JP3173827B2 - Purification booth water treatment method - Google Patents

Purification booth water treatment method

Info

Publication number
JP3173827B2
JP3173827B2 JP30359391A JP30359391A JP3173827B2 JP 3173827 B2 JP3173827 B2 JP 3173827B2 JP 30359391 A JP30359391 A JP 30359391A JP 30359391 A JP30359391 A JP 30359391A JP 3173827 B2 JP3173827 B2 JP 3173827B2
Authority
JP
Japan
Prior art keywords
water
treated
paint
added
coagulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30359391A
Other languages
Japanese (ja)
Other versions
JPH05146786A (en
Inventor
光夫 中島
修 山瀬
一茂 関
孝一 西岡
幸久 小林
潤 斉木
和夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Toyota Motor Corp
Unitika Ltd
Original Assignee
Hakuto Co Ltd
Toyota Motor Corp
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd, Toyota Motor Corp, Unitika Ltd filed Critical Hakuto Co Ltd
Priority to JP30359391A priority Critical patent/JP3173827B2/en
Publication of JPH05146786A publication Critical patent/JPH05146786A/en
Application granted granted Critical
Publication of JP3173827B2 publication Critical patent/JP3173827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、湿式の塗装ブースの被
処理水を塗料滓と処理水とに分離し、処理水を繰り返し
使用できる塗装ブース被処理水の浄化処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying water to be treated in a coating booth, in which water to be treated in a wet coating booth is separated into paint scum and treated water, and the treated water can be used repeatedly.

【0002】[0002]

【従来の技術】湿式塗装ブースにおいては、スプレーさ
れた塗料ミストを水中に捕集し塗料滓と処理水とに分離
後、処理水を繰り返して使用する浄化処理が行われてい
る。そして塗料には水性塗料など水中に溶解したり分散
したりするものも多いことから、被処理水を塗料滓と処
理水とに分離するのが困難な場合も多い。そこで被処理
水の固液分離を容易とするために、各種の処理剤が開発
されている。
2. Description of the Related Art In a wet coating booth, a spray treatment is performed in which sprayed paint mist is collected in water, separated into paint scum and treated water, and then treated water is repeatedly used. Since many paints dissolve or disperse in water, such as aqueous paints, it is often difficult to separate the water to be treated into paint scum and treated water. In order to facilitate the solid-liquid separation of the water to be treated, various treatment agents have been developed.

【0003】この処理剤としては、塗料滓を凝集させて
フロックとし分離を容易とするものが主流であり、硫酸
アルミニウム、ポリ塩化アルミニウム、塩化鉄、硫酸鉄
などが一般に用いられている。例えば特開昭52−59
67号、特開昭52−72538号などの公報には、こ
れらの凝集剤を用いる場合の最適条件が開示されてい
る。
[0003] As the treating agent, those which agglomerate paint scum to flocs to facilitate separation are mainly used, and aluminum sulfate, polyaluminum chloride, iron chloride, iron sulfate and the like are generally used. For example, JP-A-52-59
No. 67, Japanese Patent Application Laid-Open No. 52-72538 and the like disclose the optimum conditions when these coagulants are used.

【0004】また特開昭51−96163号公報には、
リン酸又は硫酸の酸剤と、水酸化カルシウム又は水酸化
バリウムなどのアルカリ剤を添加し、不溶性乃至難溶性
の塩を形成させ、塗料滓を吸着させて沈澱分離する方法
が開示されている。さらに、上記した無機系処理剤ばか
りでなく、近年では有機系処理剤も多く用いられてい
る。例えば特開昭61−74607号公報には、ポリエ
チレンイミンを有効成分とする処理剤を用いて処理する
方法が開示されている。また特開昭63−42706号
公報には、カチオン性有機高分子凝集剤とアニオン性有
機高分子凝集剤とを添加して処理する方法が開示されて
いる。
Japanese Patent Application Laid-Open No. 51-96163 discloses that
A method is disclosed in which an acid agent of phosphoric acid or sulfuric acid and an alkali agent such as calcium hydroxide or barium hydroxide are added to form an insoluble or hardly soluble salt, and a paint residue is adsorbed to precipitate and separate. Furthermore, not only the above-mentioned inorganic treating agents but also organic treating agents have been used in recent years. For example, Japanese Patent Application Laid-Open No. 61-74607 discloses a method of treating with a treating agent containing polyethyleneimine as an active ingredient. JP-A-63-42706 discloses a method of adding and treating a cationic organic polymer flocculant and an anionic organic polymer flocculant.

【0005】[0005]

【発明が解決しようとする課題】ところが水性塗料が混
入した被処理水に無機系処理剤を添加した場合には、局
部的にマットボール状の凝集物が生成する。この凝集物
は粘着性を有し、処理装置から漏れた場合には配管の閉
塞、沈澱堆積、ベンチュリー部の閉塞などの問題が発生
する。また自動車用メタリック塗料のブースでは被処理
水中にアルミニウム粉末が混入するが、このアルミニウ
ム粉末は凝集物中に含まれるため凝集物の比重が大きく
なり沈降性が大きい。したがって加圧浮上装置、散気式
浮上装置などを用いた固液分離方法では、この凝集物を
分離することが困難となっている。そして凝集不良の樹
脂成分が処理水中に残留し、処理水は白濁状態となって
清澄な処理水が得られないという問題がある。さらに処
理系が酸性の場合には、アルミニウムが反応して水素ガ
スが発生するという問題もある。
However, when an inorganic treatment agent is added to the water to be treated mixed with the water-based paint, a mat ball-like aggregate is locally formed. The aggregates are sticky, and when leaked from the processing apparatus, problems such as blockage of pipes, sedimentation and accumulation, and blockage of the venturi portion occur. In an automobile metallic paint booth, aluminum powder is mixed into the water to be treated. However, since this aluminum powder is contained in the aggregate, the specific gravity of the aggregate is large and the sedimentation is large. Therefore, it is difficult to separate the aggregates by a solid-liquid separation method using a pressurized flotation device, a diffused flotation device, or the like. Then, there is a problem that the resin component having poor coagulation remains in the treated water, and the treated water becomes cloudy, so that clear treated water cannot be obtained. Further, when the treatment system is acidic, there is a problem that aluminum reacts to generate hydrogen gas.

【0006】またポリエチレンイミンを有効成分とする
処理剤は、極めて少量の添加で樹脂などの析出・凝集に
効果がある。しかし最適添加割合の幅が狭いため、添加
量の設定が非常に難しい問題となっている。またアルカ
リ領域で懸濁粒子が凝集し樹脂粒子が析出するため、フ
ロック粒子は核となるものが無く不安定で壊れ易い状態
となっている。そのため特に連続処理に際しては、透視
度30cm以上の清澄な処理水は得られないのが現状で
あり実用化までには至っていない。
[0006] A treating agent containing polyethyleneimine as an active ingredient has an effect of precipitating and aggregating resin and the like even when added in a very small amount. However, since the range of the optimum addition ratio is narrow, it is very difficult to set the addition amount. In addition, since the suspended particles agglomerate and precipitate the resin particles in the alkaline region, the floc particles have no core and are unstable and easily broken. Therefore, in particular, in the case of continuous treatment, clear treated water having a transparency of 30 cm or more cannot be obtained at present, and has not been put to practical use.

【0007】さらに、アニオン性高分子凝集剤は、使用
濃度が0.05〜1.0%程度であるが加水分解などに
より短期間で分解するため、頻繁に使用濃度に希釈して
用いる必要があり希釈作業の工数が多大となっている。
またカチオン性高分子凝集剤としては、ポリアミン系の
酸性のものが用いられている。これは最適添加割合の幅
が広く好ましいのであるが、反面、低塗料濃度領域では
過剰使用となり不経済である。そして過剰のカチオン性
高分子凝集剤は循環処理水中に残存し、塗装ブースの塗
料混入場所で凝集フロックを生成させてしまう。したが
ってベンチュリー部でのスラッジ堆積などが生じ、最終
的には配管の閉塞に至るという不具合がある。
Further, the anionic polymer coagulant is used at a concentration of about 0.05 to 1.0%, but is decomposed in a short period of time by hydrolysis or the like. There is a large number of man-hours for dilution work.
As the cationic polymer flocculant, a polyamine-based acidic one is used. Although this is preferable because the range of the optimum addition ratio is wide, it is uneconomical because of excessive use in a low paint concentration region. Then, the excess cationic polymer flocculant remains in the circulating water, and forms flocculated floc at the paint mixing location in the coating booth. Therefore, there is a problem that sludge is deposited at the venturi portion, and finally, the pipe is blocked.

【0008】本発明はこのような事情に鑑みてなされた
ものであり、上記したような各種不具合が無く、固液分
離を容易に行うことを目的とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to eliminate the above-mentioned various problems and to easily perform solid-liquid separation.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の塗装ブース被処理水の浄化処理方法は、水性塗料が
混入した塗装ブースの被処理水にアルカリ剤を添加して
被処理水のpHを9.5〜11に調整するアルカリ化工
程と、次いで酸性の凝集剤を添加して被処理水のpHを
6〜8に調整する中和工程と、被処理水から凝集フロッ
クを分離し処理水と塗料滓スラッジとする分離工程と、
からなることを特徴とする。
According to the present invention, there is provided a method for purifying water to be treated in a coating booth, comprising the steps of: an alkalizing step for adjusting the pH to 9.5 to 11, a neutralizing step for adjusting the pH of the water to be treated to 6 to 8 by adding an acidic flocculant, and separating flocculated floc from the water to be treated. Separation process to make treated water and paint slag sludge,
It is characterized by consisting of.

【0010】アルカリ化工程で添加されるアルカリ剤と
しては、水酸化ナトリウム、水酸化カリウム、炭酸ナト
リウム、あるいはこれらを含んだアルミン酸塩水溶液、
ポリエチレンイミン水溶液などを用いることができる。
このアルカリ化工程では、このアルカリ剤の添加により
被処理水のpHが9.5〜11に調整される。これによ
り微細な懸濁粒子や樹脂コロイド粒子の表面電荷が低下
し、樹脂などの親水基が封鎖されるため析出・凝集が生
じる。また被処理水にアルムニウム粉末を含む場合に
は、アルミニウム粉末はアルミン酸塩に変化し被処理水
中に溶解する。pHが9.5より小さいと析出・凝集が
困難となり、アルミニウムを短時間でアルミン酸塩に化
学変化させるためにはpH10〜11が最適である。p
Hが11を超えると効果が飽和し、過剰のアルカリ剤が
余分であるし、次の中和工程で過剰のアルカリ剤分を中
和するための酸性の凝集剤が余分に必要となり、コスト
面で不具合が生じる。
The alkaline agent added in the alkalizing step includes sodium hydroxide, potassium hydroxide, sodium carbonate, an aluminate aqueous solution containing these,
An aqueous solution of polyethyleneimine or the like can be used.
In the alkalizing step, the pH of the water to be treated is adjusted to 9.5 to 11 by adding the alkali agent. As a result, the surface charge of the fine suspended particles or the resin colloid particles is reduced, and the hydrophilic groups of the resin and the like are blocked, so that precipitation and aggregation occur. When the water to be treated contains aluminum powder, the aluminum powder is converted into an aluminate and dissolved in the water to be treated. If the pH is lower than 9.5, precipitation and aggregation become difficult, and pH 10 to 11 is optimal for chemically converting aluminum into aluminate in a short time. p
If H exceeds 11, the effect is saturated and an excess alkali agent is excessive, and an extra acidic coagulant for neutralizing the excess alkali agent in the next neutralization step is required, resulting in cost reduction. Causes problems.

【0011】中和工程では、アルカリ化工程でアルカリ
性とされた被処理水に酸性の凝集剤が添加される。ここ
で酸性の凝集剤としては、硫酸アルミニウム、ポリ塩化
アルミニウム、硫酸鉄などの無機凝集剤、ポリアクリル
酸、ポリアクリルアミドなどのアニオン性高分子凝集剤
などが用いられる。安価で処理水の清澄効果の大きい硫
酸アルミニウムが特に好ましい。無機凝集剤の添加量は
2〜10%が適当であり、高分子凝集剤の添加量は1〜
10ppmが適当である。
In the neutralization step, an acidic coagulant is added to the water to be treated which has been made alkaline in the alkalizing step. Here, as the acidic coagulant, an inorganic coagulant such as aluminum sulfate, polyaluminum chloride, and iron sulfate, and an anionic polymer coagulant such as polyacrylic acid and polyacrylamide are used. Aluminum sulfate which is inexpensive and has a large clarifying effect on treated water is particularly preferred. The addition amount of the inorganic coagulant is appropriately 2 to 10%, and the addition amount of the polymer coagulant is 1 to
10 ppm is appropriate.

【0012】中和工程では、上記凝集剤の添加により被
処理水のpHが6〜8の範囲に調整される。これにより
強固で安定な凝集フロックが形成される。pHが6より
小さく酸性となると、塗料滓スラッジ量が増え、さらに
処理水を中和するための中和剤が必要となる。pHが8
より大きいアルカリ性領域では凝集フロックが弱く、処
理水の清澄化が困難となる。
In the neutralization step, the pH of the water to be treated is adjusted to a range of 6 to 8 by adding the above-mentioned coagulant. This forms a strong and stable aggregate floc. When the pH becomes lower than 6 and becomes acidic, the amount of paint sludge increases, and a neutralizing agent for neutralizing the treated water is required. pH 8
In a larger alkaline region, flocculated floc is weak, and clarification of treated water becomes difficult.

【0013】分離工程は、被処理水から凝集フロックを
分離して処理水と塗料滓スラッジとする工程である。こ
の分離工程は加圧浮上装置、散気式浮上装置などを利用
して、従来と同様に行うことができる。本発明の処理方
法では、凝集フロックが強固で安定しかつ柔らかいた
め、容易に浮上分離することができる。
The separation step is a step of separating flocculated flocs from the water to be treated to produce treated water and paint sludge. This separation step can be performed in the same manner as in the related art using a pressure flotation device, a diffused flotation device, or the like. In the treatment method of the present invention, the flocculated floc is strong, stable and soft, so that it can be easily floated and separated.

【0014】[0014]

【作用】本発明の浄化処理方法では、アルカリ化工程で
まず被処理水がpH9.5〜11に調整される。これに
より微細な懸濁粒子や樹脂コロイド粒子の表面電荷が低
下し、樹脂などの親水基が封鎖されるため析出・凝集が
生じる。そして次の中和工程で、被処理水には酸性の凝
集剤が添加される。これにより強固で安定な凝集フロッ
クが形成される。
In the purification treatment method of the present invention, the water to be treated is first adjusted to pH 9.5 to 11 in the alkalizing step. As a result, the surface charge of the fine suspended particles or the resin colloid particles is reduced, and the hydrophilic groups of the resin and the like are blocked, so that precipitation and aggregation occur. Then, in the next neutralization step, an acidic flocculant is added to the water to be treated. This forms a strong and stable aggregate floc.

【0015】ここでアルカリ化工程でアルカリ剤として
水酸化ナトリウムを用い、凝集剤に硫酸アルミニウムを
用いた場合で説明すると、中和工程では硫酸アルミニウ
ムは水酸化ナトリウムと(1)式のように反応する。 Al2(SO4) 3+6NaOH→2Al( OH)3+3Na2 SO4 (1) 水不溶の樹脂、顔料などは、この反応で生成した水酸化
アルミニウムとともに析出し、水酸化アルミニウムを核
とする強固で安定した凝集フロックを形成する。
Here, the case where sodium hydroxide is used as an alkali agent in the alkalizing step and aluminum sulfate is used as the coagulant will be described. In the neutralizing step, aluminum sulfate reacts with sodium hydroxide as shown in equation (1). I do. Al 2 (SO 4 ) 3 + 6NaOH → 2Al (OH) 3 + 3Na 2 SO 4 (1) Water-insoluble resins, pigments, etc. are precipitated together with the aluminum hydroxide generated by this reaction, and the aluminum hydroxide is a strong core. To form stable flocculated flocs.

【0016】また被処理水にアルミニウム粉末が含まれ
ている場合には、アルカリ化工程で(2)式の反応が生
じ、アルミン酸ナトリウムが生成する。 Al+2NaOH → NaAlO2 +Na+ +H2 (2) このアルミン酸ナトリウムは、(3)式のように中和工
程で加水分解を受けて水酸化アルミニウムが生成する。
If the water to be treated contains aluminum powder, the reaction of the formula (2) occurs in the alkalizing step, and sodium aluminate is produced. Al + 2NaOH → NaAlO 2 + Na + + H 2 (2) The sodium aluminate undergoes hydrolysis in the neutralization step as shown in equation (3) to produce aluminum hydroxide.

【0017】 NaAlO2 +H2 O+H+ → Al( OH)3+Na+ (3) この水酸化アルミニウムも凝集フロックの核となり、安
定した凝集フロックを形成する。すなわち被処理水に含
まれるアルミニウム粉末が、結果的に凝集剤として機能
するため、凝集剤の節約を図ることができる。
NaAlO 2 + H 2 O + H + → Al (OH) 3 + Na + (3) The aluminum hydroxide also becomes a core of the flocculated floc and forms a stable flocculated floc. That is, since the aluminum powder contained in the water to be treated eventually functions as a coagulant, the coagulant can be saved.

【0018】[0018]

【実施例】以下、実施例により具体的に説明する。 (実施例1)自動車用上塗り水性塗料(「NWB−13
0」日本ペイント(株)製)を工業用水で1重量%濃度
に希釈して試料水を調製した。この試料水の性状を表1
に示す。
The present invention will be specifically described below with reference to examples. (Example 1) Topcoat water-based paint for automobile ("NWB-13
0 "manufactured by Nippon Paint Co., Ltd.) was diluted with industrial water to a concentration of 1% by weight to prepare a sample water. Table 1 shows the properties of this sample water.
Shown in

【0019】[0019]

【表1】 この試料水をビーカに1リットル採取し、図1に示す本
発明の処理方法で処理した。 (1)アルカリ化工程 試料水の入ったビーカを200rpmの速度で回転する
ジャーテスタに配置し、試料水に5重量%濃度の水酸化
ナトリウム溶液を加えてpH11に調整した。 (2)中和工程 上記pH10の試料水に、Al2 3 として8重量%濃
度の液体硫酸アルミニウム(住友化学(株)製)を10
00ppm添加した。このときのpHは7.1である。
そしてアニオン性高分子凝集剤(「ハクトロンA27−
30M」伯東(株)製)の0.1重量%濃度の水溶液を
1000ppm添加し、凝集フロックを更に大きいもの
とした。このときのpHは7.1である。 (3)分離工程 次に、中和工程後の試料水を1リットルのメスシリンダ
に700ml採取し、3kg/cm2エアー飽和の加圧水を3
00ml投入し、30秒間上下に振盪した後静置した。
すると概ね30秒程度で、全ての凝集フロックは微細な
気泡によって浮上分離した。その凝集フロックを除去
し、残った処理水の性状を測定した結果を表2に示す。
なお、透視度はJlSK−0102の透視度に準じて測
定し、SV30はメスシリンダ法にて測定した。 (比較例1)実施例1と同一の試料水を用い、同様にビ
ーカに1リットル採取した。そして図2に示す従来の処
理方法で処理した。すなわち、試料水に先ず8重量%濃
度の液体硫酸アルミニウム(住友化学(株)製)を10
00ppm添加した。このときのpHは4.3である。
次に5重量%濃度の水酸化ナトリウム溶液を加えてpH
7.5とし、さらにアニオン性高分子凝集剤(「ハクト
ロンA27−30M」伯東(株)製)の0.1重量%濃
度の水溶液を1000ppm添加して凝集させた。
[Table 1] One liter of this sample water was collected in a beaker and treated by the treatment method of the present invention shown in FIG. (1) Alkalinization Step A beaker containing sample water was placed on a jar tester rotating at a speed of 200 rpm, and a 5% by weight sodium hydroxide solution was added to the sample water to adjust the pH to 11. (2) Neutralization Step To the sample water of pH 10 was added 10% by weight of liquid aluminum sulfate (manufactured by Sumitomo Chemical Co., Ltd.) at a concentration of 8% by weight as Al 2 O 3.
00 ppm was added. The pH at this time is 7.1.
And an anionic polymer coagulant (“Haktron A27-
1000 ppm of an aqueous solution of 30M (manufactured by Hakuto Co., Ltd.) having a concentration of 0.1% by weight was added to further increase the flocculated floc. The pH at this time is 7.1. (3) Separation Step Next, 700 ml of the sample water after the neutralization step was collected in a 1-liter graduated cylinder, and 3 kg / cm 2 of air-saturated pressurized water was added.
After adding 00 ml, the mixture was shaken up and down for 30 seconds and allowed to stand.
Then, in about 30 seconds, all the aggregated flocs were separated by floating with fine bubbles. Table 2 shows the results of measuring the properties of the remaining treated water after removing the aggregated flocs.
Incidentally, perspective degree measured according to the perspective of the JlSK-0102, SV 30 was measured by measuring cylinder method. (Comparative Example 1) Using the same sample water as in Example 1, 1 liter was similarly collected in a beaker. And it processed by the conventional processing method shown in FIG. That is, first, 10% of liquid aluminum sulfate (manufactured by Sumitomo Chemical Co., Ltd.) having a concentration of 8% by weight was added to the sample water.
00 ppm was added. The pH at this time is 4.3.
Next, a sodium hydroxide solution having a concentration of 5% by weight was added and the pH was adjusted.
The solution was adjusted to 7.5, and 1000 ppm of an aqueous 0.1% by weight aqueous solution of an anionic polymer coagulant ("Haktron A27-30M" manufactured by Hakuto Co., Ltd.) was added for coagulation.

【0020】そして1リットルのメスシリンダに700
ml採取し、3kg/cm2エアー飽和の加圧水を300ml
投入し、30秒間上下に振盪した後静置した。すると一
部のフロックは浮上分離したが、大部分のフロックは沈
降した。次に処理水の上澄み液を採取し、実施例1と同
様に性状を測定した。結果を表2に示す。
[0020] Then, 700
and pressurized water saturated with 3 kg / cm 2 air 300 ml
It was charged, shaken up and down for 30 seconds, and allowed to stand. Some flock floated and separated, but most flock settled. Next, the supernatant of the treated water was collected, and the properties were measured in the same manner as in Example 1. Table 2 shows the results.

【0021】[0021]

【表2】 表2より、実施例1の処理を行うことにより、従来の処
理法である比較例1に比べて処理水の清澄度が格段に向
上することが明らかである。 (試験例)実施例1と同様の塗料を用い、工業用水で濃
度を0.5重量%、1.0重量%及び2.0重量%の3
種類に調整して、3種類の試料水を調製した。そして加
圧浮上装置(「形式FS15型」ユニチカ(株)製)を
用い、それぞれの試料水について連続浄化実験を行っ
た。浄化処理に用いた処理剤及び方法は実施例1及び比
較例1と全く同様である。
[Table 2] From Table 2, it is clear that the treatment of Example 1 significantly improves the clarity of treated water as compared with Comparative Example 1 which is a conventional treatment method. (Test Example) Using the same coating material as in Example 1, the concentration of 0.5% by weight, 1.0% by weight and 2.0% by weight in industrial water was used.
Three types of sample water were prepared by adjusting the types. Then, a continuous purification experiment was performed on each sample water using a pressurized flotation device (“Type FS15” manufactured by Unitika Ltd.). The treating agent and method used for the purification treatment are exactly the same as in Example 1 and Comparative Example 1.

【0022】その結果、実施例1の処理方法ではどの濃
度の試料水であっても問題無く処理できた。しかし比較
例1の処理方法では、塗料濃度が1%以上の試料水で凝
集槽に粒状の凝集フロックが堆積し、それを除去しない
と処理が不能となるという問題が生じた。 (実施例2)自動車用上塗り水性塗料(「TWX−10
0」関西ペイント(株)製)を工業用水で1重量%濃度
に希釈して試料水を調製した。この試料水の性状を表3
に示す。
As a result, the treatment method of Example 1 was able to treat any sample water without any problem. However, in the processing method of Comparative Example 1, there was a problem that granular flocs were deposited in the flocculation tank with the sample water having a paint concentration of 1% or more, and the processing could not be performed unless it was removed. (Example 2) Topcoat water-based paint for automobile ("TWX-10
0 "(Kansai Paint Co., Ltd.) was diluted with industrial water to a concentration of 1% by weight to prepare a sample water. Table 3 shows the properties of this sample water.
Shown in

【0023】[0023]

【表3】 この試料水をビーカに1リットル採取し、図1に示す本
発明の処理方法で処理した。 (1)アルカリ化工程 試料水の入ったビーカを200rpmの速度で回転する
ジャーテスタに配置し、ポリエチレンイミン系凝集剤
(伯東(株)製)を120ppm添加した。このときの
pHは10.5である。 (2)中和工程 上記pH10.5の試料水に、8重量%濃度の液体硫酸
アルミニウム(住友化学(株)製)を500ppm添加
した。このときのpHは6.8である。 (3)分離工程 静置後、凝集フロックと処理水を分離した。この分離は
容易であった。そして処理水の性状を実施例1と同様に
測定し結果を表4に示す。なお、泡立ち性は、処理水を
試験管に入れて振盪した時の泡立ちの状態を評価した。 (比較例2)実施例2と同一の試料水を用い、同様にビ
ーカに1リットル採取した。そして図2に示す従来の処
理方法で処理した。すなわち、試料水に先ず8重量%濃
度の液体硫酸アルミニウム(住友化学(株)製)を10
00ppm添加した。このときのpHは4.3である。
次に5重量%濃度の水酸化ナトリウム溶液を加えてpH
7.0とし、さらにアニオン性高分子凝集剤(「ハクト
ロンA27−30M」伯東(株)製)の0.1重量%濃
度の水溶液を2000ppm添加して凝集させた。
[Table 3] One liter of this sample water was collected in a beaker and treated by the treatment method of the present invention shown in FIG. (1) Alkalinization Step A beaker containing sample water was placed on a jar tester rotating at a speed of 200 rpm, and a polyethyleneimine-based coagulant (manufactured by Hakuto K.K.) was added at 120 ppm. The pH at this time is 10.5. (2) Neutralization Step To the sample water having a pH of 10.5, 500 ppm of liquid aluminum sulfate (manufactured by Sumitomo Chemical Co., Ltd.) having a concentration of 8% by weight was added. The pH at this time is 6.8. (3) Separation Step After standing, the flocculated floc and treated water were separated. This separation was easy. The properties of the treated water were measured in the same manner as in Example 1, and the results are shown in Table 4. In addition, the foaming property evaluated the foaming state when the treated water was put into a test tube and shaken. (Comparative Example 2) Using the same sample water as in Example 2, 1 liter was similarly collected in a beaker. And it processed by the conventional processing method shown in FIG. That is, 10 wt% of liquid aluminum sulfate (manufactured by Sumitomo Chemical Co., Ltd.) having a concentration of 8 wt%
00 ppm was added. The pH at this time is 4.3.
Next, a sodium hydroxide solution having a concentration of 5% by weight was added, and the pH was adjusted.
The concentration was adjusted to 7.0, and 2,000 ppm of a 0.1% by weight aqueous solution of an anionic polymer flocculant ("Haktron A27-30M" manufactured by Hakuto Co., Ltd.) was added for flocculation.

【0024】静置後、凝集フロックと処理水を分離し
た。この分離は容易であった。そして処理水の性状を実
施例1と同様に測定し結果を表4に示す。 (比較例3)実施例2と同一の試料水を用い、同様にビ
ーカに1リットル採取した。そしてポリアミン系凝集剤
(伯東(株)製)を500ppm添加して凝集させた。
静置後、凝集フロックと処理水を分離した。この分離は
容易であった。そして処理水の性状を実施例1と同様に
測定し結果を表4に示す。
After standing, flocculated floc and treated water were separated. This separation was easy. The properties of the treated water were measured in the same manner as in Example 1, and the results are shown in Table 4. (Comparative Example 3) Using the same sample water as in Example 2, 1 liter was similarly collected in a beaker. Then, 500 ppm of a polyamine-based coagulant (manufactured by Hakuto Co., Ltd.) was added for coagulation.
After standing, flocculated floc and treated water were separated. This separation was easy. The properties of the treated water were measured in the same manner as in Example 1, and the results are shown in Table 4.

【0025】[0025]

【表4】 表4より、実施例2の処理方法によれば、CODの除去
効果が向上し、清澄度の高い処理水が得られることがわ
かる。 (実施例3、比較例4、比較例5)自動車用上塗り水性
塗料(「TWX−200」アイダック(株)製)を工業
用水で1重量%濃度に希釈して試料水を調製した。この
試料水の性状を表5に示す。
[Table 4] Table 4 shows that according to the treatment method of Example 2, the effect of removing COD is improved and treated water with high clarity can be obtained. (Example 3, Comparative Example 4, Comparative Example 5) A sample water was prepared by diluting an automotive topcoat water-based paint ("TWX-200" manufactured by Idac Corporation) to a concentration of 1% by weight with industrial water. Table 5 shows the properties of the sample water.

【0026】[0026]

【表5】 この試料水をビーカに1リットル採取し、実施例2、比
較例2及び比較例3と同様にしてそれぞれ処理し、同様
に上澄み液の性状をそれぞれ測定して結果を表6に示
す。
[Table 5] One liter of this sample water was collected in a beaker, treated in the same manner as in Example 2, Comparative Example 2 and Comparative Example 3, and the properties of the supernatant were measured in the same manner. The results are shown in Table 6.

【0027】[0027]

【表6】 表6より、実施例3の処理方法によれば、CODの除去
効果が向上し、清澄度の高い処理水が得られることがわ
かる。 (試験例)実施例2と同様の試料水を用い、加圧浮上装
置(「形式FS15型」ユニチカ(株)製)を用いて連
続浄化実験を行った。浄化処理に用いた凝集剤及び方法
は実施例2と全く同様である。なお比較例6として、ポ
リアミン系凝集剤(伯東(株)製)を300ppm添加
して凝集させた後、さらにアニオン性高分子凝集剤
(「ハクトロンA27−30M」伯東(株)製)の0.
1重量%濃度の水溶液を1000ppm添加して凝集さ
せる方法で、同様にして連続浄化実験を行った。
[Table 6] Table 6 shows that according to the treatment method of Example 3, the effect of removing COD is improved, and treated water with high clarity can be obtained. (Test Example) Using the same sample water as in Example 2, a continuous purification experiment was performed using a pressurized flotation device (“Type FS15” manufactured by Unitika Ltd.). The coagulant and method used for the purification treatment are exactly the same as in Example 2. As Comparative Example 6, after adding 300 ppm of a polyamine-based flocculant (manufactured by Hakuto Co., Ltd.) to coagulate, anionic polymer coagulant ("Haktron A27-30M" manufactured by Hakuto Co., Ltd.) was added.
A continuous purification experiment was performed in the same manner by adding 1000 ppm of a 1% by weight aqueous solution to cause aggregation.

【0028】それぞれ2時間連続処理を行った後の処理
水の性状を実施例2と同様に測定し、結果を表7に示
す。
The properties of the treated water after the continuous treatment for 2 hours were measured in the same manner as in Example 2, and the results are shown in Table 7.

【0029】[0029]

【表7】 表7より、実施例2の処理方法によれば、連続処理でも
高い浄化処理性能が得られることがわかる。
[Table 7] From Table 7, it can be seen that according to the processing method of Example 2, high purification processing performance can be obtained even in continuous processing.

【0030】[0030]

【発明の効果】すなわち本発明の塗装ブース被処理水の
浄化処理方法によれば、強固で安定しかつ柔らかい凝集
フロックが形成されるため、浮上分離が極めて容易とな
り処理水の清澄度が向上しCOD除去効果が向上する。
また凝集フロックの粘着性も小さいので、フロック付着
による不具合が解消する。
According to the method for purifying treated water of a coating booth according to the present invention, a strong, stable and soft flocculated floc is formed, so that floating separation is extremely easy and the clarity of the treated water is improved. The COD removal effect is improved.
In addition, since the cohesive floc has low adhesiveness, the problem due to the floc adhesion is eliminated.

【0031】そして処理水はほぼ中性であり過剰の凝集
剤が存在しないので、ブース内での凝集フロックの形成
が回避され、ベンチュリー部でのスラッジ堆積や配管の
閉塞などの不具合が生じない。さらにアルミニウム粉末
と酸との反応による水素ガスの発生が防止され、処理装
置やタンクなどの腐食も防止される。また処理水の発泡
性も小さくなり、塗料滓池などにおける泡立ちの問題も
解消する。
Since the treated water is substantially neutral and has no excess coagulant, formation of coagulated flocs in the booth is avoided, and problems such as sludge accumulation in the venturi and blockage of the piping do not occur. Further, the generation of hydrogen gas due to the reaction between the aluminum powder and the acid is prevented, and the corrosion of the processing apparatus and the tank is also prevented. In addition, the foaming property of the treated water is reduced, and the problem of foaming in a paint slag or the like is eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理方法のフローチャートである。FIG. 1 is a flowchart of a processing method of the present invention.

【図2】従来の処理方法のフローチャートである。FIG. 2 is a flowchart of a conventional processing method.

【図3】硫酸アルミニウムの最適添加濃度範囲と被処理
水の塗料濃度との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an optimum addition concentration range of aluminum sulfate and a paint concentration of water to be treated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山瀬 修 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 関 一茂 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 西岡 孝一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 小林 幸久 三重県四日市市別名6−6−9 伯東株 式会社中央研究所内 (72)発明者 斉木 潤 三重県四日市市別名6−6−9 伯東株 式会社中央研究所内 (72)発明者 松井 和夫 愛知県岡崎市日名北町4−1 ユニチカ 株式会社エンジニアリング事業部内 (56)参考文献 特開 昭52−140547(JP,A) 特開 昭54−123245(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/52 C02F 1/54 C02F 1/56 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Yamase 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Kazushige Seki 1 Toyota Town Toyota City, Aichi Prefecture Toyota Motor Corporation ( 72) Inventor Koichi Nishioka 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Inventor Yukihisa Kobayashi, 6-6-9, also known as Yokkaichi City, Mie Prefecture. Jun 6-4-9, Yokkaichi City, Mie Prefecture, Central Research Laboratory of Hakuto Co., Ltd. (72) Inventor Kazuo Matsui 4-1 Hina Kitamachi, Okazaki City, Aichi Prefecture Unitika Engineering Division, (56) References JP 52 -1440547 (JP, A) JP-A-54-123245 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/52 C02F 1/54 C 02F 1/56

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水性塗料が混入した塗装ブースの被処理
水にアルカリ剤を添加して該被処理水のpHを9.5〜
11に調整するアルカリ化工程と、 次いで酸性の凝集剤を添加して該被処理水のpHを6〜
8に調整する中和工程と、 該被処理水から凝集フロックを分離し処理水と塗料滓ス
ラッジとする分離工程と、からなることを特徴とする塗
装ブース被処理水の浄化処理方法。
An alkaline agent is added to water to be treated in a coating booth containing an aqueous paint to adjust the pH of the water to be treated to 9.5 to 9.5.
An alkalizing step of adjusting the pH of the water to be treated to 6 to 6 by adding an acidic coagulant;
8. A method for purifying water to be treated in a coating booth, comprising: a neutralizing step of adjusting to 8; and a separating step of separating flocculated floc from the treated water to form treated water and paint sludge.
JP30359391A 1991-11-19 1991-11-19 Purification booth water treatment method Expired - Fee Related JP3173827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30359391A JP3173827B2 (en) 1991-11-19 1991-11-19 Purification booth water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30359391A JP3173827B2 (en) 1991-11-19 1991-11-19 Purification booth water treatment method

Publications (2)

Publication Number Publication Date
JPH05146786A JPH05146786A (en) 1993-06-15
JP3173827B2 true JP3173827B2 (en) 2001-06-04

Family

ID=17922870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30359391A Expired - Fee Related JP3173827B2 (en) 1991-11-19 1991-11-19 Purification booth water treatment method

Country Status (1)

Country Link
JP (1) JP3173827B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010141981A1 (en) * 2009-06-09 2010-12-16 Duluxgroup (Australia) Pty Ltd Paint hardener
JP2016140805A (en) * 2015-01-30 2016-08-08 栗田工業株式会社 Apparatus and method for treating wet coating booth circulating water
ES2802201T3 (en) * 2014-07-23 2021-01-15 Kurita Water Ind Ltd Treatment method for circulating wet type coating booth water
CN106630079B (en) * 2016-11-27 2019-05-24 湖南金裕化工有限公司 A kind of high-efficency spraying circulating water treatment agent, preparation method and its application method
CN106630080B (en) * 2016-11-27 2019-05-24 湖南金裕化工有限公司 Paint booth circulating water treating agent, preparation method and its application method
CN107010707B (en) * 2017-04-19 2019-06-28 江苏海明斯新材料科技有限公司 A kind of preparation method of universal lithium magnesium silicate lacquer mist coagulant
CN109110967B (en) * 2018-09-11 2021-09-10 博天环境集团股份有限公司 Bauxite beneficiation wastewater recycling system and method based on membrane chemical reactor

Also Published As

Publication number Publication date
JPH05146786A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
JP6486877B2 (en) Waste water treatment device and waste water treatment method using the waste water treatment device
US3388060A (en) Process and composition for purification of water supplies and aqueous wastes
CA2084327A1 (en) Lime neutralization process for treating acidic waters
CN103708631A (en) Multifunctional sewage treatment agent and preparation method thereof
JP5621254B2 (en) Oil-containing wastewater treatment method
JP2000084568A (en) Treatment of resin-containing waste water
CN109942060A (en) A kind of sewage treatment drug of mineral base flocks
JP3173827B2 (en) Purification booth water treatment method
CN104150741A (en) Sludge chemical conditioning method and conditioner
JP2003093804A (en) Purification agent for turbid wastewater and sludge
JP2947675B2 (en) Method for treating wastewater containing fluorine ions and hydrogen peroxide
KR101088148B1 (en) Electrical neutralization of colloidal particles with speed control how water
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP2003145175A (en) Hexavalent chromium-containing wastewater treatment method
JP3173981B2 (en) Waste liquid treatment method
CN110104747A (en) A kind of composite flocculation medicinal powder and its application for flexible version printing ink wastewater treatment
Zouboulis et al. Inorganic pre-polymerized coagulants: current status and future trends
KR20020092619A (en) Method for the physical and chemical coagulation and flocculation treatment water and wastewater using a slag and a fly ash
JP4355081B2 (en) Recycling method for heavy metal waste
JP7117101B2 (en) Water treatment method and device
JPH1110169A (en) Treatment process for waste water
JP2000140863A (en) Treatment of fluorine-containing waste water
JP2004167455A (en) Method for treating wastewater containing cationic resin composition
JP3501843B2 (en) Treatment of oil-containing wastewater
JP3266711B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees