JP3170751U - Tower type solar power generator - Google Patents

Tower type solar power generator Download PDF

Info

Publication number
JP3170751U
JP3170751U JP2011004127U JP2011004127U JP3170751U JP 3170751 U JP3170751 U JP 3170751U JP 2011004127 U JP2011004127 U JP 2011004127U JP 2011004127 U JP2011004127 U JP 2011004127U JP 3170751 U JP3170751 U JP 3170751U
Authority
JP
Japan
Prior art keywords
tower
solar heat
power generation
heat
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011004127U
Other languages
Japanese (ja)
Inventor
国幸 中島
国幸 中島
Original Assignee
国幸 中島
国幸 中島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国幸 中島, 国幸 中島 filed Critical 国幸 中島
Priority to JP2011004127U priority Critical patent/JP3170751U/en
Application granted granted Critical
Publication of JP3170751U publication Critical patent/JP3170751U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

【課題】土地を効率的に利用し、高い発電効率を得ることができるタワー型太陽熱発電装置を提供する。【解決手段】太陽熱エネルギーを利用する発電装置において、複数個の太陽熱受熱器1、2、3、4を、立設した支持塔へ、所定間隔Qをおいて、垂直方向の縦列多段に設け、その支持塔の基礎部53から太陽熱受熱器1、2、3、4を循環する圧力流体を用いた発電システムへ連結する。【選択図】図1A tower-type solar thermal power generation apparatus capable of efficiently using land and obtaining high power generation efficiency is provided. In a power generation apparatus using solar thermal energy, a plurality of solar heat receivers 1, 2, 3, 4 are provided in a vertically arranged multi-stage at a predetermined interval Q to an upright support tower, It connects with the electric power generation system using the pressure fluid which circulates the solar heat receiver 1, 2, 3, 4 from the base part 53 of the support tower. [Selection] Figure 1

Description

この考案は、縦列多段に多数の太陽熱受熱器を設けたタワー型太陽熱発電装置に関する。 The present invention relates to a tower type solar thermal power generation apparatus in which a large number of solar thermal receivers are provided in multiple columns.

従来の太陽熱エネルギーを用いた発電は、発電所とした広い敷地において、中心に集熱タワーを立設してその周囲に多数のミラー(平面鏡=ヘリオスタット)を列設して集熱する大規模集熱システムがある(特許文献1:特開2009−198120号公報 参照)。
この集熱システムでは、ヘリオスタット群に対し原則一機のみの太陽熱レシーバー(受熱器)が設置される。
このシステムでは広大な敷地と、集熱高温に適する巨大なタワーを構築することが必要である。
Conventional power generation using solar thermal energy is a large-scale facility that collects heat by setting up a heat collection tower in the center and arranging a number of mirrors (plane mirrors = heliostats) around it on a large site as a power plant. There is a heat collection system (see Patent Document 1: Japanese Patent Laid-Open No. 2009-198120).
In this heat collection system, only one solar heat receiver (heat receiver) is installed for the heliostat group.
In this system, it is necessary to construct a vast site and a huge tower suitable for high temperature collection.

集光した光熱を効率よく利用するための太陽熱受熱器には、容器状の内部に熱を誘導する容積式太陽熱受熱器がある。
例えば特許文献2のような受光器(内面反射筒)の内部反射を利用して焦点に集熱する受光器方式がある。
As a solar heat receiver for efficiently using the collected light heat, there is a positive displacement solar heat receiver that induces heat inside a container.
For example, there is a light receiver system that collects heat at a focal point using internal reflection of a light receiver (inner surface reflection cylinder) as in Patent Document 2.

特開2009−198120号公報JP 2009-198120 A 特許第3184660号公報Japanese Patent No. 3184660 実用新案登録第3156344号Utility Model Registration No. 3156344

ヘリオスタット式の集熱システムにおいては、平面的規模が大きくなるために土地空間利用の点で効率的ではない。
又、発電設備の土地面積や規模に比べて取出せるエネルギーは小さいという課題がある。
The Heliostat type heat collection system is not efficient in terms of land space use due to its large planar scale.
In addition, there is a problem that the amount of energy that can be extracted is small compared to the land area and scale of the power generation facility.

