water flowing through the purification area. Is purified. In addition, aerobic treatment can be performed quickly and effectively by improving the oxygen dissolving efficiency and increasing the contact efficiency between the contaminated water to be treated and the biofilm, as compared with the conventional purification treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の汚濁水浄化槽の一実施例の断面説明図
である。
FIG. 1 is an explanatory sectional view of one embodiment of a polluted water purification tank of the present invention.

【図2】本発明の塊状浄化材の模式説明図である。FIG. 2 is a schematic explanatory view of a block purification material of the present invention.

【図3】本発明の汚濁水浄化槽の他の実施例の断面説明
図である。
FIG. 3 is an explanatory cross-sectional view of another embodiment of the polluted water purification tank of the present invention.

【図4】本発明の汚濁水浄化槽の他の実施例の断面説明
図である。
FIG. 4 is an explanatory sectional view of another embodiment of the polluted water purification tank of the present invention.

【符号の説明】[Explanation of symbols]

A 散気区域 AN 無散気区域 S 浄化域 1 塊状浄化材 2 骨材 3 開孔部 10、20、30 浄化槽 10’ 散気領域 20’ 無散気領域 11 流入水路 12 排出水路 13、23 散気管 14 流入水整流壁 15 排出水整流壁 Reference Signs List A Aeration area AN Non-aeration area S Purification area 1 Lump purifying material 2 Aggregate 3 Opening 10, 20, 30 Septic tank 10 'Aeration area 20' Non-aeration area 11 Inflow channel 12 Drainage channel 13, 23 Dispersion Trachea 14 Inflow water straightening wall 15 Discharge water straightening wall

