JP3172746B2 - Gas separation membrane with ester substituent - Google Patents

Gas separation membrane with ester substituent

Info

Publication number
JP3172746B2
JP3172746B2 JP14306195A JP14306195A JP3172746B2 JP 3172746 B2 JP3172746 B2 JP 3172746B2 JP 14306195 A JP14306195 A JP 14306195A JP 14306195 A JP14306195 A JP 14306195A JP 3172746 B2 JP3172746 B2 JP 3172746B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
group
mol
separation membrane
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14306195A
Other languages
Japanese (ja)
Other versions
JPH08332362A (en
Inventor
伸吾 風間
賢治 原谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Nippon Steel Corp
Original Assignee
Research Institute of Innovative Technology for Earth
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Nippon Steel Corp filed Critical Research Institute of Innovative Technology for Earth
Priority to JP14306195A priority Critical patent/JP3172746B2/en
Publication of JPH08332362A publication Critical patent/JPH08332362A/en
Application granted granted Critical
Publication of JP3172746B2 publication Critical patent/JP3172746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高い二酸化炭素分離
係数と優れた二酸化炭素透過係数とを示すエステル置換
基を有する気体分離膜に係り、その高い二酸化炭素分離
性能により火力発電所、製鉄所高炉等の二酸化炭素固定
発生源からの二酸化炭素の分離回収や、天然ガスからの
二酸化炭素の除去等の用途に好適に用いられる気体分離
膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas separation membrane having an ester substituent exhibiting a high carbon dioxide separation coefficient and an excellent carbon dioxide permeation coefficient. The present invention relates to a gas separation membrane suitably used for applications such as separation and recovery of carbon dioxide from a fixed carbon dioxide source such as a blast furnace and removal of carbon dioxide from natural gas.

【0002】[0002]

【従来の技術】二酸化炭素を選択的に分離できる気体分
離膜として、ポリアミドイミド膜(特開平1−1036
09号公報)、ビシクロ型ポリイミド膜(特開平1−2
49122号及び特開平1−245830号の各公
報)、あるいは、フッ素含有ポリイミド膜〔岡本ら、高
分子学会予稿集38(7),1955(1989)〕等
が知られている。しかしながら、より低いエネルギーコ
ストで二酸化炭素を分離するために、より優れた二酸化
炭素の分離性能を有する気体分離膜の開発が要請されて
いる。
2. Description of the Related Art As a gas separation membrane capable of selectively separating carbon dioxide, a polyamideimide membrane (Japanese Patent Laid-Open No. 1-1036) is known.
No. 09), a bicyclo-type polyimide film (Japanese Unexamined Patent Publication No.
49122 and JP-A-1-245830), or a fluorine-containing polyimide film [Okamoto et al., Proceedings of the Society of Polymer Science, 38 (7), 1955 (1989)]. However, in order to separate carbon dioxide at a lower energy cost, development of a gas separation membrane having better carbon dioxide separation performance is required.

【0003】[0003]

【発明が解決しようとする課題】ところで、優れた二酸
化炭素の分離性能を有する気体分離膜とは、高い二酸化
炭素透過係数と高い二酸化炭素分離係数(二酸化炭素の
透過係数と窒素等の分離対象ガスの透過係数との比)と
を有する気体分離膜ということであり、この要件を満た
す分離膜は高分子膜に二酸化炭素透過係数を選択的に向
上させる化学構造を導入することで得られる。
By the way, a gas separation membrane having excellent carbon dioxide separation performance means a high carbon dioxide permeation coefficient and a high carbon dioxide separation coefficient (a carbon dioxide permeation coefficient and a gas to be separated such as nitrogen). The ratio of the gas separation membrane to the gas separation membrane) can be obtained by introducing a chemical structure that selectively improves the carbon dioxide permeability coefficient into the polymer membrane.

【0004】また、高分子膜における気体の透過係数
(透過性)は、気体の高分子膜への溶解度係数(溶解
性)と高分子膜中での拡散係数(拡散性)との積で表さ
れる。それ故、二酸化炭素の透過係数(透過性)を分離
対象ガスに対して選択的に向上させるためには、二酸化
炭素の高分子膜に対する溶解度係数(溶解性)及び/又
は拡散係数(拡散性)選択的に向上させればよいことに
なる。
The gas permeability coefficient (permeability) of a polymer membrane is expressed as the product of the solubility coefficient (solubility) of gas in the polymer membrane and the diffusion coefficient (diffusivity) in the polymer membrane. Is done. Therefore, in order to selectively improve the permeability coefficient (permeability) of carbon dioxide with respect to the gas to be separated, the solubility coefficient (solubility) and / or diffusion coefficient (diffusivity) of carbon dioxide with respect to the polymer membrane is required. It is only necessary to improve selectively.