この考案は、できる限り発電所構造物のための敷地を少なくして、土地を効率的に利用する方向で開発し、高い発電効率を得ることができる太陽熱を利用した発電システムに適合した装置を提供することを目的とする。 This device has been developed in the direction of efficient use of land by reducing the number of sites for power plant structures as much as possible, and a device suitable for a solar power generation system that can obtain high power generation efficiency. The purpose is to provide.

この考案は、太陽熱エネルギーを利用する発電装置において、立設した支持塔へ、多数個の太陽熱受熱器を、所定の間隔をおいて、垂直方向の縦列多段に設け、その支持塔の基礎部から前記太陽熱受熱器を循環する圧力流体(W)を用いた発電システムへ連結したことを特徴とするタワー型太陽熱発電装置である。
前記太陽熱受熱器は、表面に多数のレンズを略半球状に配した中空円錐筒で、前記レンズからの内部集光位置に蓄熱体を設け、その蓄熱体の周囲に給熱管を設けている。
そして、その太陽熱受熱器は、それぞれが同型で直径及び厚さが同寸法である。
立設した支持塔とは、多数個の太陽熱受熱器を取り付けるタワー構造体を指す。
In this power generation apparatus using solar thermal energy, a large number of solar heat receivers are provided in vertical columns in multiple stages at predetermined intervals on a standing support tower, and from the base of the support tower. It is a tower type solar thermal power generation device connected to a power generation system using a pressure fluid (W) circulating through the solar thermal receiver.
The solar heat receiver is a hollow conical cylinder having a number of lenses arranged in a substantially hemispherical shape on the surface, and a heat storage body is provided at an internal condensing position from the lens, and a heat supply pipe is provided around the heat storage body.
The solar heat receivers have the same shape and the same diameter and thickness.
The standing support tower refers to a tower structure to which a large number of solar heat receivers are attached.

支持塔は、その基礎部に発電システムを構築した発電建屋を設けている。 The support tower has a power generation building with a power generation system built at the base.

本考案において装備される太陽熱受熱器は、表面に多数のレンズを略半球状に配した中空円錐筒で、太陽光(R)に向いたレンズからの内部集光位置に蓄熱体を設け、その蓄熱体の周囲にスパイラル状の給熱管を循環させる配管につないで設けたものである。 The solar heat receiver equipped in the present invention is a hollow conical cylinder having a number of lenses arranged in a substantially hemispheric shape on the surface, and a heat storage body is provided at an internal condensing position from the lens facing the sunlight (R). It is provided by connecting to a pipe that circulates a spiral heat supply pipe around the heat storage body.

最上部の太陽熱受熱器は先端に設けている。その下の太陽熱受熱器は、同じ大きさで縦列に多段に設けている。 The uppermost solar heat receiver is provided at the tip. The solar heat receivers below are provided in multiple stages in the same size and in columns.

前記給熱管は、水や液体空気 液体窒素など、圧力流体(W)を循環させる管体で、1個の太陽熱受熱器又は数個の太陽熱受熱器の蓄熱体をスパイラル状に巻き付いて受熱する配管で循環路である。 The heat supply pipe is a pipe body that circulates a pressure fluid (W) such as water, liquid air, liquid nitrogen, etc., and is a pipe that receives heat by spirally winding one solar heat receiver or heat storage bodies of several solar heat receivers. It is a circulation path.

蓄熱体の周囲の給熱管は、太陽熱受熱器から垂直に下降する配管につながっており、発電システムに圧力流体を循環させている。
発電のシステムとして、タービンに結合した発電機が設けられている。
高温加圧に加熱された圧力流体(W)は、タービンに送られ、圧力でそれを駆動し、タービンは発電機を駆動して発電する。
発電された電力は、蓄電池に蓄え、或いは送電する。
タービンから吐出された圧力流体(W)は、熱交換器で冷却し、冷却された圧力流体(W)はタンクに回収される。
このタンクからの圧力流体(W)はポンプの駆動で、配管へと送出され、循環される。
ポンプは、装備するモータを発電機からの給電で駆動し、圧力流体(W)を移送する。
圧力流体(W)は熱交換器で、冷却される。
熱交換器は、上記圧力流体(W)を所定レベルに冷却する。
なお、加温された圧力流体(W)をさらに加熱してタービンに送るため、補助装置として、タービンの入口直前に加熱器を配置する構成もある。
A heat supply pipe around the heat storage body is connected to a pipe vertically descending from the solar heat receiver, and circulates a pressure fluid in the power generation system.
As a power generation system, a generator coupled to a turbine is provided.
The pressurized fluid (W) heated to high temperature and pressure is sent to the turbine and driven by pressure, and the turbine drives the generator to generate electricity.
The generated electric power is stored in a storage battery or transmitted.
The pressure fluid (W) discharged from the turbine is cooled by a heat exchanger, and the cooled pressure fluid (W) is collected in a tank.
The pressure fluid (W) from the tank is sent to the piping and circulated by driving the pump.
A pump drives the motor to equip with the electric power feeding from a generator, and transfers a pressure fluid (W).
The pressure fluid (W) is cooled by a heat exchanger.
The heat exchanger cools the pressure fluid (W) to a predetermined level.
In addition, in order to further heat and send the heated pressure fluid (W) to the turbine, there is a configuration in which a heater is disposed immediately before the turbine inlet as an auxiliary device.

この考案に係る太陽熱エネルギーを用いたタワー型太陽熱発電装置は上記のように構成されて、次のような技術的効果がある。
(A)施設土地面積が狭くても,その土地の上下方が利用できれば、縦列に太陽熱受熱器の数を増やすことで、施設面積に比してタワー高さ分をほぼ横臥した面積の太陽光線(R)の照射を受けることができる。
(B)垂直方向に多段で間隔をおいて縦列に配置された容積式の太陽熱受熱器を開発し、この太陽熱受熱器はいわゆる光熱を吸収する容積型なので、周辺への光反射はない。
(C)垂直方向への受熱施設が主なものであるので、比較的立地面積を小さくできる。
(D)各太陽熱受熱器は、同型 同寸法であるので、設計製造コストの面で有利である。
The tower type solar thermal power generation apparatus using solar thermal energy according to the present invention is configured as described above and has the following technical effects.
(A) Even if the facility land area is small, if the top and bottom of the land can be used, by increasing the number of solar heat receivers in the column, the sun rays with an area almost lying side by side with the tower height compared to the facility area (R) can be irradiated.
(B) Developed positive displacement solar heat receivers that are arranged in multiple columns at intervals in the vertical direction. Since this solar heat receiver absorbs so-called light heat, it does not reflect light to the surroundings.
(C) Since the heat receiving facility in the vertical direction is the main one, the site area can be made relatively small.
(D) Since each solar heat receiver is the same type and the same size, it is advantageous in terms of design and manufacturing costs.

この考案の実施の形態1の装置を示す概略図である。It is the schematic which shows the apparatus of Embodiment 1 of this invention. この考案の実施の形態である多段式に配置した太陽熱受熱器を示すタワー構造体の概略図である。It is the schematic of the tower structure which shows the solar heat receiver arrange | positioned in the multistage type which is embodiment of this invention. この考案の実施の形態の太陽熱受熱器を示す概略図である。It is the schematic which shows the solar heat receiver of embodiment of this invention. この考案の実施の形態の太陽熱受熱器の斜視概略図である。It is a perspective schematic diagram of a solar heat receiver of an embodiment of this invention. この考案の実施の形態の太陽熱受熱器の断面構成を示す概略図である。It is the schematic which shows the cross-sectional structure of the solar heat receiver of embodiment of this invention. この考案の実施の形態2で、既設送電線鉄塔の内部に組み込んだ構成を示す概略図である。In Embodiment 2 of this invention, it is the schematic which shows the structure integrated in the inside of the existing power transmission line tower.