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 汚濁水を流通浄化するための浄化域を、
汚濁水を流入出する流入部と流出部との間に形成し、該
浄化域に、表面に相当直径1〜5cmの開孔部を複数有
し且つ内部に互いに連通する複数の連絡路を有し上記
孔部の各々が少なくとも該連絡路の一に連続してなる塊
状浄化材を充填し、該塊状浄化材が充填された浄化域に
上記流入部において整流化した汚濁水を流通させて、汚
濁水を塊状浄化材接触させると同時に、該浄化域底部
から所定間隔で酸素含有ガスを微細気泡として上昇さ
せ、汚濁水流が該上昇酸素含有ガス微細気泡とほぼ直交
して接触するようにして、酸素含有ガスの微細気泡のな
い無散気区域に配置されている塊状浄化材に捕捉・集積
された汚濁水中のSS(浮遊微細固形物)が、酸素含有
ガスの微細気泡のある散気区域に配置されている塊状浄
化材に捕捉・集積されたSSよりも長時間、塊状浄化材
内部に滞留するようにしたことを特徴とする汚濁水浄化
方法。
Claims: 1. A purification zone for purifying and polluting water ,
Formed between an inflow portion and an outflow portion through which polluted water flows in and out;
The purification zone, each of said openings having a plurality of communication paths communicating with each other plurality has and inside an opening of corresponding diameter 1~5cm the surface is continuously on one of at least said communication passage Filling the bulk purifying material, the purification zone filled with the bulk purifying material
By circulating the polluted water which has been rectified in the inlet, dirty
At the same time that the turbid water is brought into contact with the bulk purification material, the oxygen-containing gas is raised as fine bubbles at predetermined intervals from the bottom of the purification area, so that the polluted water stream contacts the raised oxygen-containing gas fine bubbles substantially orthogonally , Fine bubbles of oxygen-containing gas
Trapped and accumulated by the bulk purification material located in a non-aeration area
(Suspended fine solids) in the polluted water
Bulk cleaning located in the aeration area with gas microbubbles
Lump purification material for a longer time than SS captured and accumulated on
A method for purifying polluted water, characterized in that the polluted water stays inside .
【請求項2】 前記浄化域の汚濁水の滞留時間が10〜
120分である請求項1に記載の汚濁水浄化方法。
2. The residence time of the polluted water in the purification zone is 10 to 10.
The method for purifying polluted water according to claim 1, wherein the time is 120 minutes.
【請求項3】 前記酸素含有ガスを微細気泡として上昇
させる所定間隔が5〜100cmの範囲であり、被処
理汚濁水の汚濁度により該範囲内で変化させる請求項1
または2に記載の汚濁水浄化方法。
3. The oxygen-containing gas rises as fine bubbles.
The predetermined interval to be performed is in a range of 5 to 100 cm, and is changed within the range according to the turbidity of the polluted water to be treated.
Or the polluted water purification method according to 2.
【請求項4】 前記請求項1〜のいずれか1項に記載
の汚濁水浄化方法で処理した浄化水を、更に、前記塊状
浄化材が充填されて形成される無散気浄化域に流通させ
て処理することを特徴とする汚濁水浄化方法。
4. The purified water treated by the method for purifying polluted water according to any one of claims 1 to 3 is further distributed to a non-diffusive purification region formed by filling the bulk purification material. A method for purifying polluted water, comprising:
【請求項5】 前記無散気浄化域が、前記浄化域内の流
出部側の後段に形成されてなる請求項4に記載の汚濁水
浄化方法。
5. The method for purifying polluted water according to claim 4, wherein the non-diffusive purification zone is formed at a stage subsequent to an outflow portion in the purification zone.
【請求項6】 有蓋または無蓋であり、周壁を有する
定容積の汚濁水処理装置であって、汚濁水の流入部、処
理水の流出部、該流入部及び該流出部にそれぞれ配設さ
れた整流部材、該流入部と該流出部との間に配置された
浄化域を有してなり、該浄化域底部に流入部から流出部
方向とほぼ直交して散気管が所定間隔を有して配設さ
れ、且つ、表面に相当直径1〜5cmの開孔部を複数有
し且つ内部に互いに連通する複数の連絡路を有し、該開
孔部の各々が少なくとも該連絡路の一に連続してなる塊
状浄化材を充填してなり、酸素含有ガスの微細気泡のな
い無散気区域に配置されている塊状浄化材内部に捕捉・
集積される汚濁水中のSS(浮遊微細固形物)が、酸素
含有ガスの微細気泡のある散気区域に配置されている塊
状浄化材内部に捕捉・集積されるSSよりも塊状浄化材
内部に長時間滞留するように構成したことを特徴とする
汚濁水浄化装置。
6. a lidded or no lid, a polluted water treatment apparatus where <br/> constant volume to have a peripheral wall, inlet of polluted water, outflow of the treated water, flow join the club and the outflow section A rectifying member disposed in each of the above, a purifying area disposed between the inflow section and the outflow section, and an air diffuser tube is provided at the bottom of the purification area substantially perpendicular to the direction from the inflow section to the outflow section. Arranged at a predetermined interval, the surface has a plurality of apertures having an equivalent diameter of 1 to 5 cm on the surface and has a plurality of communication paths communicating with each other inside, each of the apertures is at least the Ri one contact path name by filling the massive purifying member comprising in succession, it fine-bubble of the oxygen-containing gas
Trapped inside the bulk purification material located in the
SS (floating fine solids) in the polluted water that is accumulated
Lumps located in the aeration area with fine bubbles of contained gas
Lumped purifying material than SS trapped and accumulated inside turbid purifying material
A polluted water purifier characterized by being configured to stay inside for a long time .
【請求項7】 前記塊状浄化材が、小径骨材を接合着し
て相当径約7〜15cmのほぼ球形に形成されてなる請
求項記載の汚濁水浄化装置。
7. The polluted water purification apparatus according to claim 6 , wherein said bulk purification material is formed into a substantially spherical shape having an equivalent diameter of about 7 to 15 cm by bonding small-diameter aggregate.
【請求項8】 前記散気管を配設する所定間隔が、5〜
100cmである請求項または記載の汚濁水浄化装
置。
8. A predetermined interval of disposing the diffusing pipe is 5
The polluted water purification device according to claim 6 or 7, which is 100 cm.
【請求項9】 前記請求項のいずれか1項に記載
の汚濁水浄化装置を用い、汚濁水を前記流入部から導入
して前記浄化域を流通させると共に、前記浄化域の流入
部側の前段部で散気管から酸素含有ガスを散気し、流出
部側の後段部では散気管から散気することなく浄化処理
することを特徴とする汚濁水の浄化方法。
9. Using polluted water purifying apparatus according to any one of claims 6-8, together with circulating the purification zone by introducing polluted water from the inlet, inlet of said purification zone A method for purifying polluted water, characterized in that oxygen-containing gas is diffused from an air diffuser in a front part on the side of the side, and purification treatment is performed without diffusing air from the diffuser in a rear part on the outlet side.
【請求項10】 前記前段部と後段部とが、前記浄化域
を1:1〜5:1に区分してなる請求項記載の汚濁水
の浄化方法。
10. The method for purifying polluted water according to claim 9 , wherein said front part and said rear part divide said purifying zone into 1: 1 to 5: 1.
【請求項11】 前記請求項のいずれか1項に
載の汚濁水浄化装置と同様に形成された第1及び第2の
浄化装置であって、第1の浄化装置の流出部と第2の浄
化装置の流入部とが連絡してなることを特徴とする汚濁
水浄化装置。
11. The claim 6 to the first and second purification device formed similarly to the polluted water purifying apparatus of the serial <br/> mounting any one of 8, first purifying A polluted water purification device, wherein an outflow portion of the device and an inflow portion of the second purification device communicate with each other.
【請求項12】 前記請求項1記載の汚濁水浄化装置
を用い、第1の汚濁水浄化装置において汚濁水を流入部
から導入して浄化域を流通させると共に散気管から酸素
含有ガスを散気して汚濁水を浄化処理して流出部から浄
化処理水を流出して前記第2の汚濁水浄化装置に導入
し、該第2の汚濁水浄化装置においては散気管から散気
することなく更に該浄化処理水を浄化処理することを特
徴とする汚濁水の浄化方法。
12. polluted water purifying apparatus of claim 1 1, wherein
In the first polluted water purifier, the polluted water is introduced from the inflow section to circulate through the purification area, and the oxygen-containing gas is diffused from the diffuser pipe to purify the polluted water, and the purified water is discharged from the outflow section. Effluent is introduced into the second polluted water purifier, and the second polluted water purifier further purifies the purified water without diffusing from the air diffuser. Purification method.
JP04657996A 1995-04-04 1996-02-08 Polluted water purification method and polluted water purification device Expired - Fee Related JP3177432B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04657996A JP3177432B2 (en) 1995-04-04 1996-02-08 Polluted water purification method and polluted water purification device
TW085103737A TW368494B (en) 1996-02-08 1996-03-28 Method and apparatus for purifying polluted water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10302295 1995-04-04
JP7-103022 1995-04-04
JP04657996A JP3177432B2 (en) 1995-04-04 1996-02-08 Polluted water purification method and polluted water purification device