【0005】ところで、二酸化炭素は、分子内で分極し
ているので、極性を有する化学構造と親和性を有するこ
とが考えられ、従って、気体分離膜を形成する高分子材
料に極性置換基を導入することにより、二酸化炭素の透
過係数(透過性)を分離対象ガスに対して選択的に向上
させることができ、高い二酸化炭素透過係数と高い二酸
化炭素/窒素分離係数とを兼ね備えて優れた二酸化炭素
の分離性能を有する気体分離膜が得られるものと考えら
れる。また、代表的な極性置換基としてカルボン酸基
(−COOH)やスルホン酸基(−SO3 H)が挙げら
れる。
Since carbon dioxide is polarized in a molecule, it is considered that carbon dioxide has an affinity for a polar chemical structure. Therefore, a polar substituent is introduced into a polymer material forming a gas separation membrane. By doing so, it is possible to selectively improve the permeation coefficient (permeability) of carbon dioxide with respect to the gas to be separated, and to provide both a high carbon dioxide permeation coefficient and a high carbon dioxide / nitrogen separation coefficient to provide excellent carbon dioxide. It is considered that a gas separation membrane having a separation performance of Representative polar substituents include a carboxylic acid group (—COOH) and a sulfonic acid group (—SO 3 H).

【0006】従って、気体分離膜を形成する高分子材料
中にこのようなカルボン酸基やスルホン酸基を導入する
ことにより、優れた二酸化炭素の分離性能を有する気体
分離膜が得られることが期待される。そして、このカル
ボン酸基やスルホン酸基を有する二酸化炭素分離膜とし
て、カルボン酸化ポリイミド、スルホン酸化ポリスルホ
ンが知られているが、これらカルボン酸基やスルホン酸
基を導入することにより、かえって二酸化炭素の透過係
数が低下することが報告されている〔化学工学会第25
回秋季大会講演要旨集第3分冊第96頁(1992
年)〕。
Accordingly, it is expected that a gas separation membrane having excellent carbon dioxide separation performance can be obtained by introducing such a carboxylic acid group or a sulfonic acid group into a polymer material forming a gas separation membrane. Is done. As the carbon dioxide separation membrane having a carboxylic acid group or a sulfonic acid group, a carboxylated polyimide or a sulfonated polysulfone is known. However, by introducing these carboxylic acid groups or sulfonic acid groups, carbon dioxide is instead removed. It has been reported that the permeability coefficient decreases [Chemical Engineering Society No. 25
Proceedings of the 3rd Autumn Meeting, 3rd volume, 96 pages (1992)
Year)〕.

【0007】そこで、本発明者らは、気体分離膜を形成
する高分子材料中にカルボン酸基やスルホン酸基を導入
することにより、かえって二酸化炭素の透過係数が低下
する原因について鋭意検討した結果、この高分子材料中
に導入されたカルボン酸基やスルホン酸基がそれらの間
で互いに水素結合を形成し、このために高分子主鎖の分
子運動性が低下し、この高分子材料中での二酸化炭素の
拡散性が低下し、結果として二酸化炭素の透過係数が低
下したものと考察し、従って、二酸化炭素の溶解度係数
を向上させる極性置換基としては、水素結合等の疑似架
橋結合を形成しない構造で、しかも、適度な強さの極性
を有することが必要であるとの結論に到達した。
[0007] The inventors of the present invention have conducted intensive studies on the cause of the carbon dioxide permeability coefficient being reduced by introducing a carboxylic acid group or a sulfonic acid group into the polymer material forming the gas separation membrane. However, the carboxylic acid groups and sulfonic acid groups introduced into the polymer material form hydrogen bonds with each other, thereby reducing the molecular mobility of the polymer main chain, and It is considered that the diffusivity of carbon dioxide has decreased, and as a result, the permeability coefficient of carbon dioxide has decreased, and therefore, as a polar substituent that improves the solubility coefficient of carbon dioxide, a pseudo-crosslinking bond such as a hydrogen bond is formed. It has been concluded that it is necessary to have a structure that does not have such a property and have a polarity of an appropriate strength.

【0008】本発明者らは、このような観点で、水素結
合等の疑似架橋結合を形成しない構造であって、かつ、
適度な強さの極性を有して二酸化炭素の分離性能を向上
させるのに有効な極性置換基について種々検討した結
果、炭素数4以下のアルキルのカルボン酸エステル基及
びスルホン酸エステル基が最適であることを突き止め、
本発明を完成した。
[0008] From such a viewpoint, the present inventors have a structure which does not form a pseudo cross-link such as a hydrogen bond, and
As a result of various studies on polar substituents having an appropriate strength of polarity and improving carbon dioxide separation performance, alkyl carboxylate and sulfonate groups having 4 or less carbon atoms are most suitable. Find out that there is
The present invention has been completed.

【0009】従って、本発明の目的は、高い二酸化炭素
分離係数と高い二酸化炭素透過係数とを有して優れた二
酸化炭素の分離性能を有し、より低いエネルギーコスト
で窒素等の分離対象ガスから二酸化炭素を分離し回収あ
るいは除去することができる気体分離膜を提供すること
にある。
Accordingly, an object of the present invention is to provide a high carbon dioxide separation coefficient and a high carbon dioxide permeation coefficient to have excellent carbon dioxide separation performance, and to reduce the cost of separating gas such as nitrogen from nitrogen or the like at a lower energy cost. An object of the present invention is to provide a gas separation membrane capable of separating and collecting or removing carbon dioxide.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、繰
り返し単位の少なくとも5モル%以上が下記一般式
(1)
That is, in the present invention, at least 5 mol% or more of the repeating unit has the following general formula (1):

【化2】 (但し、式中R1 、R2 、R3 及びR4 は水素原子、ア
ルキル基又はハロゲン基の何れかを示し、互いに同じで
あってもまた異なっていてもよく、また、R5 及びR6
は水素原子、スルホン酸基、カルボキシル基、炭素数4
以下のアルキルのカルボン酸エステル基又は炭素数4以
下のアルキルのスルホン酸エステル基の何れかを示し、
互いに同じであってもまた異なっていてもよい)で表さ
れる嵩高い構造部分を有し、かつ、繰り返し単位の10
モル%以上が置換基として炭素数4以下のアルキルのカ
ルボン酸エステル基及び/又はスルホン酸エステル基
(以下、これらを単に「エステル置換基」ということが
ある)を有する高分子材料を用いるエステル置換基を有
する気体分離膜である。
Embedded image (However, wherein R 1, R 2, R 3 and R 4 represents a hydrogen atom, one alkyl group or halogen group, which may be the or different and the same as each other, also, R 5 and R 6
Is a hydrogen atom, sulfonic acid group, carboxyl group, carbon number 4
Shows any of the following alkyl carboxylic acid ester groups or alkyl C 4 or less alkyl sulfonic acid ester group,
Which may be the same as or different from each other), and a repeating unit of 10
Ester substitution using a polymer material having an alkyl carboxylate group and / or a sulfonic acid ester group in which at least mol% is a substituent having 4 or less carbon atoms (hereinafter, these may be simply referred to as “ester substituents”). It is a gas separation membrane having a group.

【0011】本発明において、エステル置換基が導入さ
れて気体分離膜の高分子材料となる高分子としては、高
分子の繰り返し単位中に少なくとも5モル%以上、好ま
しくは10モル%以上、より好ましくは50モル%以上
の上記一般式(1)で表される嵩高い構造部分を有する
ものであれば、特に限定されるものではないが、例え
ば、芳香族ポリイミド、芳香族ポリスルホン、芳香族ポ
リカーボネート、芳香族ポリエステル、芳香族ポリユリ
ア等を挙げることができ、特に芳香族ポリイミドにおい
てこのエステル置換基導入効果が大きい。
In the present invention, the polymer into which the ester substituent is introduced to become a polymer material of the gas separation membrane is at least 5 mol%, preferably at least 10 mol%, more preferably at least 10 mol% in the repeating unit of the polymer. Is not particularly limited as long as it has a bulky structural portion represented by the above general formula (1) of 50 mol% or more. For example, aromatic polyimide, aromatic polysulfone, aromatic polycarbonate, Aromatic polyesters, aromatic polyureas and the like can be mentioned. Particularly, an aromatic polyimide has a large effect of introducing the ester substituent.

【0012】ここで、例えば「高分子の繰り返し単位中
に10モル%の嵩高い構造部分」という意味は、高分子
の繰り返し単位10個当たり1個の嵩高い構造部分が存
在するという意味である。そして、一般式(1)で表さ
れる嵩高い構造は、高分子マトリックス中に適当な大き
さの空孔を形成せしめる作用を有し、本発明のエステル
置換基導入効果を大きくすると考えられるほか、高分子
材料に優れた溶媒溶解性や耐熱性を付与する作用を有す
る。
[0012] Here, for example, the meaning of "a bulky structural portion of 10 mol% in a polymer repeating unit" means that there is one bulky structural portion per 10 polymer repeating units. . The bulky structure represented by the general formula (1) has an effect of forming pores of an appropriate size in the polymer matrix, and is considered to increase the effect of introducing an ester substituent of the present invention. It has an effect of imparting excellent solvent solubility and heat resistance to the polymer material.

【0013】そして、このような高分子中に導入される
エステル置換基は、炭素数4以下のアルキルのカルボン
酸エステル基又は炭素数4以下のアルキルのスルホン酸
エステル基若しくはこれらカルボン酸エステル基とスル
ホン酸エステル基の両者であり、アルキルの炭素数が多
くて嵩高い構造ではガスの拡散係数が低下し、また、炭
素数が5以上になると二酸化炭素の透過性が低下し、実
用的でなくなる。このようなエステル置換基の具体例と
しては、例えば、カルボン酸メチルエステル基、カルボ
ン酸エチルエステル基、カルボン酸n−プロピルエステ
ル基、スルホン酸メチルエステル基、スルホン酸エチル
エステル基、スルホン酸n−プロピルエステル基等が挙
げられる。
The ester substituent introduced into such a polymer may be an alkyl carboxylate group having 4 or less carbon atoms, a sulfonate ester group of an alkyl having 4 or less carbon atoms, or any of these carboxylic acid ester groups. It is both a sulfonic acid ester group, and in a bulky structure having a large number of carbon atoms in the alkyl, the gas diffusion coefficient is reduced, and when the number of carbon atoms is 5 or more, the permeability of carbon dioxide is reduced, which is not practical. . Specific examples of such ester substituents include, for example, carboxylic acid methyl ester group, carboxylic acid ethyl ester group, carboxylic acid n-propyl ester group, sulfonic acid methyl ester group, sulfonic acid ethyl ester group, sulfonic acid n- And a propyl ester group.

【0014】また、高分子中へのエステル置換基の導入
量は、高分子の繰り返し単位中10モル%以上でこのエ
ステル置換基導入効果が認められるが、好ましくは30
モル%以上、より好ましくは50モル%以上であるのが
よい。ここで、例えば「高分子の繰り返し単位中に10
モル%のエステル置換基」という意味は、高分子の繰り
返し単位10個当たり1個のエステル置換基が存在する
という意味である。導入量の上限は、二酸化炭素の分離
性能の観点からは特に認められず、高分子の製造が可能
であれば、高分子の繰り返し単位中により多くのエステ
ル置換基を導入してもよい。
The effect of introducing the ester substituent can be recognized when the amount of the ester substituent introduced into the polymer is 10 mol% or more in the repeating unit of the polymer.
It is preferably at least 50 mol%, more preferably at least 50 mol%. Here, for example, “10 in the repeating unit of the polymer”
By "mol% of ester substituents" is meant that there is one ester substituent per 10 repeating units of the polymer. The upper limit of the amount introduced is not particularly recognized from the viewpoint of carbon dioxide separation performance, and if a polymer can be produced, more ester substituents may be introduced into the repeating unit of the polymer.

【0015】このエステル置換基が導入された高分子材
料を製造する方法としては、このようなエステル置換基
を有するモノマーを用いて高分子材料を製造する方法
や、製造された高分子材料に化学反応でカルボン酸基や
スルホン酸基を導入し、これらカルボン酸基やスルホン
酸基を炭素数4以下のアルコールでエステル化する方法
が挙げられる。前者の方法は、エステル置換基を有する
モノマーを用意する必要があるが、高分子反応に比べて
反応性に富み、より多くの置換基を高分子材料に導入す
ることが可能である点で好ましく、また、後者の方法
は、非対称膜や複合膜等の表面改質技術として有効であ
る。ここで、非対称膜や複合膜とは、高分子材料を実用
的な気体分離膜に成形した形状であり、この形状の気体
分離膜が多く市販されている。
As a method for producing the polymer material into which the ester substituent is introduced, there are a method for producing a polymer material using a monomer having such an ester substituent, and a method for producing a polymer material by chemical reaction. A method of introducing a carboxylic acid group or a sulfonic acid group by a reaction and esterifying the carboxylic acid group or the sulfonic acid group with an alcohol having 4 or less carbon atoms can be mentioned. In the former method, it is necessary to prepare a monomer having an ester substituent, but it is preferable in that it is rich in reactivity as compared with a polymer reaction, and it is possible to introduce more substituents into a polymer material. The latter method is effective as a surface modification technique for an asymmetric membrane or a composite membrane. Here, the asymmetric membrane or the composite membrane has a shape in which a polymer material is formed into a practical gas separation membrane, and many gas separation membranes having this shape are commercially available.

【0016】[0016]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。なお、以下の実施例及び比較例に
おいて、気体の透過係数は検出器にガスクロマトグラフ
ィを用いた減圧式気体透過速度測定装置を用い、供給ガ
スとして混合ガス(二酸化炭素10%、窒素90%)を
用いて、測定温度25℃及び圧力差1.5気圧で測定し
た。気体透過係数の単位はバレル(barrer)=10-10
cm3(STP)cm/cm2 ・sec・cmHgであ
り、分離係数は気体透過係数の比である。
The present invention will be specifically described below based on examples and comparative examples. In the following Examples and Comparative Examples, the gas permeability coefficient was measured by using a pressure-reducing gas transmission rate measuring device using gas chromatography as a detector, and using a mixed gas (carbon dioxide 10%, nitrogen 90%) as a supply gas. The measurement was performed at a measurement temperature of 25 ° C. and a pressure difference of 1.5 atm. The unit of the gas permeability coefficient is barrel = 10 -10
cm 3 (STP) cm / cm 2 · sec · cmHg, and the separation coefficient is the ratio of the gas permeability coefficient.

【0017】実施例1 9,9−ビス(4−アミノフェニル)フルオレン−4−
カルボン酸メチルエステル8.13g(0.02モル)
とベンゾフェノンテトラカルボン酸二無水物(BDT
A)6.44g(0.02モル)とをN−メチル−2−
ピロリドン80gに混ぜ、溶液温度を185℃に保持
し、生成する水を除去しながら反応させた。反応終了
後、反応溶液をガラスフィルターで濾過し、冷却した後
にメタノール中に注ぎ、生成物のポリイミドを析出させ
た。得られたポリイミドを洗浄したのち、真空乾燥し
た。得られたポリイミドの反応収率はほぼ100%であ
った。
Example 1 9,9-bis (4-aminophenyl) fluorene-4-
8.13 g (0.02 mol) of carboxylic acid methyl ester
And benzophenonetetracarboxylic dianhydride (BDT
A) 6.44 g (0.02 mol) of N-methyl-2-
The mixture was mixed with 80 g of pyrrolidone, the solution was kept at 185 ° C., and reacted while removing generated water. After the completion of the reaction, the reaction solution was filtered through a glass filter, and after cooling, poured into methanol to precipitate a product polyimide. After washing the obtained polyimide, it was vacuum-dried. The reaction yield of the obtained polyimide was almost 100%.

【0018】このポリイミド0.5gをN−メチル−2
−ピロリドン100mlに溶解し、得られた溶液を35
℃で測定した際のインヘレント粘度は0.73dl/g
であった。また、このポリイミドは、その繰り返し単位
1個中に、1個の嵩高い構造であるフェニルフルオレン
構造部分と1個のカルボン酸メチルエステル置換基とを
有しており、嵩高い構造部分は繰り返し単位中100モ
ル%であり、また、カルボン酸メチルエステル置換基は
繰り返し単位中100モル%であった。
0.5 g of this polyimide was added to N-methyl-2
-Dissolve in 100 ml of pyrrolidone and dilute the resulting solution with 35
0.73 dl / g inherent viscosity as measured at ° C
Met. Further, this polyimide has one bulky phenylfluorene structure portion and one carboxylic acid methyl ester substituent in one repeating unit thereof, and the bulky structure portion is a repeating unit And the carboxylic acid methyl ester substituent was 100 mol% in the repeating unit.

【0019】更に、得られたポリイミドの17.5重量
%N−メチル−2−ピロリドン溶液を調製し、この溶液
をガラス板上に均一の厚さで流延し、その後に乾燥器で
溶媒を除去してポリイミド膜を形成し、得られたポリイ
ミド膜の二酸化炭素/窒素分離性能を調べた。結果は、
二酸化炭素透過係数11バレル、窒素透過係数0.18
バレル、及び二酸化炭素/窒素分離係数60であった。
Further, a 17.5% by weight N-methyl-2-pyrrolidone solution of the obtained polyimide was prepared, and this solution was cast on a glass plate to have a uniform thickness. After removal, a polyimide film was formed, and the carbon dioxide / nitrogen separation performance of the obtained polyimide film was examined. Result is,
Carbon dioxide permeability coefficient 11 barrels, nitrogen permeability coefficient 0.18
The barrel and carbon dioxide / nitrogen separation factor were 60.

【0020】実施例2 窒素導入管、Dean−Starkトラップ、還流冷却
器、攪拌装置を備えた1000mlの4つ口フラスコに
9,9−ビス(4−ヒドロキシフェニル)フルオレン−
4−カルボン酸メチルエステル40.8g(0.10モ
ル)、4,4’−ジクロロジフェニルスルホン28.7
g(0.10モル)、炭酸カリウム15.2(0.11
モル)、N,N−ジメチルアセトアミド320g及びト
ルエン450mlを仕込み、窒素雰囲気下に攪拌しなが
ら加熱して反応させた。反応は、還流温度を120℃に
抑えて1晩加熱を続け、次いで水分を共沸留去させたの
ち、トルエンを抜いて溶媒の温度を150℃まで上昇さ
せ、そのまま水分の共沸留去を15時間続けた。反応終
了後、反応溶液を冷却し、濾過して過剰の炭酸カリウム
や生成した塩化カリウムを除去し、次いで水中に注入し
てポリスルホンを析出させ、これを濾過して乾燥させ、
ポリスルホンを得た。得られたポリスルホンの反応収率
はほぼ100%であった。
EXAMPLE 2 9,9-Bis (4-hydroxyphenyl) fluorene was placed in a 1000 ml four-necked flask equipped with a nitrogen inlet tube, a Dean-Stark trap, a reflux condenser, and a stirrer.
4-carboxylic acid methyl ester 40.8 g (0.10 mol), 4,4'-dichlorodiphenyl sulfone 28.7
g (0.10 mol), potassium carbonate 15.2 (0.11 mol)
Mol), N, N-dimethylacetamide (320 g) and toluene (450 ml) were charged and reacted while heating under a nitrogen atmosphere while stirring. In the reaction, the reflux temperature was kept at 120 ° C., and heating was continued overnight. Then, after water was azeotropically distilled off, toluene was removed, the temperature of the solvent was raised to 150 ° C., and the water was azeotropically distilled off. Continued for 15 hours. After completion of the reaction, the reaction solution was cooled and filtered to remove excess potassium carbonate and generated potassium chloride, and then poured into water to precipitate polysulfone, which was filtered and dried,
Polysulfone was obtained. The reaction yield of the obtained polysulfone was almost 100%.

【0021】このポリスルホン0.5gをN−メチル−
2−ピロリドン100mlに溶解し、得られた溶液を3
5℃で測定した際のインヘレント粘度は0.65dl/
gであった。また、このポリスルホンは、その繰り返し
単位1個中に、1個の嵩高い構造であるフェニルフルオ
レン構造部分と1個のカルボン酸メチルエステル置換基
とを有しており、嵩高い構造部分は繰り返し単位中10
0モル%であり、また、カルボン酸メチルエステル置換
基は繰り返し単位中100モル%であった。
0.5 g of the polysulfone was added to N-methyl-
Dissolved in 100 ml of 2-pyrrolidone,
The inherent viscosity measured at 5 ° C. is 0.65 dl /
g. Further, this polysulfone has one bulky phenylfluorene structure portion and one carboxylate methyl ester substituent in one repeating unit thereof, and the bulky structure portion is a repeating unit. Medium 10
0 mol%, and the carboxylic acid methyl ester substituent was 100 mol% in the repeating unit.

【0022】更に、得られたポリスルホンの17.5重
量%N−メチル−2−ピロリドン溶液を調製し、この溶
液をガラス板上に均一の厚さで流延し、その後に乾燥器
で溶媒を除去してポリスルホン膜を形成し、得られたポ
リスルホン膜の二酸化炭素/窒素分離性能を調べた。結
果は、二酸化炭素透過係数12バレル、窒素透過係数
0.22バレル、及び二酸化炭素/窒素分離係数55で
あった。
Further, a 17.5% by weight solution of the obtained polysulfone in N-methyl-2-pyrrolidone was prepared, and the solution was cast on a glass plate at a uniform thickness. After removal, a polysulfone membrane was formed, and the carbon dioxide / nitrogen separation performance of the obtained polysulfone membrane was examined. The results were a carbon dioxide permeability coefficient of 12 barrels, a nitrogen permeability coefficient of 0.22 barrels, and a carbon dioxide / nitrogen separation coefficient of 55.

【0023】比較例1 9,9−ビス(4−アミノフェニル)フルオレン−4−
カルボン酸6.97g(0.02モル)とベンゾフェノ
ンテトラカルボン酸二無水物(BDTA)6.44g
(0.02モル)とをN−メチル−2−ピロリドン80
gに混ぜ、溶液温度を185℃に保持し、生成する水を
除去しながら反応させた。反応終了後、反応溶液をガラ
スフィルターで濾過し、冷却した後にメタノール中に注
ぎ、生成物のポリイミドを析出させた。得られたポリイ
ミドを洗浄したのち、真空乾燥した。得られたポリイミ
ドの反応収率はほぼ100%であった。
Comparative Example 1 9,9-bis (4-aminophenyl) fluorene-4-
6.97 g (0.02 mol) of carboxylic acid and 6.44 g of benzophenonetetracarboxylic dianhydride (BDTA)
(0.02 mol) and N-methyl-2-pyrrolidone 80
g, keeping the solution temperature at 185 ° C., and reacting while removing the generated water. After the completion of the reaction, the reaction solution was filtered through a glass filter, and after cooling, poured into methanol to precipitate a product polyimide. After washing the obtained polyimide, it was vacuum-dried. The reaction yield of the obtained polyimide was almost 100%.

【0024】このポリイミド0.5gをN−メチル−2
−ピロリドン100mlに溶解し、得られた溶液を35
℃で測定した際のインヘレント粘度は0.67dl/g
であった。また、このポリイミドは、その繰り返し単位
1個中に1個の嵩高い構造であるフェニルフルオレン構
造部分を有しているが、エステル置換基は存在せず、ま
た、この嵩高い構造部分は繰り返し単位中100モル%
であった。
0.5 g of this polyimide was added to N-methyl-2
-Dissolve in 100 ml of pyrrolidone and dilute the resulting solution with 35
0.67 dl / g inherent viscosity as measured at ° C
Met. Further, this polyimide has one bulky phenylfluorene structure portion in one repeating unit thereof, but has no ester substituent, and this bulky structure portion has a repeating unit. 100 mol% in
Met.

【0025】更に、得られたポリイミドの17.5重量
%N−メチル−2−ピロリドン溶液を調製し、この溶液
をガラス板上に均一の厚さで流延し、その後に乾燥器で
溶媒を除去してポリイミド膜を形成し、得られたポリイ
ミド膜の二酸化炭素/窒素分離性能を調べた。結果は、
二酸化炭素透過係数10バレル、窒素透過係数0.20
バレル、及び二酸化炭素/窒素分離係数50であった。
Further, a 17.5% by weight N-methyl-2-pyrrolidone solution of the obtained polyimide was prepared, and the solution was cast on a glass plate to have a uniform thickness. After removal, a polyimide film was formed, and the carbon dioxide / nitrogen separation performance of the obtained polyimide film was examined. Result is,
Carbon dioxide permeability coefficient 10 barrels, nitrogen permeability coefficient 0.20
The barrel and carbon dioxide / nitrogen separation factor were 50.

【0026】上記実施例1のエステル置換基を有するポ
リイミドと比較例1のエステル置換基を有しないポリイ
ミドにおける二酸化炭素/窒素分離係数はそれぞれ60
と50であり、二酸化炭素/窒素分離係数60である実
施例1のポリイミドは、比較例1のポリイミドに比べて
二酸化炭素の分離性能が大幅に向上しており、より少な
いエネルギー消費で同量の二酸化炭素を分離し回収ある
いは除去できることが判明した。
The carbon dioxide / nitrogen separation coefficients of the polyimide having an ester substituent of Example 1 and the polyimide having no ester substituent of Comparative Example 1 were 60, respectively.
The polyimide of Example 1 having a carbon dioxide / nitrogen separation coefficient of 60 has a significantly improved carbon dioxide separation performance as compared with the polyimide of Comparative Example 1, and has the same amount of energy with less energy consumption. It has been found that carbon dioxide can be separated and recovered or removed.

【0027】[0027]

【発明の効果】本発明のエステル置換基を有する気体分
離膜は、高い二酸化炭素分離係数と高い二酸化炭素透過
係数とを有して優れた二酸化炭素の分離性能を有し、よ
り低いエネルギーコストで窒素等の分離対象ガスから二
酸化炭素を分離し回収あるいは除去することができるの
で、火力発電所、製鉄所高炉等の二酸化炭素固定発生源
からの二酸化炭素の分離回収や、天然ガスからの二酸化
炭素の除去等の用途に好適である。
The gas separation membrane having an ester substituent of the present invention has a high carbon dioxide separation coefficient and a high carbon dioxide permeation coefficient, has excellent carbon dioxide separation performance, and has a lower energy cost. Since carbon dioxide can be separated and recovered or removed from the gas to be separated such as nitrogen, carbon dioxide can be separated and recovered from fixed carbon dioxide sources such as thermal power plants and steelworks blast furnaces, and carbon dioxide can be separated from natural gas. It is suitable for applications such as removal of water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 風間 伸吾 東京都港区西新橋2−8−11、第7東洋 海事ビル8F、財団法人地球環境産業技 術研究機構 CO2 固定化等プロジェ クト室内 (72)発明者 原谷 賢治 茨城県つくば市東1−1、工業技術院 物質工学工業技術研究所内 審査官 真々田 忠博 (56)参考文献 特開 平6−91145(JP,A) 特開 平5−317668(JP,A) 特開 平8−24603(JP,A) 特開 平8−24602(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 71/82 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shingo Kazama 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo, 8th floor of the 7th Oriental Maritime Building, Institute for Global Environmental Technology, CO2 fixed project room ( 72) Inventor Kenji Haraya 1-1, Higashi 1-1, Tsukuba City, Ibaraki Prefecture, Examiner at the Institute of Materials Science and Technology, National Institute of Advanced Industrial Science and Technology Tadahiro Sanada (56) References JP-A-6-91145 (JP, A) JP-A-5-317668 ( JP, A) JP-A-8-24603 (JP, A) JP-A-8-24602 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 71/82

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繰り返し単位の少なくとも5モル%以上
が下記一般式(1) 【化1】 (但し、式中R1 、R2 、R3 及びR4 は水素原子、ア
ルキル基又はハロゲン基の何れかを示し、互いに同じで
あってもまた異なっていてもよく、また、R5 及びR6
は水素原子、スルホン酸基、カルボキシル基、炭素数4
以下のアルキルのカルボン酸エステル基又は炭素数4以
下のアルキルのスルホン酸エステル基の何れかを示し、
互いに同じであってもまた異なっていてもよい)で表さ
れる嵩高い構造部分を有し、かつ、繰り返し単位の10
モル%以上が置換基として炭素数4以下のアルキルのカ
ルボン酸エステル基及び/又はスルホン酸エステル基を
有する高分子材料を用いることを特徴とするエステル置
換基を有する気体分離膜。
[Claim 1] At least 5 mol% or more of the repeating unit has the following general formula (1): (However, wherein R 1, R 2, R 3 and R 4 represents a hydrogen atom, one alkyl group or halogen group, which may be the or different and the same as each other, also, R 5 and R 6
Is a hydrogen atom, sulfonic acid group, carboxyl group, carbon number 4
Shows any of the following alkyl carboxylic acid ester groups or alkyl C 4 or less alkyl sulfonic acid ester group,
Which may be the same as or different from each other), and a repeating unit of 10
A gas separation membrane having an ester substituent, wherein a polymer material having an alkyl carboxylate group and / or a sulfonic acid ester group having 4 or less carbon atoms as a substituent is used.
JP14306195A 1995-06-09 1995-06-09 Gas separation membrane with ester substituent Expired - Lifetime JP3172746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14306195A JP3172746B2 (en) 1995-06-09 1995-06-09 Gas separation membrane with ester substituent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14306195A JP3172746B2 (en) 1995-06-09 1995-06-09 Gas separation membrane with ester substituent

Publications (2)

Publication Number Publication Date
JPH08332362A JPH08332362A (en) 1996-12-17
JP3172746B2 true JP3172746B2 (en) 2001-06-04

Family

ID=15330009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14306195A Expired - Lifetime JP3172746B2 (en) 1995-06-09 1995-06-09 Gas separation membrane with ester substituent

Country Status (1)

Country Link
JP (1) JP3172746B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247246B1 (en) 1998-05-27 2001-06-19 Denver Instrument Company Microwave moisture analyzer: apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656252B2 (en) 2001-08-22 2003-12-02 Daiso Co., Ltd. Polymer separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247246B1 (en) 1998-05-27 2001-06-19 Denver Instrument Company Microwave moisture analyzer: apparatus and method

Also Published As

Publication number Publication date
JPH08332362A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
Staudt-Bickel et al. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking
WO2014087928A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JPH0365214A (en) Gas separation method and membrane used therein
Comesaña-Gándara et al. Thermally rearranged polybenzoxazoles and poly (benzoxazole-co-imide) s from ortho-hydroxyamine monomers for high performance gas separation membranes
Tanaka et al. Gas permeation and separation properties of sulfonated polyimide membranes
JPH0910567A (en) Gas separation membrane of novel sulfonated polyamide
CN104829853A (en) Polyimide gas separation membrane as well as preparation method and applications thereof
Xiao et al. Synthetic 6FDA–ODA copolyimide membranes for gas separation and pervaporation: Functional groups and separation properties
Kammakakam et al. PEG–imidazolium-functionalized 6FDA–durene polyimide as a novel polymeric membrane for enhanced CO 2 separation
Yu et al. Hybrid brominated sulfonated poly (2, 6-diphenyl-1, 4-phenylene oxide) and SiO2 nanocomposite membranes for CO2/N2 separation
JPH07132216A (en) Separation film for fluorinated aromatic polyimide, polyamide and polyamide-imide gas
Hayek et al. Pure-and sour mixed-gas transport properties of 4, 4′-methylenebis (2, 6-diethylaniline)-based copolyimide membranes
Zhu et al. Effects of tertiary amines and quaternary ammonium halides in polysulfone on membrane gas separation properties
Moncada et al. Synthesis, characterization and studies of properties of six polyimides derived from two new aromatic diamines containing a central silicon atom
CN112675716A (en) UIO-66-NH2Method for preparing high-flux defect-free polyamide membrane by using derivative
US9889412B2 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
JP3172746B2 (en) Gas separation membrane with ester substituent
Fan et al. Fluorinated-cardo-based Co-polyimide membranes with enhanced selectivity for CO2 separation
JP3130358B2 (en) Polyimide gas separation membrane
WO2017145747A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
Yang et al. Synthesis of crown ether-containing copolyimides and their pervaporation properties to benzene/cyclohexane mixtures
JP5833986B2 (en) Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
Zhang et al. Influence of the silane segment on the gas permeability in aromatic polyesters from phenolphthalein

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term