この考案に係るタワー型太陽熱発電装置の実施形態1を説明する。
図1は、実施形態1の発電システムと装置全体構成を示す概略図である。
Embodiment 1 of the tower type solar thermal power generation apparatus according to this device will be described.
FIG. 1 is a schematic diagram illustrating the overall configuration of the power generation system and the apparatus according to the first embodiment.

図1に示す実施形態1は、太陽熱エネルギーを受ける4台の太陽熱受熱器(1)(2)(3)(4)を、中心に立設された管塔(5)に所定の間隔(Q)をおいて、垂直方向に縦列に多段に集熱装置を設けたタワー型の太陽熱発電装置である。
タワー型太陽熱発電装置の支持塔=タワーは自立型である。
自立型ではあるが既設構造物に垂直方向の空間があれば、その空間に組み入れることができる。
例えば送電鉄塔の支柱を利用した組み込みなどで、既設構造物を利用し、タワー型太陽熱発電装置を、既設構造物の支柱又は側壁に組み込んで実施することもできる。
太陽熱受熱器(1)(2)(3)(4)は、一本の支持塔に4台とは限らず、何台でも多段に取付けることが可能である。
多段に設けるときの間隔は、太陽熱受熱器(1)(2)(3)(4)の大きさによるが、その高さの2倍の間隔があれば万遍なく照射受光できる。
In the first embodiment shown in FIG. 1, four solar heat receivers (1), (2), (3), and (4) that receive solar thermal energy are arranged at a predetermined interval (Q ) And a tower type solar thermal power generation apparatus provided with heat collecting devices in multiple stages in the vertical direction.
The support tower of the tower-type solar power generation device is a self-supporting tower.
If the existing structure has a vertical space, it can be incorporated into that space.
For example, an existing structure can be used, for example, by incorporating a column of a power transmission tower, and the tower type solar thermal power generation apparatus can be incorporated into a column or a side wall of the existing structure.
The number of solar heat receivers (1), (2), (3), and (4) is not limited to four, and any number of solar heat receivers (1), (2), (3), and (4) can be attached in multiple stages.
Although the interval when providing in multiple stages depends on the size of the solar heat receivers (1), (2), (3), and (4), if there is an interval that is twice the height, irradiation and reception can be performed uniformly.

図2の実施態様2に示すように、管塔(5)は、タワーの中心に設けた管体である。
管塔(5)は、4隅の支柱(51)とその支柱(41)をラーメン構造で連結する補助枠(52)で垂直に構築されている。
全体がタワー構造体で、その基礎部(53)で自立する。このタワー構造体がタワー型の支持塔となる。実施態様1及び実施態様2では、全長27mの高さを想定して設計している。
基礎部(53)にはその下に発電システムを構築した発電建屋(54)を設けている。
As shown in Embodiment 2 in FIG. 2, the tube tower (5) is a tube provided at the center of the tower.
The tube tower (5) is vertically constructed with four columns (51) and an auxiliary frame (52) connecting the columns (41) with a ramen structure.
The whole is a tower structure and is self-supporting at its foundation (53). This tower structure becomes a tower-type support tower. In Embodiment 1 and Embodiment 2, the design is made assuming a height of 27 m in total length.
The foundation (53) is provided with a power generation building (54) in which a power generation system is constructed.

太陽熱受熱器(1)(2)(3)(4)は、表面に多数のレンズ(6)を略半球状に配し、内部に反射面(7)を設けた中空円錐筒(8)を設け、図中の一点鎖線で示した太陽光(R)に向いたレンズ(6)及び前記反射面(7)からの内部集光位置に蓄熱体(9)を設け、その蓄熱体(9)の周囲にスパイラル状の給熱管(10)を前記循環させる配管(15)(16)につないで設けたものである。
給熱管(10)は図3、図5のように、各太陽熱受熱器(1)(2)(3)(4)の蓄熱体(9)の周囲に、熱を受けるべくスパイラル状に巻き付き接触している。
The solar heat receivers (1), (2), (3), and (4) have a hollow conical cylinder (8) in which a large number of lenses (6) are arranged in a substantially hemispherical shape and a reflecting surface (7) is provided inside. A heat storage body (9) is provided at the internal condensing position from the reflecting surface (7) and the lens (6) facing the sunlight (R) shown by the alternate long and short dash line in the figure, and the heat storage body (9) The spiral heat supply pipe (10) is connected to the circulating pipes (15) and (16).
As shown in FIGS. 3 and 5, the heat supply pipe (10) is spirally wound around the heat storage body (9) of each of the solar heat receivers (1), (2), (3), and (4) to receive heat. is doing.

最上部の太陽熱受熱器(1)は管塔(5)の先端に設けているが、その下の太陽熱受熱器(2)(3)(4)は、管塔(5)が貫通した形態で、3台とも同間隔(Q)をおいて取り付けている。
最上部に位置しない太陽熱受熱器(2)(3)(4)は、直上に位置する最上部の太陽熱受熱器(1)との関係では、太陽が直上にある場合は、太陽光が遮蔽される位置になる。
しかし、実際は直上に位置するのは一瞬で、直上以外は略球面状のレンズ(6)はすべて太陽光を受けうる位置になる。
つまり所定の間隔があれば、ドーム状或いは半球状の受光面をもつ形態であれば、縦列の多段でも受光量は確保できるものである。
The uppermost solar heat receiver (1) is provided at the tip of the tube tower (5), but the solar heat receivers (2), (3), and (4) below it are in a form that the tube tower (5) penetrates. All three units are attached at the same interval (Q).
The solar heat receivers (2), (3), and (4) that are not located at the top are shielded from sunlight when the sun is directly above in relation to the top solar heat receiver (1) that is located directly above. It becomes a position.
However, in actuality, it is instantaneously located immediately above, and all of the substantially spherical lenses (6) other than just above are positions where they can receive sunlight.
In other words, if there is a predetermined interval, the amount of light received can be ensured even in multiple stages in a column if it has a dome-shaped or hemispherical light receiving surface.

又、実施形態1では、最上部に位置しない太陽熱受熱器(2)(3)(4)は、中央に管塔(5)が貫通している構成であるので、その部分にはレンズ(6)はなく、最上部の太陽熱受熱器(1)に比較して、その部分の受光面はない。
太陽熱受熱器(2)(3)(4)に貫通孔を形成して受光面を少なくすることが不利な時は、貫通する管塔(5)を設けないこともできる。
この場合は、外周の4隅の支柱(51)を頑丈に構築し、これで支持して多段に各太陽熱受熱器(1)(2)(3)(4)・・・(n)を設けることで構成できる。
In the first embodiment, the solar heat receivers (2), (3), and (4) that are not located at the uppermost part have a structure in which the tube tower (5) penetrates in the center, and therefore a lens (6 ) And there is no light receiving surface in that portion as compared with the uppermost solar heat receiver (1).
When it is unfavorable to form through holes in the solar heat receivers (2), (3), and (4) to reduce the light receiving surface, the tube tower (5) that penetrates can be omitted.
In this case, the pillars (51) at the four corners on the outer periphery are constructed firmly, and are supported by this to provide the solar heat receivers (1) (2) (3) (4) ... (n) in multiple stages. Can be configured.

この場合でも直上からの太陽光は、次の太陽熱受熱器(2)(3)(4)に影をつくる。
このように影を作ってしまう縦列に太陽熱受熱器(1)(2)(3)(4)を配置する位置取りは、一見、不利な配置ではある。しかしその不利を超える施設利用面積を少なくする有利性がある。
Even in this case, sunlight from directly above creates a shadow on the next solar heat receiver (2) (3) (4).
The positioning of the solar heat receivers (1), (2), (3), and (4) in the columns that cause shadows in this way is a disadvantageous arrangement at first glance. However, there is an advantage of reducing the facility use area exceeding the disadvantage.

太陽熱受熱器(1)(2)(3)(4)の直径は、実施態様1では、同型で 直径や高さを同寸法にしている。
できる限りコンパクトな寸法が好ましく、同型が製作効率も良い。
In Embodiment 1, the solar heat receivers (1), (2), (3), and (4) have the same shape and the same diameter and height.
Compact dimensions are preferred as much as possible, and the same type has good manufacturing efficiency.

管塔(5)の内部には圧力流体(W)を循環させる配管(15)(16)が通っている。
給熱管(10)は、水や液体空気など、圧力流体(W)を循環させる管体で1個の太陽熱受熱器(1)又は数個の太陽熱受熱器(1)(2)(3)(4)・・・(n)の蓄熱体(9)をスパイラル状に巻き付き通過して、加熱されて圧力流体(W)をタービン(11)に送る循環系配管である。
蓄熱体(9)の周囲の給熱管(10)は、太陽熱受熱器(1)(2)(3)(4)から垂直に下降する配管(15)(16)につながっており、圧力流体(W)を循環させている。
圧力流体(W)は、タンク(18)からポンプ(19)で送出加圧され、高温になった圧力流体(W)はさらに、太陽熱受熱器(4)へ送られ、太陽熱受熱器(3)から太陽熱受熱器(2)を通過し、太陽熱受熱器(1)へと順次かつ更に加熱され、1000℃前後の高温に達してゆく。太陽熱受熱器(1)で高温・高圧の圧力流体(W)になったガスは、タービン4を駆動し、動力を発生させる。
発電された電力は、変電されて送電(14)され、或いは蓄電池(13)に蓄えられる。
圧力流体(W)は、タービン(11)から吐出され、熱交換器(17)で所定レベルまで冷却し、冷却された圧力流体(W)はタンク(18)に回収され、このタンク(18)からの圧力流体(W)は、再びポンプ(19)のパワーで配管(16)につながって循環される。
熱交換器(17)は、タンク(18)からの配管(16)と加熱された圧力流体(W)が送られる配管(15)との間で行われる。
配管(15)からの圧力流体(W)は熱交換器(17)で、冷却されるがその冷却は、地熱冷却管(20)で補助される。
Pipes (15) and (16) for circulating the pressure fluid (W) pass through the inside of the tube tower (5).
The heat supply pipe (10) is a tubular body that circulates a pressure fluid (W) such as water or liquid air. One solar heat receiver (1) or several solar heat receivers (1), (2), (3) ( 4)... (N) is a circulation piping that passes through the heat storage body (9) in a spiral shape and is heated to send the pressure fluid (W) to the turbine (11).
The heat supply pipe (10) around the heat storage body (9) is connected to the pipes (15) and (16) that descend vertically from the solar heat receivers (1), (2), (3), and (4), and the pressure fluid ( W) is circulating.
The pressure fluid (W) is sent and pressurized from the tank (18) by the pump (19), and the pressure fluid (W) having reached a high temperature is further sent to the solar heat receiver (4), and the solar heat receiver (3). The solar heat receiver (2) passes through the solar heat receiver (1) sequentially and further, and reaches a high temperature of around 1000 ° C. The gas that has become a high-temperature, high-pressure fluid (W) in the solar heat receiver (1) drives the turbine 4 to generate power.
The generated electric power is transformed and transmitted (14) or stored in a storage battery (13).
The pressure fluid (W) is discharged from the turbine (11), cooled to a predetermined level by the heat exchanger (17), and the cooled pressure fluid (W) is recovered in the tank (18). The pressure fluid (W) from is connected to the pipe (16) again by the power of the pump (19) and circulated.
The heat exchanger (17) is performed between the pipe (16) from the tank (18) and the pipe (15) through which the heated pressurized fluid (W) is sent.
The pressure fluid (W) from the pipe (15) is cooled by the heat exchanger (17), but the cooling is assisted by the geothermal cooling pipe (20).

このタワー型太陽熱発電装置における配管(15)(16)などの循環路は、地上の発電建屋(54)に設けられている。 Circulation paths such as the pipes (15) and (16) in this tower type solar thermal power generation apparatus are provided in the ground power generation building (54).

図2、図6は、3台の太陽熱受熱器(1)(2)(3)を多段に取り付けた実施態様2を示すものである。
図2は太陽熱受熱器(1)(2)(3)を備えたタワー支持塔に、発電システムを装備した発電建屋(54)を設けたもので、自立するタワー型太陽熱発電装置である。
図6は、既設の送電鉄塔(21)の内部に、本考案のタワー型太陽熱発電装置を装備した状態を示すものである。
このような組み込みは、高層ビルの側壁や、外付け避難階段などに後付けで建設できる。
2 and 6 show Embodiment 2 in which three solar heat receivers (1), (2), and (3) are attached in multiple stages.
FIG. 2 shows a self-supporting tower type solar power generation apparatus in which a power generation building (54) equipped with a power generation system is provided on a tower support tower provided with solar heat receivers (1), (2), and (3).
FIG. 6 shows a state where the tower type solar thermal power generation apparatus of the present invention is installed in the existing transmission tower (21).
Such integration can be retrofitted to the side walls of high-rise buildings or external escape stairs.

本考案は、垂直方向で縦列多段に多数の太陽熱受熱器を設けたタワー型太陽熱発電装置であり、設置面積を小さくできる発電装置である。
巨大なタワーとすることも可能であり、タワー自体を多数台構築するタワー群の構成も可能である。
都市型発電装置としての利用や、非常用の移動発電装置として発展性がある。
The present invention is a tower type solar thermal power generation apparatus in which a large number of solar heat receivers are provided in multiple columns in the vertical direction, and is a power generation apparatus that can reduce the installation area.
It is possible to make it a huge tower, and it is also possible to configure a tower group in which many towers are built.
It can be used as an urban power generator or as an emergency mobile power generator.

1… 太陽熱受熱器
2… 太陽熱受熱器
3… 太陽熱受熱器
4… 太陽熱受熱器
n… 太陽熱受熱器
5… 管塔
51 支柱
52 補助枠
53 基礎部
54 発電建屋
6… レンズ
7… 反射面
8… 中空円錐筒
9 蓄熱体
10… 給熱管[循環路)
W 圧力流体
11 タービン
12 発電機
13 蓄電池
14 送電
15… 配管
16 配管
17 熱交換器
18… タンク
19 ポンプ
20 地熱冷却管
21 送電鉄塔
R 太陽光線
Q 太陽熱受熱器と太陽熱受熱器の間隔
DESCRIPTION OF SYMBOLS 1 ... Solar heat receiver 2 ... Solar heat receiver 3 ... Solar heat receiver 4 ... Solar heat receiver n ... Solar heat receiver 5 ... Tube tower 51 Support column 52 Auxiliary frame 53 Base part 54 Power generation building 6 ... Lens 7 ... Reflecting surface 8 ... Hollow Conical tube 9 Heat storage body 10 Heat supply pipe [circulation path]
W Pressure fluid 11 Turbine 12 Generator 13 Storage battery 14 Transmission 15 ... Piping 16 Piping 17 Heat exchanger 18 ... Tank 19 Pump 20 Geothermal cooling pipe 21 Transmission tower R Solar ray Q Spacing between solar heat receiver and solar heat receiver

Claims (3)

多数個の太陽熱受熱器(1)(2)(3)(4)・・・(n)を、支持塔に、間隔をおいて、垂直方向の縦列多段に設け、その支持塔に、発電システムを連結したことを特徴とするタワー型太陽熱発電装置。 A large number of solar heat receivers (1), (2), (3), (4),... (N) are provided in a vertical multistage column at intervals in the support tower, and a power generation system is provided in the support tower. A tower type solar thermal power generator characterized by connecting the two. 前記太陽熱受熱器(1)(2)(3)(4)・・・(n)は、表面に多数のレンズ(6)を略半球状に配した中空円錐筒(8)で、前記レンズ(6)からの内部集光位置に蓄熱体(9)を設け、その蓄熱体(9)の周囲に給熱管(10)を設けたことを特徴とする請求項1記載のタワー型太陽熱発電装置。 The solar heat receivers (1), (2), (3), (4),... (N) are hollow conical cylinders (8) in which a large number of lenses (6) are arranged in a substantially hemispherical shape on the surface. The tower type solar thermal power generator according to claim 1, wherein a heat storage body (9) is provided at an internal condensing position from 6), and a heat supply pipe (10) is provided around the heat storage body (9). 前記太陽熱受熱器(1)(2)(3)(4)・・・(n)は、それぞれが同型で直径及び厚さが同寸法であることを特徴とする請求項1又は請求項2のいずれかに記載のタワー型太陽熱発電装置。

3. The solar heat receiver (1) (2) (3) (4) (n) is the same type and has the same diameter and thickness. The tower type solar thermal power generator according to any one of the above.

JP2011004127U 2011-07-15 2011-07-15 Tower type solar power generator Expired - Fee Related JP3170751U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004127U JP3170751U (en) 2011-07-15 2011-07-15 Tower type solar power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004127U JP3170751U (en) 2011-07-15 2011-07-15 Tower type solar power generator

Publications (1)

Publication Number Publication Date
JP3170751U true JP3170751U (en) 2011-09-29

Family

ID=54881178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004127U Expired - Fee Related JP3170751U (en) 2011-07-15 2011-07-15 Tower type solar power generator

Country Status (1)

Country Link
JP (1) JP3170751U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436206B1 (en) * 2012-07-20 2014-09-02 이상권 Thermoelectric Cell Compound Solar Heat Generation System Direct Concentrating of Bottle Lens
JP2015148205A (en) * 2014-02-07 2015-08-20 初一 松本 Solar heat power generation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436206B1 (en) * 2012-07-20 2014-09-02 이상권 Thermoelectric Cell Compound Solar Heat Generation System Direct Concentrating of Bottle Lens
JP2015148205A (en) * 2014-02-07 2015-08-20 初一 松本 Solar heat power generation apparatus

Similar Documents

Publication Publication Date Title
US6434942B1 (en) Building, or other self-supporting structure, incorporating multi-stage system for energy generation
JP6280275B2 (en) Solar thermal power generation method and apparatus by gas endotherm based on characteristic absorption spectrum
US20080216822A1 (en) Solar engery system
US20120111006A1 (en) Solar energy transfer and storage apparatus
US20130047610A1 (en) System for collecting concentrated solar radiation
WO2009105587A2 (en) Solar radiation collection systems
US20100043434A1 (en) Method and System for Converting Solar Energy into Mechanical or Electrical Energy
JP3170751U (en) Tower type solar power generator
US20190186473A1 (en) Augmentation of solar chimney for power production using fresnel lens
CN209586602U (en) Solar power station
CN102231612A (en) Concentrating photovoltaic power generation unit, power generation device and a power generation system
JP2011249654A (en) Solar photovoltaic device
WO2015033249A1 (en) Solar energy transfer and storage apparatus
JP2013024045A (en) Tower type solar thermal power generation device
CN201243261Y (en) Omnirange high-efficiency concentration solar hydroelectricity integration generating set
KR101051307B1 (en) Cylindrical Granular Photovoltaic Device
JP2012202390A (en) Turbine facility, and solar thermal power generation facility equipped with the same
CN101350578A (en) Omnirange high-efficiency concentration solar hydroelectric integration power generation system
JP5869284B2 (en) Solar collector
JPWO2014017539A1 (en) Solar thermal conversion device and solar thermal power generation system using the same
CN202419970U (en) Tower type receiver for solar thermal power station
WO2009028000A2 (en) Improved robot collector for large lens solar concentrators
CN103437963B (en) A kind of solar energy wind-power generation tower curved surface sleeve pipe
JP2021534722A (en) Solar energy collector with tree structure
CN202757298U (en) Energy-gathering outdoor cluster solar heating device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees