JP3172739B2 - Vlbiレーダ探査法 - Google Patents

Vlbiレーダ探査法

Info

Publication number
JP3172739B2
JP3172739B2 JP21210999A JP21210999A JP3172739B2 JP 3172739 B2 JP3172739 B2 JP 3172739B2 JP 21210999 A JP21210999 A JP 21210999A JP 21210999 A JP21210999 A JP 21210999A JP 3172739 B2 JP3172739 B2 JP 3172739B2
Authority
JP
Japan
Prior art keywords
antenna
vlbi
moon
signal
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21210999A
Other languages
English (en)
Other versions
JP2001042030A (ja
Inventor
等 木内
Original Assignee
総務省通信総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 総務省通信総合研究所長 filed Critical 総務省通信総合研究所長
Priority to JP21210999A priority Critical patent/JP3172739B2/ja
Publication of JP2001042030A publication Critical patent/JP2001042030A/ja
Application granted granted Critical
Publication of JP3172739B2 publication Critical patent/JP3172739B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、レーダを用いて地
球から月や小惑星に対するリモートセンシングを行うV
LBI(超長基線電波干渉計(VLBI(Very Long
Baseline Interferometry))レーダ探査法に関する。
【0002】
【従来の技術】従来、地表レーダ探査法で優れているも
のとして、合成開口レーダ(SAR(Synthetic Apert
ure Radar))による方式と、ドップラレーダ方式とが
ある(Jerry L.Eaves and Edward K. Reedy,"P
rinciple of Modern Radar",pp.502−537,Van N
ostrand Reinhold Company.参照)。
【0003】前者のSAR方式は、航空機や、惑星軌道
上の衛星から、地球や惑星の表面をレーダ探査するもの
であり、図3に示すように、矢印102の方向に移動す
る航空機や衛星に搭載したアンテナ101から、その移
動方向とは垂直方向にアンテナビーム103が放射され
る。地表面上の対象物104に対するアンテナ追尾は行
わない。観測可能時間は、搭載機の移動速度および高度
105により異なり、アンテナビーム103内に対象物
104が入っている時間、すなわち搭載機がアンテナ位
置P1からアンテナ位置P2までに移動する時間とな
る。このため、アンテナ101の指向性が低いほど大き
な合成アンテナ(仮想アンテナ)を構築でき、合成アン
テナ長Lはアンテナ位置P1からアンテナ位置P2まで
の距離となる。
【0004】このSAR方式では、短パルスを多数放射
(通常1kHz以上)することで、対象物104からの
後方散乱波を得るが、これらは全て空間に合成アンテナ
を構築するために用いられる。つまり、パルス1回毎に
得られた信号と、搭載機の位置とを全てのパルスについ
て合成し、合成アンテナを構築する。
【0005】このSAR方式の場合、アンテナ直径Ls
を仮定し、観測波長をλとするとアンテナビーム幅(半
値幅)βsは、次式(1)で表される。
【数1】 合成されるアンテナの長さLsは、搭載機と対象物との
距離をRs、物理アンテナ直径をdxとすると、次式
(2)で表される。
【数2】 この制約は、アンテナビームが搭載機の進行方向に対し
垂直方向に固定されていることによる。
【0006】このときの散乱(断面積)半径δxは、次
式(3)で表される。
【数3】 SAR方式の場合、散乱(断面積)半径δxは、式
(3)から分かるように、周波数・飛行高度によらず物
理アンテナ直径dxで決定される。なお、式(3)中、
Lsではなく、(2・Ls)となるのは、信号が対象物
までの間を往復するためである。散乱(断面積)半径δ
xは分解能に相当する量である。
【0007】一方、上記した地表レーダ探査法のうち、
後者のドップラレーダ方式は、大型アンテナから放射さ
れた強力なパルスの反射波から距離等を求める方式であ
り、このドップラレーダ方式では、図4に示すように、
1つの大型アンテナ201からチャープ信号(周波数ス
ウィープ信号)もしくはパルス信号の送信信号202を
出力し、小惑星203等に当たって戻ってきた反射波2
04を、正確な時計を持った観測局200の受信アンテ
ナ205で受信し、観測局200のタイミング測定部2
06で観測した送信時刻と受信時刻とを基に、比較部2
07においてそのタイミングの比較等を行い、最終的に
観測局200から小惑星203までの距離・方向ベクト
ル・大まかな大きさ(散乱断面積)を求めるようになっ
ている。
【0008】
【発明が解決しようとする課題】しかし、上記した地表
レーダ探査法のうち、前者のSAR方式では、目標物の
衛星軌道上の搭載機から月等の表面を探査するため、地
球上から安定して常時観測するようなことができなかっ
た。また、このSAR方式の場合、分解能を上げるに
は、物理アンテナのサイズを小さくしなければならない
が、物理アンテナのサイズを小さくするとアンテナゲイ
ンが小さくなり、このため、地球から月のような遠方の
ものを観測しようとしても、反射波がほとんど戻ってこ
ず、観測そのものが成立しないという問題点を有してい
た。
【0009】一方、後者のドップラレーダ方式は、地球
からのリモートセンシングであり、小惑星までの距離・
方向ベクトル・大まかな大きさ(散乱断面積)を求める
ことはできるものの、その表面の様子を得ることはでき
なかった。
【0010】この発明は上記に鑑み提案されたもので、
地球上から安定して常時観測することができ、また大規
模な合成アンテナを構築して分解能を向上するととも
に、詳細に観測物体の表面や観測物体までの距離を観測
することができるVLBIレーダ探査法を提供すること
を目的とする。
【0011】
【課題を解決するための手段】上記目的を達成するため
に、本発明のVLBIレーダ探査法は、大型送信アンテ
ナから白色雑音または擬似雑音拡散信号を送信して観測
物体に当て、戻ってきた後方散乱波をVLBI受信アン
テナで受信し、送信時に記録した送信記録信号と、受信
時に記録した受信記録信号との相関処理を順次行い、地
球・観測物体間位置の変化による相関クロススペクトル
の時系列データを求め、2次元逆フーリエ変換すること
で、観測物体表面の像および観測物体までの距離を得
る、ことを特徴としている。
【0012】
【発明の実施の形態】以下にこの発明の実施の形態を図
面に基づいて詳細に説明する。
【0013】図1はこの発明のVLBIレーダ探査法の
構成を概略的に示す図である。図において、この発明の
VLBIレーダ探査法は、VLBI観測局10に備える
大型の送信アンテナ1から、信号発生部2で出力した白
色雑音もしくはPN(擬似雑音)拡散信号を送信信号3
として放射し、観測物体(ここでは月)4に当たって戻
ってきた後方散乱波5をVLBI観測局10の受信アン
テナ6で受信し、送信時に送信記録部7で記録した送信
記録信号と、受信時に受信記録部8で記録した受信記録
信号との相関処理を相関処理部9で順次行い、地球・月
間位置の変化による相関クロススペクトルの時系列デー
タ(空間周波数スペクトル)を求め、2次元逆フーリエ
変換することで、月4の表面の像および月4までの距離
を得るようになっている。
【0014】図2はこの発明のVLBIレーダ探査法の
より具体的な構成例を示す図である。図において、先ず
信号発生部2のノイズダイオード等により作られた白色
雑音もしくはPN拡散信号を送信信号3として、送信ア
ンテナ1から月4に向かって発信する。この送信信号3
は、原子時計を内蔵するVLBIデータ収集装置17お
よびデータレコーダ171により記録され、送信記録信
号として出力される。受信アンテナ6は、月4から戻っ
てくる後方散乱波5を受信する。この受信信号は、原子
時計を内蔵するVLBIデータ収集装置18およびデー
タレコーダ181により記録され、受信記録信号として
出力される。VLBI相関処理装置19は、入力された
送信記録信号と受信記録信号とに相関処理を施し、相関
クロススペクトルの時系列データ(空間周波数スペクト
ル)を求める。このデータには、月面までの距離情報、
月面の状態、月面での反射係数等の情報が含まれてお
り、2次元逆フーリエ変換することで、それらの情報を
入手することができる。
【0015】上記のVLBIレーダ探査法では、月4は
アンテナ追尾により観測される。また、微弱電波を受信
するため指向性の高いアンテナの方が有利である。観測
は、月4が地球自転により地球の陰に入るまで行われ
る。
【0016】ここで、アンテナ直径Lsを仮定し、観測
波長をλとするとアンテナビーム幅(半値幅)βsは、
次式(4)で表される。
【数4】 送信受信アンテナ1,6は、月4を追尾するので、合成
されるアンテナの長さLsは、地球の月に対する移動距
離と等価となる。
【0017】このときの散乱(断面積)半径δxは、月
4との距離をRsとすると、次式(5)で表される。
【数5】 この式(5)から、散乱(断面積)半径δxは、周波数
(1/λ)、物理アンテナ径Ls、月4との距離Rsに
より決定されることが分かる。
【0018】ところで、月4の表面から地上の受信アン
テナ6までの距離(反射波の到達時間)は、地球の回
転、月の軌道等により変化し、各受信アンテナ6での受
信信号位相に微小な差が生じる。このため、地球上の観
測局10の地球自転・公転による歳差・章動・光行差、
月の軌道等により発生する受信信号位相の影響を補正す
ることで、各受信信号間の相関を得ることができる。相
関処理時に月表面上の散乱(断面積)半径内の各点は、
地上局受信アンテナ6の位置との関係による遅延・遅延
変化率の違いにより、2次元上の値として分離可能であ
る。
【0019】この分離は、VLBI観測局10の送信ア
ンテナ1、受信アンテナ6の配置が広いほど高分解能で
行われる。これにより得られるのが空間周波数スペクト
ルである。この空間周波数スペクトルは、地球・月の位
置により変化する。合成アンテナは、これら位置の違い
により得られた空間周波数スペクトルを合成することで
実現される。
【0020】地球の自転・公転(対象が月の場合、月の
公転)により、月4と地球上の観測局10により構成さ
れる各空間における相関クロススペクトルの時系列デー
タ(空間周波数スペクトル)を求め、2次元逆フーリエ
変換することで得られる合成アンテナは、地球の自転直
径・公転直径(対象が月の場合は、月の公転直径)を持
った巨大アンテナとなる。月が地球を周回しているが、
月を固定して見ると相対的に地球が周回しており、月の
公転直径分に相当するアンテナを合成でき、その合成ア
ンテナで月を観測することになるため高分解能が得ら
れ、これにより、月を細かく見ることができる。
【0021】実際は、月の自転周期と公転周期が同じ一
恒星月(27.32日)であるため、常に月の同一面し
か地球に向かない。この効果により、せっかくの月の公
転による位置変化が自転により相殺され、地球の自転に
よる効果と月の秤動(緯度方向:±6度、経度方向:±
7度)により地球に向いた面が僅かに変動する効果のみ
となり、合成アンテナ直径は約9万km程度となる。
【0022】VLBIは、遙か彼方の電波星を観測対象
とし、観測した複数局の信号の相関を取ることで地上の
観測局間の距離をmm精度で測定したり、観測対象の構
造を得ることが可能な技術である。このため、非常に微
弱な電波を扱うことを前提としてVLBIシステムが構
築されている。このVLBIシステムでは、遙か彼方の
電波星からの信号を受信するのみで地上からの送信は行
わない。
【0023】これに対し、本発明のVLBIレーダ探査
法では、地上からの送信を行い、信号発生部2からの人
工的な白色雑音もしくはPN拡散信号を電波源として用
いる。このため、受信された信号(後方散乱波5)は、
VLBI同様低SNR(信号対雑音比)であるが、SN
R無限大の送信記録信号を参照信号として、受信記録信
号との相関処理を相関処理部9において行うことで、微
弱な受信信号の検出を可能としている。
【0024】ここで、本方式での信号対雑音比SNRを
見積もる。観測に用いる白色雑音もしくはPN拡散信号
の周波数帯を8.3GHz、送信出力50W、帯域12
8MHz、送信アンテナ直径64m、アンテナ効率0.
6とすると、送信電力密度は次式(6)で表される。
【数6】 月までの平均距離を3.82x108mとすると、月面
でのビーム直径は215.6kmとなり、月面での電波
強度は次式(7)で求められる。
【数7】 ここで、送信アンテナと受信アンテナ間距離を3kmと
仮定する。これにより合成されるVLBI仮想アンテナ
で受信される有効範囲(VLBI合成ビーム)は直径6
900mであり、月面での後方散乱係数を0.01と仮
定し、後方散乱信号を通常のVLBIの電波源と考え、
月−地球間の伝搬による減衰を考慮すると地球表面での
受信電波強度は、次式(8)となる。
【数8】 この電波を直径11m、アンテナ効率0.5、システム
雑音100Kのアンテナで受信し、積分時間100秒で
通常のVLBIを行ったと仮定すると信号対雑音比SN
Rは、「0.018」となる。
【0025】これに対し、本方式では、送信時の送信信
号を記録し、それを参照信号として相関をとるようにし
ており、この場合のSNRは、「53.3」と大きな値
となり、大幅に改善される。
【0026】通常のVLBIでは、観測局で受信される
低SNR信号どうしの相関をとるため相関振幅10-4
度が一般的である。これに対し、本発明のVLBIレー
ダ探査法では、相関をとる信号の一方、すなわち送信信
号がSNR無限大であるので、10-2程度の相関振幅が
得られ、検出感度が著しく改善される。往復の正確な時
間も観測量として得られるため、表面の情報以外に月面
までの距離も正確に求められる。
【0027】VLBIのみでは、地球上の観測局10の
アンテナ配置により地球直径までの合成アンテナが可能
ではあるものの、月の電波放射強度変化のみからは相関
を得ることはできず、月面像を得ることは無理である。
本発明では、地球上より人工の電波を放射することでS
NRを改善でき、電波の照射された範囲を詳しく見るこ
とができる。すなわち、送信時に記録した送信記録信号
と、受信時に記録した受信記録信号との相関を求めるこ
とで、通常のVLBIより高SNRで空間周波数スペク
トルを求め、地球・月間の様々な位置での空間周波数ス
ペクトルを2次元逆フーリエ変換することで、月表面の
像をVLBIのみの手法に比べて一層細かく得ることが
できる。そして、これら1回毎の測定結果を地球自転、
月の秤動によりアンテナが移動する軌跡上において合成
をかけ、巨大なアンテナを構築することができる。
【0028】また、従来技術と異なり、パルス状の繰り
返し信号もしくはチャープ信号(周波数的にスウィープ
した信号)を用いるのではなく、人工的な広帯域白色雑
音もしくはPN符号による拡散信号を用いて計測を行う
ため、パルスの発生周期等による曖昧さがない。
【0029】なお、上記の説明では、観測物体を月であ
るとして説明したが、小惑星やその他の物体であっても
よい。
【0030】以上述べたように、この発明のVLBIレ
ーダ探査法では、地上のVLBIシステムを用いるの
で、地球上から安定して常時観測することができ、ま
た、観測物体の公転・地球の自転を利用して大規模な合
成アンテナを構築できるので、高分解能を得ることがで
きる。さらに、送信時に人工的に作られた白色雑音もし
くはPN拡散信号を送信信号として記録し、受信信号と
の相関処理を行うので、従来のVLBIと異なり相関を
とる信号の一方はSNRが無限大となり、詳細に観測物
体の表面や観測物体までの距離を観測することができ
る。
【0031】
【発明の効果】以上説明したように、この発明のVLB
Iレーダ探査法によれば、地上のVLBIシステムを用
いるので、地球上から安定して常時観測することがで
き、また、観測物体の公転・地球の自転・地球の公転を
利用して大規模な合成アンテナを構築できるので、高分
解能を得ることができる。さらに、送信時に人工的に作
られた白色雑音もしくはPN拡散信号を送信信号として
記録し、受信信号との相関処理を行うので、従来のVL
BIと異なり相関をとる信号の一方はSNRが無限大と
なり、詳細に観測物体の表面や観測物体までの距離を観
測することができる。
【図面の簡単な説明】
【図1】この発明のVLBIレーダ探査法の構成を概略
的に示す図である。
【図2】この発明のVLBIレーダ探査法のより具体的
な構成例を示す図である。
【図3】合成開口レーダ(SAR)方式の説明図であ
る。
【図4】ドップラレーダ方式の説明図である。
【符号の説明】
1 送信アンテナ 2 信号発生部 3 送信信号 4 月 5 後方散乱波 6 受信アンテナ 7 送信記録部 8 受信記録部 9 相関処理部 10 観測局 17 データ収集装置 171 データレコーダ 18 データ収集装置 181 データレコーダ 19 相関処理装置

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 大型送信アンテナから白色雑音または擬
    似雑音拡散信号を送信して観測物体に当て、戻ってきた
    後方散乱波をVLBI受信アンテナで受信し、送信時に
    記録した送信記録信号と、受信時に記録した受信記録信
    号との相関処理を順次行い、地球・観測物体間位置の変
    化による相関クロススペクトルの時系列データを求め、
    2次元逆フーリエ変換することで、観測物体表面の像お
    よび観測物体までの距離を得る、ことを特徴とするVL
    BIレーダ探査法。
JP21210999A 1999-07-27 1999-07-27 Vlbiレーダ探査法 Expired - Lifetime JP3172739B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21210999A JP3172739B2 (ja) 1999-07-27 1999-07-27 Vlbiレーダ探査法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21210999A JP3172739B2 (ja) 1999-07-27 1999-07-27 Vlbiレーダ探査法

Publications (2)

Publication Number Publication Date
JP2001042030A JP2001042030A (ja) 2001-02-16
JP3172739B2 true JP3172739B2 (ja) 2001-06-04

Family

ID=16617036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21210999A Expired - Lifetime JP3172739B2 (ja) 1999-07-27 1999-07-27 Vlbiレーダ探査法

Country Status (1)

Country Link
JP (1) JP3172739B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855643A (zh) * 2016-12-23 2017-06-16 中国人民解放军63921部队 基于逆同波束干涉测量技术实现月球旋转测量的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458610B1 (ko) 2013-07-18 2014-11-11 한국 천문 연구원 Vcs의 지연추적과 프린지 회전에 대한 상관처리방법
WO2018231515A1 (en) * 2017-06-14 2018-12-20 Bae Systems Information And Electronic Systems Integration Inc. Satellite tomography of rain and motion via synthetic aperture
CN111308413B (zh) * 2019-12-03 2022-03-18 中国人民解放军63921部队 一种大地测量vlbi射电源天区覆盖评价方法
CN113029161B (zh) * 2021-03-10 2024-04-19 中国科学院上海天文台 基于互相关谱合成的空间vlbi信号增强方法及系统
CN113281078B (zh) * 2021-06-10 2023-10-27 中国科学院上海天文台 用于多目标vlbi测轨验证的通用信号仿真方法
JP7325863B1 (ja) 2022-03-24 2023-08-15 株式会社光電製作所 無線装置、地上局装置
CN115575916A (zh) * 2022-10-21 2023-01-06 平湖空间感知实验室科技有限公司 近地小行星地基雷达探测目标筛选方法、系统和电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855643A (zh) * 2016-12-23 2017-06-16 中国人民解放军63921部队 基于逆同波束干涉测量技术实现月球旋转测量的方法
CN106855643B (zh) * 2016-12-23 2018-10-12 中国人民解放军63921部队 基于逆同波束干涉测量技术实现月球旋转测量的方法

Also Published As

Publication number Publication date
JP2001042030A (ja) 2001-02-16

Similar Documents

Publication Publication Date Title
Frasier et al. Dual-beam interferometry for ocean surface current vector mapping
US7528762B2 (en) Signal processing methods for ground penetrating radar from elevated platforms
US9989634B2 (en) System and method for detection and orbit determination of earth orbiting objects
Kulpa et al. The concept of airborne passive radar
Pisanu et al. Upgrading the Italian BIRALES system to a pulse compression radar for space debris range measurements
RU2526850C2 (ru) Способ получения радиолокационного изображения участка земной поверхности и радиолокационная станция с синтезированной апертурой антенны (варианты)
JP3172739B2 (ja) Vlbiレーダ探査法
Antoniou et al. Space-surface bistatic synthetic aperture radar with navigation satellite transmissions: A review
JPH11510914A (ja) 衛星信号を処理することによりジオイド測定とジオイド画像生成との少なくとも一方を行う方法及び装置
US7928901B2 (en) Systems and methods for producing radar images
Potekhin et al. Recording and control digital systems of the Irkutsk Incoherent Scatter Radar
JP3001405B2 (ja) インターフェロメトリsar方式
Berngardt et al. ISTP SB RAS DECAMETER RADARS
Lee et al. Cis-lunar space debris radar capability and feasibility
RU2531255C1 (ru) Радиолокационная система для летательных аппаратов
RU2608338C1 (ru) Устройство обработки сигналов в наземно-космической просветной радиолокационной системе
RU2422849C1 (ru) Радиолокационный комплекс
Moccia et al. Bistatic synthetic aperture radar
Cherniakov et al. Experiences Gained during the Development of a Passive BSAR with GNSS Transmitters of Opportunity.
RU2309425C2 (ru) Способ калибровки радиопеленгатора-дальномера
Mehrholz Radar techniques for the characterization of meter—sized objects in space
RU2278398C2 (ru) Способ получения радиолокационного изображения земной поверхности при помощи многопозиционной радиолокационной системы с синтезированной апертурой антенны
Fu et al. Overview of orbital debris detection using spaceborne radar
RU2194288C2 (ru) Радиолокационная система
Munton et al. A midlatitude HF propagation experiment over New Mexico

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3172739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term