Publications (2)

Publication Number Publication Date
JPH08332497A JPH08332497A (en) 1996-12-17
JP3177432B2 true JP3177432B2 (en) 2001-06-18

Family

ID=26386680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04657996A Expired - Fee Related JP3177432B2 (en) 1995-04-04 1996-02-08 Polluted water purification method and polluted water purification device

Country Status (1)

Country Link
JP (1) JP3177432B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594245B2 (en) * 2005-01-26 2010-12-08 アクアテック株式会社 Decomposition treatment equipment for organic matter in organic polluted water
EP1686098B1 (en) 2005-01-26 2011-02-23 Aquatech, Ltd. Aerobic anaerobic treatment of organically polluted water
WO2010001856A1 (en) * 2008-06-30 2010-01-07 アクアテック株式会社 Method of purifying polluted water and purifier for polluted water
JP5662771B2 (en) * 2010-11-26 2015-02-04 株式会社川瀬製作所 Purification device
JP5194151B2 (en) * 2011-07-20 2013-05-08 前澤工業株式会社 Waste water treatment equipment
JP2014176843A (en) * 2013-02-15 2014-09-25 Sansui-Consultant Co Ltd Wastewater treatment apparatus
CN109824109A (en) * 2017-11-23 2019-05-31 中国水利水电科学研究院 A kind of ecological canal purification device
CN108144384A (en) * 2017-12-25 2018-06-12 姚舜 Drawing-in type water-bath dirt method for gas purification

Also Published As

Publication number Publication date
JPH08332497A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
KR100254089B1 (en) Apparatus and method for purifying polluted water
KR100741019B1 (en) Water treatment device and method by using a combination of wetland and contact oxidation filtration facilities
KR101322610B1 (en) Biological filtration system for water treatment
CN107055871B (en) Novel coagulating sedimentation interception and filtration air-water backwashing integrated high-efficiency filter tank
CN209226783U (en) A kind of integrated rural sewage-treatment plant
JP3177432B2 (en) Polluted water purification method and polluted water purification device
JP2981960B2 (en) Solid logistics separation method
CN106673257A (en) Micropolluted raw water treatment integrated plant
CN111392964B (en) Method and device for treating sewage of rain and sewage combined pump station
CN102050529B (en) Immersed water treatment device of inner circulating membrane coagulation reactor
CN107129119A (en) A kind of biochemical treatment apparatus and technique for realizing high CO_2 density
JP3469797B2 (en) Sewage treatment method and apparatus
KR101393533B1 (en) Purification method by system with string biomedia using multi air diffuser and draft tube
CN215250251U (en) Multistage water body remediation system
CN205820982U (en) A kind of integration combined biological filter tank
CN206232523U (en) Integrated sewage treating apparatus
CN212076748U (en) AAO + BAF sewage treatment system
CN208747870U (en) Integrated sewage treating apparatus
CN210457857U (en) Sewage treatment system for sewage outfall of river regulation
CN208843896U (en) The micro- pollutant effluents in rural area handles integration apparatus
KR200257303Y1 (en) Device for treating stream and lake polluted
JP4019209B2 (en) Water purification system
JP2000354858A (en) Sewage treatment method and device therefor
JPH08108191A (en) Polluted water purifying member as well as method and apparatus for purifying polluted water using the member
JP4594245B2 (en) Decomposition treatment equipment for organic matter in organic polluted water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees