JP3174271B2 - Molding composition for lamp reflector, method for producing lamp reflector using the same, and lamp reflector - Google Patents

Molding composition for lamp reflector, method for producing lamp reflector using the same, and lamp reflector

Info

Publication number
JP3174271B2
JP3174271B2 JP16326696A JP16326696A JP3174271B2 JP 3174271 B2 JP3174271 B2 JP 3174271B2 JP 16326696 A JP16326696 A JP 16326696A JP 16326696 A JP16326696 A JP 16326696A JP 3174271 B2 JP3174271 B2 JP 3174271B2
Authority
JP
Japan
Prior art keywords
lamp reflector
reflector
resin
unsaturated polyester
molding composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16326696A
Other languages
Japanese (ja)
Other versions
JPH0997512A (en
Inventor
久芳 大長
侑司 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP16326696A priority Critical patent/JP3174271B2/en
Priority to GB9614637A priority patent/GB2303631B/en
Priority to US08/681,478 priority patent/US5985465A/en
Priority to CN96108542A priority patent/CN1092774C/en
Publication of JPH0997512A publication Critical patent/JPH0997512A/en
Application granted granted Critical
Publication of JP3174271B2 publication Critical patent/JP3174271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ランプ反射鏡用成
形組成物、特に自動車に装備するヘッドランプ、フォグ
ランプ等に使用して好適なランプ反射鏡用の成形組成
物、それを用いたランプ反射鏡の製造方法及びランプ反
射鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding composition for a lamp reflector, particularly to a molding composition for a lamp reflector suitable for use in headlamps, fog lamps and the like mounted on automobiles, and a lamp reflector using the same. The present invention relates to a mirror manufacturing method and a lamp reflecting mirror.

【0002】[0002]

【従来の技術】ランプ反射鏡、特にヘッドランプ、フォ
グランプ等のランプ反射鏡は、非常に高輝度の電球を使
用するため、使用時にフィラメントから発生する高熱に
耐えねばならないことから、反射鏡の基体は熱硬化性樹
脂で形成され、従来から不飽和ポリエステル樹脂成形組
成物が用いられている。例えば、12〜18重量%のガ
ラス繊維を含有する熱硬化性不飽和ポリエステル樹脂
形組成物に炭酸カルシウムなどの充填剤と、相溶性内部
離型剤として脂肪酸エステル、硬化触媒として脂肪族ペ
ルオキシ化合物を含有する不飽和ポリエステル樹脂成形
組成物等からなる反射鏡組成物が提案されている。
2. Description of the Related Art A lamp reflector, particularly a lamp reflector such as a headlamp or a fog lamp, uses a very high-intensity light bulb and must withstand high heat generated from a filament during use. Is formed of a thermosetting resin, and an unsaturated polyester resin molding composition has been conventionally used. For example, a thermosetting unsaturated polyester resin molding composition containing 12 to 18% by weight of glass fiber, a filler such as calcium carbonate, a fatty acid ester as a compatible internal release agent, and a curing catalyst as a curing catalyst. Reflector mirror compositions comprising an unsaturated polyester resin molding composition containing an aliphatic peroxy compound have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ランプ
反射鏡として用いられる不飽和ポリエステル樹脂には、
ランプ点灯時の発熱温度(約180℃)に耐え得る耐熱
性が要求されるにもかかわらず、これら提案される不飽
ポリエステル樹脂成形組成物をランプ反射鏡基体材料
として用いると、ランプ点灯時の灯室内の熱上昇による
熱変形が発生する。また、ランプ反射鏡を射出成形する
時発生する熱硬化収縮により基材が収縮し、寸法安定性
や表面平滑性が損なわれることが判明した。その結果、
反射鏡表面に歪みが発生し、その歪みによって反射鏡表
面が凹凸面となって電球からの照射光が正確に制御でき
ず、従って対向車両に対する眩光を生じたり、配光規格
を満足しないという問題があった。特に、この種の高強
度ランプ反射鏡は光学的に狂いのない精度の高い反射面
を有することが要求されることから、優れた耐熱性、寸
法安定性、表面平滑性及び強度を有する反射鏡基体を提
供できる熱硬化性プラスチック成形材料の開発が必要で
ある。
However, unsaturated polyester resins used as lamp reflectors include:
Despite the demand for heat resistance that can withstand the heat generated when the lamp is turned on (about 180 ° C.), these proposed unsaturated
When the Japanese polyester resin molding composition is used as a lamp reflector base material, thermal deformation occurs due to a rise in heat in the lamp chamber when the lamp is turned on. Further, it has been found that the base material shrinks due to the thermosetting shrinkage generated when the lamp reflector is injection-molded, and the dimensional stability and the surface smoothness are impaired. as a result,
Distortion occurs on the reflector surface, and the distortion causes the reflector surface to have an uneven surface, making it impossible to accurately control the light emitted from the light bulb. Therefore, glare may be caused to oncoming vehicles or the light distribution standard may not be satisfied. was there. In particular, since this type of high-intensity lamp reflecting mirror is required to have a highly accurate reflecting surface without optical deviation, the reflecting mirror has excellent heat resistance, dimensional stability, surface smoothness and strength. There is a need for the development of thermosetting plastic molding compounds that can provide a substrate.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するものであって、不飽和ポリエステル樹脂、ガラス
繊維、無機充填剤及び熱可塑性樹脂を含有する不飽和
ポリエステル樹脂成形組成物(以下、成形組成物と略称
する)によって、ランプ反射鏡を成形することを特徴と
するものである。本発明に従い特に熱可塑性樹脂を配合
することにより、成形組成物の熱硬化時に発熱により熱
可塑性樹脂が膨張して系全体の硬化収縮を補償し、得ら
れる反射鏡の体積を一定に保ち、光学的に狂いのない高
精度な反射面を構成することができる。
Means for Solving the Problems The present invention has been made to solve the above problems, unsaturated polyester resin, glass fiber, containing an inorganic filler and a thermoplastic resin such as unsaturated
Polyester resin molding composition (hereinafter abbreviated as molding composition)
) To form a lamp reflecting mirror. By blending a thermoplastic resin in particular according to the present invention, the thermoplastic resin expands due to heat generation at the time of thermosetting of the molding composition to compensate for the curing shrinkage of the entire system, keeping the volume of the obtained reflecting mirror constant, It is possible to form a highly accurate reflection surface without any inconsistency.

【0005】[0005]

【発明の実施の形態】本発明では、ランプ反射鏡用成形
材料において熱硬化性樹脂基材として従来公知の不飽和
ポリエステル樹脂、架橋剤及び触媒を用いることができ
る。フィラメントから発する180℃以上の高熱に耐え
るため、樹脂基材である不飽和ポリエステル樹脂と架橋
剤との硬化物(以下、不飽和ポリエステル樹脂硬化物と
称する)のガラス転移点が150℃以上、特に160℃
以上であることが好ましい。不飽和ポリエステル樹脂
化物のガラス転移点が150℃以上であると、高温にお
ける弾性率を保持でき、灯具点灯時に反射面に熱変形に
よるうねり等が生じず、光学的に良好な反射面の表面形
状が維持できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a conventionally known unsaturated polyester resin, a crosslinking agent and a catalyst can be used as a thermosetting resin substrate in a molding material for a lamp reflector. In order to withstand the high heat of 180 ° C. or higher generated from the filament, a cured product of an unsaturated polyester resin as a resin base and a crosslinking agent (hereinafter, a cured product of an unsaturated polyester resin and
It referred) a glass transition point of 0.99 ° C. or more, in particular 160 ° C.
It is preferable that it is above. When the glass transition point of the unsaturated polyester resin is 150 ° C. or higher, the elastic modulus at high temperatures can be maintained, and the reflection surface does not undulate due to thermal deformation when the lamp is turned on, and is optically favorable. The surface shape of the reflection surface can be maintained.

【0006】本発明で用いられる不飽和ポリエステル樹
脂は、不飽和多塩基酸及び必要に応じて飽和多塩基酸と
多価アルコールとを縮重合して得られるものである。不
飽和多塩基酸としては、縮重合に用いることのできる種
々の不飽和多塩基酸を適宜用いることができ、具体的に
は、無水マレイン酸、フマル酸、イタコン酸等が挙げら
れ、特に無水マレイン酸、フマル酸が好ましく用いられ
る。任意成分である飽和多塩基酸としては、縮重合に用
いることのできる種々の飽和多塩基酸を適宜用いること
ができ、具体的には、無水フタル酸、イソフタル酸、テ
レフタル酸、テトラヒドロ無水フタル酸、メチルテトラ
ヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水
フタル酸、アジピン酸、セバシン酸、ヘット酸、テトラ
ブロム無水フタル酸等が挙げられ、特に無水フタル酸、
イソフタル酸が好ましい。
The unsaturated polyester resin used in the present invention is obtained by polycondensation of an unsaturated polybasic acid and, if necessary, a saturated polybasic acid and a polyhydric alcohol. As the unsaturated polybasic acid, various unsaturated polybasic acids that can be used for polycondensation can be used as appropriate, and specific examples thereof include maleic anhydride, fumaric acid, and itaconic acid, and particularly, anhydride. Maleic acid and fumaric acid are preferably used. As the optional saturated polybasic acid, various saturated polybasic acids that can be used for polycondensation can be appropriately used, and specifically, phthalic anhydride, isophthalic acid, terephthalic acid, and tetrahydrophthalic anhydride , Methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, adipic acid, sebacic acid, heptonic acid, tetrabromophthalic anhydride and the like, especially phthalic anhydride,
Isophthalic acid is preferred.

【0007】多価アルコールとしては、縮重合に用いる
ことのできる種々の多価アルコールを適宜用いることが
でき、具体的には、エチレングリコール、プロピレング
リコール、ジエチレングリコール、ジプロピレングリコ
ール、ネオペンチルグリコール、1,3−ブタンジオー
ル、1,4−ブタンジオール、1,6−ヘキサンジオー
ル、水素化ビスフェノールA、ビスフェノールAプロピ
レンオキシド付加物、ジブロムネオペンチルグリコー
ル、ペンタエリスリットジアリルエーテル、アリルグリ
シジルエーテル等が挙げられ、特にエチレングリコー
ル、プロピレングリコール、ジエチレングリコール、ジ
プロピレングリコール、ネオペンチルグリコール、1,
3−ブタンジオール、水素化ビスフェノールAが好まし
く用いられる。
As the polyhydric alcohol, various polyhydric alcohols that can be used for polycondensation can be appropriately used. Specifically, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, , 3-butanediol, 1,4-butanediol, 1,6-hexanediol, hydrogenated bisphenol A, bisphenol A propylene oxide adduct, dibromoneopentyl glycol, pentaerythritol diallyl ether, allyl glycidyl ether, etc. Especially ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,
3-Butanediol and hydrogenated bisphenol A are preferably used.

【0008】不飽和ポリエステルは、本発明の成形組成
物中、好ましくは4〜20質量%、より好ましくは6〜
13質量%含有される。
The unsaturated polyester is preferably used in an amount of 4 to 20% by mass, more preferably 6 to 20% by mass in the molding composition of the present invention.
13 mass% is contained.

【0009】また、本分野で公知の種々の架橋剤及び触
媒を本発明の成形組成物に適宜用いることができる。架
橋剤としてはスチレンモノマー、触媒としてはt−ブチ
ルパーオキサイト等の有機過酸化物が好ましく用いられ
る。架橋剤は、本成形組成物中好ましくは5〜25質量
%、より好ましくは6〜13質量%の量で、触媒は、本
成形組成物中好ましくは0.2〜5質量%、より好まし
くは0.2〜3質量%の量で、それぞれ用いることがで
きる。
[0009] Various crosslinking agents and catalysts known in the art can be appropriately used in the molding composition of the present invention. A styrene monomer is preferably used as a crosslinking agent, and an organic peroxide such as t-butyl peroxide is preferably used as a catalyst. The crosslinking agent is preferably used in an amount of 5 to 25% by mass, more preferably 6 to 13% by mass in the present molding composition.
It can be used preferably in an amount of 0.2 to 5% by mass, more preferably 0.2 to 3% by mass in the molding composition.

【0010】上述の通り、本発明では、不飽和ポリエス
テル樹脂の硬化時の収縮を抑制する目的で熱可塑性樹脂
を添加する。熱可塑性樹脂の例としては、スチレン系共
重合体、ポリエチレン、ポリ塩化ビニル、ポリ酢酸ビニ
ル、ポリビニルアルコール、ポリメタクリル酸メチル又
はポリメタクリル酸メチル系共重合体、変性ABS樹
脂、セルロースアセテートブチレート、ポリカプロラク
トン、スチレン−ブタジエンゴム、クロロプレンゴム、
変性ポリウレタン等を挙げることができる。特に、ポリ
メチルメタクリレート等の如きアクリル系樹脂(共重合
体を含む。例えばスチレン−アクリル共重合体、スチレ
ン−ポリエステル共重合体等)及びポリ酢酸ビニル等の
如き酢酸ビニル樹脂(共重合体を含む。例えばスチレン
−酢酸ビニル共重合体等)が、分散性、低収縮性、剛性
の点で好ましい。熱可塑性樹脂の添加量は、本成形組成
物中、好ましくは2〜12質量%、より好ましくは2.
4〜8質量%である。
As described above, in the present invention, a thermoplastic resin is added for the purpose of suppressing shrinkage during curing of the unsaturated polyester resin. Examples of the thermoplastic resin, styrene-based copolymer, polyethylene, polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate or polymethyl methacrylate-based copolymer, modified ABS resin, cellulose acetate butyrate, Polycaprolactone, styrene-butadiene rubber, chloroprene rubber,
Modified polyurethane and the like can be mentioned. In particular, acrylic resins (including copolymers such as polymethyl methacrylate) (including styrene-acryl copolymers and styrene-polyester copolymers) and vinyl acetate resins (including copolymers) such as polyvinyl acetate For example, styrene-vinyl acetate copolymer) is preferable in terms of dispersibility, low shrinkage, and rigidity. The addition amount of the thermoplastic resin is preferably 2 to 12% by mass, more preferably 2.
4 to 8% by mass.

【0011】本発明に用いられる熱可塑性樹脂は、不飽
和ポリエステル樹脂の硬化時の自己発熱温度(140〜
180℃)により熱膨張を起こす。熱可塑性樹脂のかか
る性能を充分に発揮するには、そのガラス転移点が15
0℃以下、特に120℃以下であることが好ましい。ガ
ラス転移点が150℃以下であると、成形時に熱可塑性
樹脂の充分な熱膨張が得られ、不飽和ポリエステルの硬
化収縮を充分に抑制することができる。
The thermoplastic resin used in the present invention has a self-heating temperature (140 to 140) at the time of curing of the unsaturated polyester resin.
180 ° C.). In order for the thermoplastic resin to fully exhibit such performance, its glass transition point must be 15 or more.
It is preferably 0 ° C. or lower, particularly preferably 120 ° C. or lower. When the glass transition point is 150 ° C. or lower, sufficient thermal expansion of the thermoplastic resin can be obtained at the time of molding, and the curing shrinkage of the unsaturated polyester can be sufficiently suppressed.

【0012】本発明では、基材の収縮量と熱可塑性樹脂
の膨張量をそれぞれコントロールすることにより、ラン
プ反射鏡の寸法安定性及び表面平滑性を高めることがで
きる。特に、不飽和ポリエステル樹脂硬化物のガラス転
移点を150℃以上とすることで、ランプ点灯時の反射
鏡基体の弾性率の低下を防止し、反射鏡基体の熱変形を
有効に防止することができるとともに、ガラス転移点1
50℃以下の熱可塑性樹脂を混合することにより、熱硬
化性不飽和ポリエステル樹脂の硬化収縮を有効に防止
し、精度良い反射面を形成できる。即ち、耐熱性と寸法
安定性の相反する性能をバランスよく両立できるもので
ある。
In the present invention, the dimensional stability and surface smoothness of the lamp reflector can be improved by controlling the amount of contraction of the base material and the amount of expansion of the thermoplastic resin, respectively. In particular, by setting the glass transition point of the cured unsaturated polyester resin to 150 ° C. or higher, it is possible to prevent a decrease in the elastic modulus of the reflector base when the lamp is turned on, and effectively prevent thermal deformation of the reflector base. Glass transition point 1
By mixing a thermoplastic resin having a temperature of 50 ° C. or lower, curing shrinkage of the thermosetting unsaturated polyester resin can be effectively prevented, and a highly accurate reflection surface can be formed. That is, it is possible to achieve a good balance between the contradictory performances of heat resistance and dimensional stability.

【0013】本発明の好ましい態様としては、硬化物の
ガラス転移点150℃以上、より好ましくは160℃以
上の不飽和ポリエステル樹脂と、ガラス転移点150℃
以下、より好ましくは120℃〜−10℃のポリメチル
メタクリレート等の如きアクリル系樹脂(共重合体を含
む。例えばスチレン−アクリル共重合体、スチレン−ポ
リエステル共重合体等)又はポリ酢酸ビニル等の如き酢
酸ビニル樹脂(共重合体を含む。例えばスチレン−酢酸
ビニル共重合体等)とを組み合わせて用いるものであ
り、これにより、分散性、寸法安定性、剛性、耐熱性の
いずれにおいても優れた性能を確保でき、良好なランプ
反射鏡を成形することができる。
[0013] Preferred embodiments of the present invention, <br/> glass transition point 0.99 ° C. or higher of a cured product, and more preferably a 160 ° C. or more unsaturated polyester resins, a glass transition point 0.99 ° C.
Hereinafter, more preferably, an acrylic resin (including a copolymer such as styrene-acryl copolymer, styrene-polyester copolymer, etc.) such as polymethyl methacrylate at 120 ° C. to −10 ° C. or polyvinyl acetate is used. It is used in combination with a vinyl acetate resin (including a copolymer, for example, a styrene-vinyl acetate copolymer, etc.) as described above, whereby excellent dispersibility, dimensional stability, rigidity, and heat resistance are obtained. Performance can be ensured, and a good lamp reflecting mirror can be formed.

【0014】本発明の成形組成物には、走行中に脱落、
破損等のないような強度を確保するために、補強材とし
てガラス繊維を添加する。ガラス繊維の添加量は、成形
組成物中、好ましくは5〜30質量%、より好ましくは
10〜25質量%である。この範囲内であれば、成形品
の表面粗さに悪影響を及ぼすことなく、充分な耐衝撃強
度が達成できる。また、ガラス繊維径は好ましくは6〜
18μmであり、この範囲内で適度な流動性と強度とを
確保することができる。
[0014] The molding composition of the present invention contains
Glass fiber is added as a reinforcing material in order to ensure strength without breakage. The addition amount of the glass fiber is preferably 5 to 30% by mass, more preferably 10 to 25% by mass in the molding composition. Within this range, sufficient impact strength can be achieved without adversely affecting the surface roughness of the molded article. The glass fiber diameter is preferably 6 to
It is 18 μm, and appropriate fluidity and strength can be ensured within this range.

【0015】本発明の成形組成物にはまた、本分野で公
知の種々の無機充填剤を添加する。例えば、炭酸カルシ
ウム、マイカ、タルク、グラファイト、カーボンブラッ
ク、アスベスト、水酸化アルミニウム等が挙げられる。
添加量は特に限定的ではないが、成形組成物中、好まし
くは35〜70質量%、より好ましくは45〜65質量
%程度が適当である。
The molding compositions of the present invention also contain various inorganic fillers known in the art. Examples include calcium carbonate, mica, talc, graphite, carbon black, asbestos, aluminum hydroxide and the like.
The amount of addition is not particularly limited, but is preferably about 35 to 70% by mass, more preferably about 45 to 65% by mass in the molding composition.

【0016】本発明の成形組成物には更に、低収縮の成
形品を金型から容易に脱型するために、内部離型剤を添
加することが好ましい。内部離型剤としては、本分野で
公知の種々の内部離型剤を用いることができ、例えばス
テアリン酸亜鉛、ステアリン酸マグネシウム、ステアリ
ン酸カルシウム、ステアリン酸アルミニウム等の脂肪酸
金属塩が好ましく用いられる。その添加量は好ましくは
0.5〜6質量%、より好ましくは0.5〜4質量%で
ある。0.5質量%以上であれば成形品にクラック等が
発生することなく成形時に安定した脱型を行うことがで
き、また、6質量%以下であれば、反射鏡として必要な
反射面の表面処理(プライマーコート塗装)を容易に実
施でき、塗装のレベリング性、密着性も充分に担保する
ことができる。
It is preferable to add an internal release agent to the molding composition of the present invention in order to easily remove the molded product having low shrinkage from the mold. As the internal release agent, various internal release agents known in the art can be used. For example, fatty acid metal salts such as zinc stearate, magnesium stearate, calcium stearate, and aluminum stearate are preferably used. The addition amount is preferably 0.5 to 6% by mass, more preferably 0.5 to 4% by mass. When the content is 0.5% by mass or more, the molded product can be stably removed from the mold without cracks or the like, and when the content is 6% by mass or less, the surface of the reflecting surface required as a reflecting mirror can be obtained. The treatment (primer coating) can be easily performed, and the leveling and adhesion of the coating can be sufficiently ensured.

【0017】本発明の成形組成物は、更に必要に応じ
て、顔料、重合禁止剤(例えば、キノン類、ハイドロキ
ノン類、フェノール類、有機及び無機の銅塩、アミジン
類、ヒドラジン類、第4級アンモニウム塩類、アミン
類、ニトロ化合物、オキシム類、硫黄、多価フェノール
類、アミン塩酸塩類など)、増粘剤(例えば、酸化マグ
ネシウム、酸化カルシウム等のアルカリ土類金属酸化
物)等を含有することができる。
The molding composition of the present invention may further comprise, if necessary, a pigment, a polymerization inhibitor (for example, quinones, hydroquinones, phenols, organic and inorganic copper salts, amidines, hydrazines, quaternary compounds). Contains ammonium salts, amines, nitro compounds, oximes, sulfur, polyphenols, amine hydrochlorides, etc., thickeners (eg, alkaline earth metal oxides such as magnesium oxide, calcium oxide, etc.). Can be.

【0018】図1に本発明の成形組成物を反射鏡に使用
した代表的な車両用前照灯を示す断面図である。図1に
おいて、車両用前照灯1には、灯具ボディ2と灯具ボデ
ィ2の前面開口部に取着された前面レンズ4により灯室
6が形成されており、この灯室6内に反射鏡3と反射鏡
に取着された電球5が収納されている。この反射鏡3
は、放射面等から成る主反射面3bとその主反射面を挟
んで上下に形成された平坦面3a、3cとからなり、そ
の表面にアンダーコートを施し、その上にアルミニウル
蒸着を施して反射処理を行った後、トップコートを施し
ている。
FIG. 1 is a sectional view showing a typical vehicle headlamp using the molding composition of the present invention for a reflector. In FIG. 1, a vehicle headlamp 1 has a lamp chamber 6 formed by a lamp body 2 and a front lens 4 attached to a front opening of the lamp body 2. 3 and a light bulb 5 attached to the reflector. This reflector 3
Is composed of a main reflecting surface 3b composed of a radiation surface and the like and flat surfaces 3a and 3c formed vertically above and below the main reflecting surface. The surface is undercoated, and aluminum is deposited thereon to reflect the light. After the treatment, a top coat is applied.

【0019】電球5を点灯することにより、フィラメン
ト7からの照射光が反射面3bにより前方に反射され、
車両前方を照射する。この際、電球5から発生する熱に
より灯室6内の温度が上昇し、特に反射鏡3の表面温度
が約180℃まで上昇する。従って、反射鏡、特に反射
鏡表面がこれらの高熱に耐え得る材料を選択しなければ
ならない。
When the light bulb 5 is turned on, the irradiation light from the filament 7 is reflected forward by the reflecting surface 3b,
Illuminate the front of the vehicle. At this time, the temperature inside the lamp chamber 6 rises due to the heat generated from the bulb 5, and particularly the surface temperature of the reflecting mirror 3 rises to about 180 ° C. Therefore, a material must be selected that allows the reflector, especially the reflector surface, to withstand these high temperatures.

【0020】反射鏡3は、本発明に従う不飽和ポリエス
テル成形組成物で形成される。不飽和ポリエステル4〜
20質量%、ガラス繊維5〜30質量%、無機充填剤3
5〜70質量%及び熱可塑成樹脂2〜12質量%、並び
に必要に応じて架橋剤5〜25質量%、触媒0.2〜5
質量%及び内部離型剤0.5〜6質量%を混合分散した
成形組成物を、適宜形状の金型に好ましくは射出成形法
又は射出圧縮成形法に従い注入し、続いて加熱によりこ
れを硬化させて反射鏡基体11とする。ここで、射出に
先立ち金型キャビティー内の空間を減圧にするために、
真空源と連結したタンクを金型と連結して、射出以前に
金型キャビティー内の空気を取り除くようにすることが
好ましい。硬化に際して型を好ましくは130〜200
℃、より好ましくは140〜180℃に加熱する。硬化
時間は目的とする反射鏡基体の厚さに応じて適宜設定す
ることができるが、0.5〜4分程度が好ましい。本発
明によれば、硬化時の成形組成物の収縮はほとんど見ら
れず、型から取り外した反射鏡基体の表面状態は非常に
良好で、歪みがなく高い光沢性を有するものであった。
The reflector 3 is formed from the unsaturated polyester molding composition according to the present invention. Unsaturated polyester 4 ~
20% by mass, 5 to 30% by mass of glass fiber, inorganic filler 3
5 to 70% by weight and 2 to 12% by weight of a thermoplastic resin, and if necessary, 5 to 25% by weight of a crosslinking agent, and 0.2 to 5% of a catalyst.
% By mass and 0.5 to 6% by mass of the internal release agent are mixed and dispersed in a mold having an appropriate shape, preferably by an injection molding method or an injection compression molding method, and then cured by heating. Thus, the reflector base 11 is obtained. Here, in order to reduce the pressure in the mold cavity before injection,
Preferably, a tank connected to a vacuum source is connected to the mold to remove air from the mold cavity before injection. When curing, the mold is preferably 130 to 200
C., more preferably 140-180.degree. The curing time can be appropriately set according to the intended thickness of the reflector base, but is preferably about 0.5 to 4 minutes. According to the present invention, almost no shrinkage of the molding composition at the time of curing was observed, and the surface condition of the reflector base removed from the mold was very good, with no distortion and high gloss.

【0021】次いで、反射鏡3の表面にアンダーコート
としてプライマーを塗布し、表面活性化を行うことが好
ましい。このプライマーコートの上に1種又は複数種の
ラッカーを塗布してもよい。次いで、この上にアルミニ
ウム等の金属被膜を真空蒸着法又はスパッタリング法に
より形成して反射鏡面を形成する。ラッカーは反射鏡表
面と反射性アルミニウム被膜に接着するものであり、ポ
リエステル、ポリブタジエン、エポキシ、アクリル又は
アルキッド樹脂等が好適である。更に、金属被膜上にラ
ッカーの保護膜を設けてもよい。
Next, it is preferable to apply a primer as an undercoat on the surface of the reflecting mirror 3 to activate the surface. One or more lacquers may be applied on this primer coat. Next, a metal film such as aluminum is formed thereon by a vacuum evaporation method or a sputtering method to form a reflecting mirror surface. The lacquer adheres to the reflective mirror surface and the reflective aluminum film, and is preferably made of polyester, polybutadiene, epoxy, acrylic or alkyd resin. Further, a lacquer protective film may be provided on the metal film.

【0022】[0022]

【実施例】【Example】

実施例1 不飽和ポリエステル(マレイン酸、オルソフタル酸、プ
ロピレングリコール及びネオペンチルグリコールの重縮
合物;但し、そのガラス転移点は表1に示す通り)10
質量%、架橋剤(スチレンモノマー)13質量%、熱可
塑性樹脂(酢酸ビニル)6質量%、触媒(t−ブチルパ
ーオキシベンゾエート)2質量%、内部離型剤(ステア
リン酸亜鉛)4質量%、無機充填剤(炭酸カルシルム)
40質量%及びガラス繊維(ガラス繊維径15μm)2
5質量%を分散して成形組成物とし、上記の通り、射出
成形法により温度140℃で2.5分間熱硬化して金型
から取り外し、反射鏡基体を製造した。
Example 1 Unsaturated polyester (polycondensate of maleic acid, orthophthalic acid, propylene glycol and neopentyl glycol; the glass transition point is as shown in Table 1) 10
Mass%, crosslinking agent (styrene monomer) 13 mass%, thermoplastic resin (vinyl acetate) 6 mass%, catalyst (t-butyl peroxybenzoate) 2 mass%, internal release agent (zinc stearate) 4 mass%, Inorganic filler (calcium carbonate)
40% by mass and glass fiber (glass fiber diameter 15 μm) 2
5% by mass was dispersed to form a molding composition. As described above, the composition was thermally cured at a temperature of 140 ° C. for 2.5 minutes by an injection molding method and removed from the mold to produce a reflector base.

【0023】得られた各反射鏡基体に180℃100時
間の耐熱試験を行い、その表面粗さ(Rmax)を表1に
示した。表面粗さは、JIS B0601に従い測定し
た(以下同様)。また、各反射鏡基体の動的粘弾性テス
ト(10Hz、5℃/分昇温)の結果を図2に示した。
A heat resistance test at 180 ° C. for 100 hours was performed on each of the obtained reflector bases, and the surface roughness (R max ) is shown in Table 1. The surface roughness was measured according to JIS B0601 (the same applies hereinafter). FIG. 2 shows the results of a dynamic viscoelasticity test (10 Hz, 5 ° C./min heating) of each reflector base.

【0024】[0024]

【表1】 [Table 1]

【0025】表1の結果から、Rmaxの値が1.5μm
以下ならば反射鏡として実用可能である。不飽和ポリエ
ステル樹脂硬化物のガラス転移点が150℃以上の場合
に良好な表面平滑性が得られることが判る。また、図2
の結果から、不飽和ポリエステル樹脂硬化物のガラス転
移点が150℃以上の場合に実際に耐熱性の要求される
温度180℃でも充分に良好な弾性率を維持することが
判る。特に、ガラス転移点が160℃以上あれば、貯蔵
弾性率の低下は少なく充分な剛性が得られる。
From the results shown in Table 1, the value of Rmax is 1.5 μm
If it is below, it can be practically used as a reflecting mirror. It can be seen that good surface smoothness can be obtained when the glass transition point of the cured unsaturated polyester resin is 150 ° C. or higher. FIG.
From the results, it can be seen that when the glass transition point of the cured unsaturated polyester resin is 150 ° C. or higher, a sufficiently good elastic modulus is maintained even at a temperature of 180 ° C. where heat resistance is actually required. In particular, when the glass transition point is 160 ° C. or more, a sufficient decrease in storage modulus is small and sufficient rigidity can be obtained.

【0026】実施例2 実施例1において、硬化物のガラス転移点160℃の不
飽和ポリエステル樹脂を用い、かつ熱可塑性樹脂のガラ
ス転移点を表2に示す通りに変化させた他は実施例1と
同様にして反射鏡基体を製造した。得られた各反射鏡基
体の成形収縮率、表面粗さ(Rmax)、フランジ部裏面
のヒケ及びBMC成形品の弾性率を表2に示す。
Example 2 In Example 1, an unsaturated polyester resin having a glass transition point of 160 ° C. of the cured product was used, and the glass transition point of the thermoplastic resin was changed as shown in Table 2. A reflector substrate was manufactured in the same manner as described above. Table 2 shows the molding shrinkage, surface roughness (Rmax), sink marks on the back surface of the flange portion, and the elastic modulus of the BMC molded product of each of the obtained reflector bases.

【0027】[0027]

【表2】 [Table 2]

【0028】成形収縮率の値は0.10%以下、Rmax
の値は1.5μm以下、フランジ部裏面のヒケは20μ
m以下、弾性率は10,000MPa以上の場合に反射
鏡として良好な性能を有するといえる。熱可塑性樹脂の
ガラス転移点が150℃以下、特に120℃以下の場合
に、良好な成形収縮率と表面粗さが得られることが判
る。また、反射有効面外にフランジ部があれば、熱可塑
性樹脂のガラス転移点は150℃以下であれば実用可能
である。特に、反射面にフランジ部があっても反射面に
ヒケがなく、BMC成形品の弾性率が確保できる−10
℃〜120℃が良好である。
The value of the molding shrinkage is 0.10% or less, R max
Is 1.5 μm or less, and the sink on the back of the flange is 20 μm.
m or less, and when the elastic modulus is 10,000 MPa or more, it can be said that the reflective mirror has good performance. It can be seen that when the glass transition point of the thermoplastic resin is 150 ° C. or less, particularly 120 ° C. or less, good molding shrinkage and surface roughness can be obtained. In addition, if the glass transition point of the thermoplastic resin is 150 ° C. or less, it is practical if there is a flange portion outside the reflection effective surface. In particular, even if the reflecting surface has a flange portion, there is no sink on the reflecting surface, and the elasticity of the BMC molded product can be secured.
C-120C is good.

【0029】実施例3 実施例1において、硬化物のガラス転移点160℃の不
飽和ポリエステル樹脂を用い、かつガラス繊維の含有量
を表3に示す通りに変化させた(反射鏡成形組成物中に
おける質量%で示す)他は実施例1と同様にして反射鏡
基体を製造した。得られた各反射鏡基体のアイゾット衝
撃(ノッチ付き)、シャルピー衝撃及び表面粗さ(Rma
x)を表3に示す。
Example 3 In Example 1, an unsaturated polyester resin having a glass transition point of 160 ° C. of the cured product was used, and the content of the glass fiber was changed as shown in Table 3 (in the reflection mirror molding composition). (Indicated by mass% in the above), and a reflector base was manufactured in the same manner as in Example 1. The Izod impact (notched), Charpy impact and surface roughness (Rma
x) is shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】アイゾット衝撃(ノッチ付き)の値は40
Ncm/cm以上、シャルピー衝撃の値は50Ncm/cm2
上の場合に反射鏡として実用可能である。5.0〜3
0.0質量%の範囲内で耐衝撃強度及び表面性状の両面
で良好な結果を得ることが判る。尚、ガラス繊維含有量
が過剰になると、成形時の流動性が低下し表面クラック
が発生するため強度が低下する。
The value of the Izod impact (with notch) is 40
When the value of Charpy impact is 50 Ncm / cm 2 or more, it can be practically used as a reflector. 5.0-3
It can be seen that within the range of 0.0% by mass, good results are obtained in both impact resistance and surface properties. In addition, when the glass fiber content is excessive, the fluidity at the time of molding is reduced and surface cracks are generated, so that the strength is reduced.

【0032】実施例4 実施例1において、ガラス転移点160℃の不飽和ポリ
エステルを用い、かつガラス繊維の繊維径を表4に示す
通りに変化させた他は実施例1と同様にして反射鏡基体
を製造した。得られた各反射鏡基体の流動粘度、曲げ強
度及びアイゾット衝撃強さを表4に示す。
Example 4 A reflector was prepared in the same manner as in Example 1 except that unsaturated polyester having a glass transition point of 160 ° C. was used and the fiber diameter of the glass fiber was changed as shown in Table 4. A substrate was manufactured. Table 4 shows the flow viscosity, bending strength and Izod impact strength of each of the obtained reflector bases.

【0033】[0033]

【表4】 [Table 4]

【0034】流動粘度の値は80,000〜120,0
00PS、曲げ強さの値は60MPa以上、アイゾット
衝撃強さの値は40Ncm/cm以上の場合に反射鏡として
実用可能である。3μmの繊維径のガラス繊維は、ガラ
ス繊維の製造時、糸切れ等の不具合が発生し、製造コス
トがかさむ。また、ガラス繊維単位重量当たりの表面積
が多くなるため、反射鏡射出成形時に必要な流動性が得
られない。一方、20μmの繊維径の場合には、不飽和
ポリエステル樹脂とガラス繊維の接触面積が低下するた
め、曲げ強度及び衝撃強度が低下する。ガラス繊維の繊
維径が6〜18μmの範囲において良好な結果を得るこ
とが判る。
The value of the flow viscosity is from 80,000 to 120,0.
When the value of the bending strength is 00 MPa or more and the value of the Izod impact strength is 40 Ncm / cm or more, it can be practically used as a reflector. Glass fibers having a fiber diameter of 3 μm cause problems such as thread breakage during the production of glass fibers and increase the production cost. Further, since the surface area per unit weight of the glass fiber increases, the required fluidity during the injection molding of the reflecting mirror cannot be obtained. On the other hand, when the fiber diameter is 20 μm, the contact area between the unsaturated polyester resin and the glass fiber decreases, so that the bending strength and the impact strength decrease. It can be seen that good results are obtained when the fiber diameter of the glass fiber is in the range of 6 to 18 μm.

【0035】[0035]

【発明の効果】本発明の熱硬化性プラスチック成形材料
によれば、優れた耐熱性、寸法安定性、表面平滑性及び
強度を有する反射鏡基体を提供でき、優れた性能のラン
プ反射鏡を製造できる。更に、硬化物のガラス転移点1
50℃以上の不飽和ポリエステル樹脂及びガラス転移点
150℃以下の熱可塑性樹脂とすることにより、ランプ
点灯時の反射鏡基体の弾性率の低下を防止し、反射鏡基
体の熱変形を有効に防止するとともに、熱硬化性樹脂の
硬化収縮を有効に防止し、精度良い反射面を形成でき、
耐熱性と寸法安定性の相反する性能をバランスよく両立
できる。
According to the thermosetting plastic molding material of the present invention, a reflector base having excellent heat resistance, dimensional stability, surface smoothness and strength can be provided, and a lamp reflector having excellent performance can be manufactured. it can. Further, the glass transition point of the cured product is 1
By using an unsaturated polyester resin having a temperature of 50 ° C. or more and a thermoplastic resin having a glass transition point of 150 ° C. or less, a decrease in the elastic modulus of the reflector base when the lamp is turned on is prevented, and thermal deformation of the reflector base is effectively prevented As well as effectively prevent curing shrinkage of the thermosetting resin and form a highly accurate reflective surface,
It is possible to balance the opposing performances of heat resistance and dimensional stability in a well-balanced manner.

【0036】特に、硬化物のガラス転移点160℃以上
の不飽和ポリエステル樹脂と、ガラス転移点120℃〜
−10℃のアクリル系樹脂(共重合体含む)又は酢酸ビ
ニル樹脂(共重合体含む)とを組み合わせて用いること
により、分散性、寸法安定性、剛性、耐熱性のいずれに
おいても優れた性能のランプ反射鏡基体を成形すること
ができる。更に、6〜18μm径のガラス繊維を用いる
ことにより、適度な流動性と強度とを確保することがで
きる。
Particularly, an unsaturated polyester resin having a glass transition point of 160 ° C. or higher of the cured product, and a glass transition point of 120 ° C. or higher.
By using in combination with acrylic resin (including copolymer) or vinyl acetate resin (including copolymer) at -10 ° C, excellent performance is obtained in all of dispersibility, dimensional stability, rigidity and heat resistance. The lamp reflector base can be molded. Furthermore, by using glass fibers having a diameter of 6 to 18 μm, appropriate fluidity and strength can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成形組成物を反射鏡基体に使用した車
両用前照灯を示す断面図。
FIG. 1 is a sectional view showing a vehicle headlamp using a molding composition of the present invention for a reflector base.

【図2】不飽和ポリエステル樹脂硬化物のTgに対する
弾性率の温度依存性を示すグラフ。
FIG. 2 is a graph showing the temperature dependence of the elastic modulus with respect to Tg of a cured unsaturated polyester resin .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G02B 5/08 G02B 5/08 A (56)参考文献 特開 平5−242701(JP,A) 特開 平5−128904(JP,A) 特開 平3−208201(JP,A) 特表 平4−506682(JP,A) (58)調査した分野(Int.Cl.7,DB名) F21V 7/22 G02B 5/08 C08K 3/00 C08L 1/00 ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 7 Identification symbol FI G02B 5/08 G02B 5/08 A (56) References JP-A-5-242701 (JP, A) JP-A-5-128904 ( JP, A) JP-A-3-208201 (JP, A) JP-A-4-506682 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F21V 7/22 G02B 5/08 C08K 3/00 C08L 1/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不飽和ポリエステル樹脂、ガラス繊維、
無機充填剤及び熱可塑性樹脂を含有し、不飽和ポリエス
テル樹脂硬化物のガラス転移点が150℃以上、熱可塑
性樹脂のガラス転移点が150℃以下であることを特徴
とするランプ反射鏡用成形組成物。
1. An unsaturated polyester resin, glass fiber,
Unsaturated polyester containing inorganic filler and thermoplastic resin
Glass transition point of the thermoset resin is 150 ° C or higher, thermoplastic
A molding composition for a lamp reflector , wherein the glass transition point of the reactive resin is 150 ° C. or lower .
【請求項2】 不飽和ポリエステル樹脂硬化物のガラス
転移点が160℃以上であり、熱可塑性樹脂がアクリル
系樹脂(共重合体含む)及び酢酸ビニル樹脂(共重合体
含む)から選択される少なくとも1つの樹脂を含有する
ことからなり且つそのガラス転移点が120℃〜−10
℃である、請求項記載のランプ反射鏡用成形組成物。
2. The unsaturated polyester resin cured product has a glass transition point of 160 ° C. or higher, and the thermoplastic resin is at least one selected from an acrylic resin (including a copolymer) and a vinyl acetate resin (including a copolymer). It contains one resin and has a glass transition point of from 120 ° C to -10
A ° C., claim 1 lamp reflector molding composition.
【請求項3】 ガラス繊維の繊維径が6〜18μmであ
る請求項1記載のランプ反射鏡用成形組成物。
3. The molding composition for a lamp reflector according to claim 1, wherein the fiber diameter of the glass fiber is 6 to 18 μm.
【請求項4】 請求項1〜のいずれかに記載の組成物
を成形硬化して反射鏡基体を得、該基体の内部表面に金
属性反射被膜を形成するランプ反射鏡の製造方法。
4. The method of claim 1 by molding curing the composition according to any of 3 to give the reflector substrate, the manufacturing method of the lamp reflector to form a metallic reflective coating on the interior surface of the substrate.
【請求項5】 請求項1〜のいずれかに記載の組成物
を成形硬化してなる反射鏡基体と、その内部表面に金属
性反射被膜とを有することを特徴とするランプ反射鏡。
5. A reflector base obtained by molding curing the composition according to any one of claims 1 to 3 lamp reflector and having a metallic reflective coating on its inner surface.
JP16326696A 1995-07-27 1996-06-24 Molding composition for lamp reflector, method for producing lamp reflector using the same, and lamp reflector Expired - Fee Related JP3174271B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16326696A JP3174271B2 (en) 1995-07-27 1996-06-24 Molding composition for lamp reflector, method for producing lamp reflector using the same, and lamp reflector
GB9614637A GB2303631B (en) 1995-07-27 1996-07-11 Lamp reflector molding composition,process for producing a lamp reflector,and a lamp reflector
US08/681,478 US5985465A (en) 1995-07-27 1996-07-23 Lamp reflector molding composition, lamp reflector, and headlamp
CN96108542A CN1092774C (en) 1995-07-27 1996-07-26 Lamp reflector molding composition, process for producing lamp reflector, and lamp reflector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19202695 1995-07-27
JP7-192026 1995-07-27
JP16326696A JP3174271B2 (en) 1995-07-27 1996-06-24 Molding composition for lamp reflector, method for producing lamp reflector using the same, and lamp reflector

Publications (2)

Publication Number Publication Date
JPH0997512A JPH0997512A (en) 1997-04-08
JP3174271B2 true JP3174271B2 (en) 2001-06-11

Family

ID=26488765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16326696A Expired - Fee Related JP3174271B2 (en) 1995-07-27 1996-06-24 Molding composition for lamp reflector, method for producing lamp reflector using the same, and lamp reflector

Country Status (4)

Country Link
US (1) US5985465A (en)
JP (1) JP3174271B2 (en)
CN (1) CN1092774C (en)
GB (1) GB2303631B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19907016A1 (en) * 1999-02-18 2000-08-24 Menzolit Fibron Gmbh Curable molding compound
JP2001038263A (en) 1999-08-04 2001-02-13 Koito Mfg Co Ltd Painting mask device
JP3742254B2 (en) 1999-08-09 2006-02-01 株式会社小糸製作所 Paint mask device
JP2001184915A (en) * 1999-12-28 2001-07-06 Koito Mfg Co Ltd Lamp reflection mirror and method of manufacturing it
JP2002313119A (en) * 2001-04-13 2002-10-25 Hitachi Ltd Light source for projection device and projection type image display device
JP4002746B2 (en) * 2001-10-23 2007-11-07 株式会社小糸製作所 Unsaturated polyester resin composition and cured product thereof, and lamp reflector substrate
US6787226B2 (en) 2001-10-23 2004-09-07 Asahi Fiber Glass Company Limited Chopped strands and molded product of unsaturated polyester resin BMC employing them
JP4096598B2 (en) * 2001-11-06 2008-06-04 株式会社日立製作所 Light source for projection apparatus and projection-type image display apparatus using the same
US6736532B2 (en) 2002-03-27 2004-05-18 Visteon Global Technologies, Inc. Headlight assembly
JP4404539B2 (en) * 2002-10-21 2010-01-27 株式会社小糸製作所 Lamp reflector
JP2006525412A (en) * 2003-05-02 2006-11-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー POLYESTER CONTAINING MICROFIBER AND METHOD FOR PRODUCTION AND USE THEREOF
US7122136B2 (en) * 2003-08-04 2006-10-17 Guide Corporation Glare prevention feature
KR100796877B1 (en) * 2003-08-26 2008-01-22 미츠비시 레이온 가부시키가이샤 Thermoplastic resin composition for light reflector, formed article for light reflector, light reflector, and method for producing formed article for light reflector
JPWO2005103152A1 (en) * 2004-03-31 2007-08-16 昭和高分子株式会社 Low specific gravity unsaturated polyester resin composition for lamp reflector and molded product thereof
FR2875579B1 (en) * 2004-09-21 2012-12-14 Valeo Vision REFLECTOR OF LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE
JP2006106297A (en) * 2004-10-04 2006-04-20 Kyocera Chemical Corp Molding for reflection mirror
JP2006171059A (en) * 2004-12-13 2006-06-29 Kiyousera Opt Kk Optical reflecting mirror, its manufacturing method, and projector
US20070083005A1 (en) * 2005-10-07 2007-04-12 Premix Inc. Molding compositions for use in forward lighting applications and headlight components molded therefrom
US20080176079A1 (en) * 2006-12-19 2008-07-24 Elia Andri E Process for coating vehicle exterior parts made from thermoplastic composite articles
US8263213B2 (en) * 2006-12-19 2012-09-11 E I Du Pont De Nemours And Company Painted composite thermoplastic articles
US20080176090A1 (en) * 2006-12-19 2008-07-24 Elia Andri E Composite thermoplastic articles
CN101402788B (en) * 2008-11-11 2011-08-03 福建山亚开关有限公司 Modified thermosetting bulk molded plastic material and processing method thereof
JP2009230156A (en) * 2009-07-08 2009-10-08 Koito Mfg Co Ltd Lamp reflection mirror
CN102971874A (en) * 2011-06-07 2013-03-13 松下电器产业株式会社 Optical semiconductor package and method for manufacturing same
US20150138778A1 (en) * 2012-06-04 2015-05-21 Japan U-Pica Company, Ltd. Crystalline unsaturated polyester resin composition for led reflector, granular material comprising said composition, led reflector produced by molding said granular material, surface-mount-type light-emitting device, and lighting device and image display device each equipped with said light-emitting device
CN102692698B (en) * 2012-06-06 2014-04-02 上海沪渝实业有限公司 Condensing reflection device and manufacturing method thereof
US10288249B2 (en) 2017-07-26 2019-05-14 Ford Global Technologies, Llc Pattern styling for reducing glare in vehicle lighting assemblies

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665055A (en) * 1969-10-22 1972-05-23 John A Hatton Jr Polymerizable unsaturated polyester resin compositions and articles made therefrom
US4280949A (en) * 1979-02-12 1981-07-28 General Electric Company Modified polyester compositions containing mineral filler
JPS56140977U (en) * 1980-03-25 1981-10-24
US4341877A (en) * 1980-06-04 1982-07-27 Ppg Industries, Inc. Sizing composition and sized glass fibers and process
US4476274A (en) * 1983-01-03 1984-10-09 General Electric Company Linear low density polyethylene impact modifier for thermoplastic polyesters
DE3445570A1 (en) * 1984-12-14 1986-06-19 Basf Ag, 6700 Ludwigshafen SELF-EXTINGUISHING THERMOPLASTIC POLYESTER MOLDS
DE3625184A1 (en) * 1986-07-25 1988-01-28 Bayer Ag LOW-DARK TENSIBLE POLYESTER RESIN
US4868231A (en) * 1988-05-27 1989-09-19 Gencorp Inc. Thickened molding resin compositions and cured molded compounds
JPH01315458A (en) * 1988-06-14 1989-12-20 Takeda Chem Ind Ltd Unsaturated polyester resin composition, molding aqueous and molded article
JPH0714744B2 (en) * 1988-12-15 1995-02-22 旭有機材工業株式会社 Tray for integrated circuits
JP2643518B2 (en) * 1989-02-10 1997-08-20 東レ株式会社 Prepreg
FR2660664A1 (en) * 1990-04-05 1991-10-11 Norsolor Sa NOVEL COMPOSITIONS BASED ON UNSATURATED POLYESTER RESINS SUITABLE FOR THE MANUFACTURE OF HEADLIGHT REFLECTORS.
FR2661682B1 (en) * 1990-05-04 1993-12-10 Norsolor NEW RESINOUS COMPOSITIONS BASED ON UNSATURATED POLYESTER RESINS AND NEW ANTI-SHRINKAGE ADDITIVES.
JPH0453867A (en) * 1990-06-21 1992-02-21 Mitsubishi Gas Chem Co Inc Smooth-surface fiber-reinforced resin composition
US5246983A (en) * 1990-06-27 1993-09-21 Takeda Chemical Industries, Ltd. Unsaturated polyester resin compositions, molding compounds and molded products therefrom
FR2678861B1 (en) * 1991-07-10 1993-09-24 Valeo Vision THERMOSETTING PLASTIC REFLECTOR, PARTICULARLY FOR A MOTOR VEHICLE PROJECTOR.
JP2925402B2 (en) * 1991-09-11 1999-07-28 三菱電機株式会社 Circuit breaker having a housing formed by molding a high thermal conductivity, low shrinkage wet-type unsaturated polyester resin composition
US5395865A (en) * 1991-11-09 1995-03-07 Takeda Chemical Industries, Ltd. Unsaturated polyester compositions, molding materials and molded products
EP0552789B1 (en) * 1992-01-24 1996-05-08 Takeda Chemical Industries, Ltd. Unsaturated polyester resin compositions, molding materials, and molded products
US5385963A (en) * 1992-01-30 1995-01-31 Gencorp Inc. Unsaturated polyester-modified flexible copolymers for use in sheet molding compositions
CA2090389A1 (en) * 1992-01-30 1994-08-26 Frederick J. Mcgarry Polyester-flexible polymer block copolymer coated fiber structures and utilization thereof in a polymer matrix
US5519094A (en) * 1992-03-06 1996-05-21 B. F. Goodrich Company Fiber-reinforced thermoplastic molding compositions using a modified thermoplastic polyurethane
DE4415102A1 (en) * 1994-04-29 1995-11-02 Basf Ag Headlamp reflectors that can be directly metallized

Also Published As

Publication number Publication date
GB2303631B (en) 1998-01-14
CN1092774C (en) 2002-10-16
GB9614637D0 (en) 1996-09-04
CN1167897A (en) 1997-12-17
US5985465A (en) 1999-11-16
JPH0997512A (en) 1997-04-08
GB2303631A (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JP3174271B2 (en) Molding composition for lamp reflector, method for producing lamp reflector using the same, and lamp reflector
JP6022561B2 (en) Unsaturated polyester resin composition and molded article thereof, and lamp reflector
US7388067B2 (en) Polyester composition comprising polybutylene terephthalate resin
JP3242833B2 (en) Lamp reflector
JP4404539B2 (en) Lamp reflector
JP4002746B2 (en) Unsaturated polyester resin composition and cured product thereof, and lamp reflector substrate
JP6140484B2 (en) Unsaturated polyester resin composition for lamp reflector and molded product thereof, and lamp reflector
JPH0145601B2 (en)
JP4005213B2 (en) Lamp lens reflector
WO2019116691A1 (en) Unsaturated polyester resin composition, molded article containing cured product thereof, and lamp reflector including said molded article
JP2001316573A (en) Polyester resin composition and lamp part
JP4329007B2 (en) Polyester resin composition
JP2005041977A (en) Polyester resin composition
JP2006225440A (en) Polyester resin composition for light-reflecting molded article
JP2001348437A (en) Film for molding, reflector base material, and reflector for lighting unit using it
JP2006106297A (en) Molding for reflection mirror
US3862412A (en) Lamp reflectors
JPH08273404A (en) Lamp housing of vehicle lighting fixture
JPH05174601A (en) Resin made lamp reflector
JPH08264013A (en) Structure of reflecting film of lighting fixture for vehicle
JP2003268216A (en) Polyester resin composition
JP2006225439A (en) Polyester resin composition for light-reflecting molded article
JPH03269905A (en) Lamp reflector
JPS60140602A (en) Reflector for synthetic resin headlamp
JP2008226767A (en) Reflector and vehicular lamp

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees