JP3169773B2 - Corrosion resistant copper alloy tube for heat exchanger - Google Patents

Corrosion resistant copper alloy tube for heat exchanger

Info

Publication number
JP3169773B2
JP3169773B2 JP18544694A JP18544694A JP3169773B2 JP 3169773 B2 JP3169773 B2 JP 3169773B2 JP 18544694 A JP18544694 A JP 18544694A JP 18544694 A JP18544694 A JP 18544694A JP 3169773 B2 JP3169773 B2 JP 3169773B2
Authority
JP
Japan
Prior art keywords
protective film
copper
heat exchanger
corrosion
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18544694A
Other languages
Japanese (ja)
Other versions
JPH07305993A (en
Inventor
堅樹 源
太郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18544694A priority Critical patent/JP3169773B2/en
Publication of JPH07305993A publication Critical patent/JPH07305993A/en
Application granted granted Critical
Publication of JP3169773B2 publication Critical patent/JP3169773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は通水前に予め銅合金管内
面に耐食性の保護皮膜を形成しておく熱交換器用耐食銅
合金管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant copper alloy tube for a heat exchanger in which a corrosion-resistant protective film is formed on the inner surface of a copper alloy tube before water flow.

【0002】[0002]

【従来の技術】従来、銅合金製熱交換器用伝熱管の内面
の腐食を防止するために、管内面にオキシ水酸化鉄を主
成分とする保護皮膜を形成する技術が広く採用されてい
る。このオキシ水酸化鉄を主成分とする保護皮膜は、通
常伝熱管を通流する冷却水に第1鉄イオン(2価)を注
入して、この冷却水を伝熱管内に送り込むことにより管
内面に形成されている。しかしながら、この方法は保護
皮膜の形成速度が遅いために、冷却水の通水初期に厳し
い腐食条件に曝される場合には、保護皮膜の形成が間に
合わず、十分な防食効果が得られないという問題点があ
る。即ち、通水初期に健全な皮膜が形成されていない
と、耐食性が十分でない場合があり、この従来の冷却水
中に第1鉄イオンを注入する方法では、このような環境
での使用に耐え得ない。また、鉄イオンを含有した水が
そのまま海へ放出されるので、環境保全の観点から好ま
しい技術とはいえない。
2. Description of the Related Art Conventionally, in order to prevent corrosion of the inner surface of a heat exchanger tube for a heat exchanger made of a copper alloy, a technique of forming a protective film containing iron oxyhydroxide as a main component on the inner surface of the tube has been widely adopted. The protective film containing iron oxyhydroxide as a main component is formed by injecting ferrous ions (divalent) into cooling water that normally flows through a heat transfer tube, and sending the cooling water into the heat transfer tube to form an inner surface of the tube. Is formed. However, in this method, since the formation rate of the protective film is low, when the substrate is exposed to severe corrosive conditions in the initial stage of the passage of the cooling water, the protective film cannot be formed in time and a sufficient anticorrosion effect cannot be obtained. There is a problem. That is, if a sound film is not formed in the early stage of water passage, the corrosion resistance may not be sufficient, and the conventional method of injecting ferrous ions into cooling water cannot withstand use in such an environment. Absent. Further, since water containing iron ions is released to the sea as it is, it cannot be said that it is a preferable technology from the viewpoint of environmental conservation.

【0003】そこで、これらの問題点を改善するため
に、予め管内面に保護皮膜を形成した伝熱管として内面
を樹脂で被覆した内面塗装管が提案されている(特開昭
61−282796、特公昭56−45079、特開平
1−296095、特公昭59−50269、特開昭6
2−77600等)。また、本願出願人は、管内面に水
酸化鉄又は酸化鉄を主成分とする保護皮膜を予め形成し
ておく熱交換器用伝熱管を提案した(特開平2−169
996)。
[0003] In order to solve these problems, there has been proposed an internally coated tube in which the inner surface is coated with a resin as a heat transfer tube in which a protective film is previously formed on the inner surface of the tube (Japanese Patent Application Laid-Open No. 61-282796; JP-B-56-45079, JP-A 1-296095, JP-B-59-50269, JP-A-6
2-77600 etc.). In addition, the present applicant has proposed a heat exchanger tube for a heat exchanger in which a protective film containing iron hydroxide or iron oxide as a main component is formed in advance on the inner surface of the tube (Japanese Patent Laid-Open No. 2-169).
996).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の従来技術には、以下に示す欠点がある。即ち、樹脂塗
装によって形成した保護皮膜は、熱交換器の水室に適用
される電気防食の影響を受け、この水室に近い管端部等
で保護皮膜が膨れるという問題点がある。
However, these prior arts have the following disadvantages. That is, the protective film formed by resin coating is affected by the electrolytic protection applied to the water chamber of the heat exchanger, and there is a problem that the protective film swells at the end of the pipe near the water chamber.

【0005】また、水酸化鉄又は酸化鉄の皮膜を被覆し
た管は電気防食に起因する保護皮膜の劣化は生じない
が、管内が過酷な条件で洗浄される場合には、保護皮膜
の耐磨耗性が不十分であるという問題点がある。
A tube coated with a film of iron hydroxide or iron oxide does not cause deterioration of the protective film due to cathodic protection, but when the inside of the tube is washed under severe conditions, the protective film is not polished. There is a problem that the wearability is insufficient.

【0006】本発明はかかる問題点に鑑みてなされたも
のであって、耐磨耗性、耐剥離性及び耐食性が従来より
も優れていて、信頼性が高く且つ寿命が長い熱交換器用
耐食銅合金管を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has high wear resistance, exfoliation resistance and corrosion resistance as compared with conventional ones, and has high reliability and long life. It is intended to provide an alloy tube.

【0007】[0007]

【課題を解決するための手段】本発明に係る熱交換器用
耐食銅合金管は、管の内面に鉄化合物を含有する保護皮
膜を形成した熱交換器用耐食銅合金管において、前記保
護皮膜は更に銅及び/又は銅化合物を含有しており、前
記保護皮膜の透磁率が1.15以下、分極抵抗が2×1
4Ωcm2以上であり、前記保護皮膜の管周方向での平
均の厚さが2乃至35μmであることを特徴とする。
The corrosion-resistant copper alloy tube for a heat exchanger according to the present invention is a corrosion-resistant copper alloy tube for a heat exchanger having a protective film containing an iron compound formed on the inner surface of the tube. It contains copper and / or a copper compound, the magnetic permeability of the protective film is 1.15 or less, and the polarization resistance is 2 × 1.
0 4 Ωcm 2 or more, and the average thickness of the protective film in the tube circumferential direction is 2 to 35 μm.

【0008】また、前記保護皮膜中の銅及び/又は銅化
合物の含有量が銅に換算して3乃至15重量%であるこ
とが望ましく、前記鉄化合物はオキシ水酸化鉄、酸化鉄
及び水酸化鉄からなる群から選択された少なくとも1種
とすることができ、前記保護皮膜中の鉄化合物の含有量
が鉄に換算して20重量%以上であることが好ましい。
It is desirable that the content of copper and / or copper compound in the protective film is 3 to 15% by weight in terms of copper, and the iron compound is iron oxyhydroxide, iron oxide and hydroxide. At least one selected from the group consisting of iron can be used, and the content of the iron compound in the protective film is preferably 20% by weight or more in terms of iron.

【0009】更に、前記保護皮膜はP及びCr並びにそ
の化合物からなる群から選択された少なくとも1種を総
量で10乃至750ppm含有することもできる。
Further, the protective coating may contain at least one selected from the group consisting of P and Cr and compounds thereof in a total amount of 10 to 750 ppm.

【0010】更にまた、前記銅化合物は酸化物、ハロゲ
ン化物、炭酸塩、硫酸塩、硝酸塩、有機スルホン酸塩及
びカルボン酸塩からなる群から選択された少なくとも1
種とすることができる。
Further, the copper compound is at least one selected from the group consisting of oxides, halides, carbonates, sulfates, nitrates, organic sulfonates and carboxylates.
Can be seed.

【0011】[0011]

【作用】本発明は、通水使用前に管の内面に保護皮膜を
形成しておく熱交換器用耐食銅合金管において、その皮
膜の耐磨耗性を向上させたものである。本願発明者が予
めオキシ水酸化鉄皮膜を管内面に被覆した管について、
その皮膜の耐磨耗性を向上させるべく種々実験研究を繰
り返した結果、オキシ水酸化鉄皮膜中に銅及び/又は銅
化合物を添加することにより皮膜の耐磨耗性を著しく向
上させることができることを見い出した。本発明はこの
ような知見に基づいて完成されたものである。
According to the present invention, in a corrosion-resistant copper alloy tube for a heat exchanger in which a protective film is formed on the inner surface of the tube before using water, the abrasion resistance of the film is improved. Regarding a tube in which the inventor of the present application previously coated the inner surface of the tube with an iron oxyhydroxide coating,
As a result of repeating various experimental studies to improve the abrasion resistance of the film, it has been found that the addition of copper and / or a copper compound to the iron oxyhydroxide film can significantly improve the abrasion resistance of the film. I found The present invention has been completed based on such findings.

【0012】このように、保護皮膜中に銅又は銅化合物
を含有することによって、耐磨耗性を向上できる理由に
ついては以下のように考えられる。即ち、鉄化合物を含
有する保護皮膜中に銅及び/又は銅化合物を含有させた
ものと、そうでないものとでは、保護皮膜の化学的構造
が大きく異なる。図1は銅を10重量%含有する鉄化合
物(オキシ水酸化鉄)皮膜の金属組織を示すSEM(走
査型電子顕微鏡)写真であり、図3は銅を含有しない鉄
化合物皮膜の金属組織を示すSEM写真である。図1に
示すように、銅及び/又は銅化合物を含有させることに
より、保護皮膜は図3に示す銅を含有しない場合よりも
鉄化合物皮膜の空隙率が極めて低くなる。その結果、保
護皮膜の機械的強度が高くなり、耐磨耗性が著しく向上
する。使用できる銅化合物としては、酸化物、ハロゲン
化物、炭酸塩、硫酸塩、硝酸塩、有機スルホン酸塩及び
カルボン酸塩がある。この場合に、銅又は銅化合物の含
有量が銅に換算して3重量%以下であると十分な効果が
得られず、15重量%を超えると保護皮膜と母材の銅合
金管との密着性が低下して、界面からの剥離が生じやす
くなる。このため、銅及び/又は銅化合物の含有量は3
〜15重量%であることが好ましい。
The reason why the wear resistance can be improved by containing copper or a copper compound in the protective film as described above is considered as follows. That is, the chemical structure of the protective film is significantly different between those containing copper and / or a copper compound in the protective film containing an iron compound and those not containing it. FIG. 1 is an SEM (scanning electron microscope) photograph showing the metal structure of an iron compound (iron oxyhydroxide) film containing 10% by weight of copper, and FIG. 3 shows the metal structure of an iron compound film containing no copper. It is a SEM photograph. As shown in FIG. 1, by including copper and / or a copper compound, the porosity of the iron compound film in the protective film becomes extremely lower than that in the case where copper is not shown in FIG. 3. As a result, the mechanical strength of the protective film is increased, and the abrasion resistance is significantly improved. Copper compounds that can be used include oxides, halides, carbonates, sulfates, nitrates, organic sulfonates and carboxylates. In this case, if the content of copper or copper compound is less than 3% by weight in terms of copper, a sufficient effect cannot be obtained. The property is reduced, and peeling from the interface is likely to occur. Therefore, the content of copper and / or copper compound is 3
It is preferably about 15% by weight.

【0013】また、図2は鉄化合物に10重量%の銅を
添加し、更に100ppmのCrを添加した保護皮膜の
金属組織を示すSEM写真である。この図2に示すよう
に、Crを添加することにより、鉄化合物皮膜がCrを
含まないものに対して、更に空隙率が低くなっているの
が認められる。このようにして、銅及び/又は銅化合物
を3〜15重量%含有する保護皮膜中にP又はCrの少
なくとも1種を総量で10〜750ppm含有させるこ
とにより、保護皮膜の磨耗に対する耐久性が更に向上す
る。なお、銅及び/又は銅化合物を含有しない保護皮膜
にP又はCrを添加しても皮膜の機械的強度が向上する
が、銅及び/又は銅化合物が存在すると、銅との相乗効
果により、P又はCrの添加効果が一層大きくなる。こ
のP及びCrは単体又は化合物のいずれでも添加効果が
ある。P及びCrの化合物としては、例えば、リン酸、
亜リン酸、次亜リン酸、ピロリン酸、クロム酸、重クロ
ム酸並びにこれらの塩、塩化物及び酸化物等からなる群
から選択された少なくとも1種を用いることができる。
P及びCr並びにその化合物の合計の含有量が10pp
m未満であると十分な効果が得られず、逆に750pp
mを超えると保護皮膜と母材との密着性が低下して、界
面からの剥離が起こりやすくなる。従って、P及びCr
並びにその化合物の含有量は総量で10〜750ppm
であることが好ましい。
FIG. 2 is an SEM photograph showing the metallographic structure of a protective film obtained by adding 10% by weight of copper to an iron compound and further adding 100 ppm of Cr. As shown in FIG. 2, it can be seen that by adding Cr, the porosity is further reduced as compared with the case where the iron compound film does not contain Cr. In this way, by including at least one of P and Cr in a total amount of 10 to 750 ppm in the protective film containing 3 to 15% by weight of copper and / or a copper compound, the durability of the protective film against abrasion is further improved. improves. The mechanical strength of the film is improved by adding P or Cr to a protective film containing no copper and / or copper compound. However, when copper and / or a copper compound is present, the synergistic effect with copper increases P. Alternatively, the effect of adding Cr is further increased. P and Cr have an effect of being added singly or as a compound. Examples of the compound of P and Cr include phosphoric acid,
At least one selected from the group consisting of phosphorous acid, hypophosphorous acid, pyrophosphoric acid, chromic acid, dichromic acid, and salts, chlorides and oxides thereof can be used.
The total content of P and Cr and their compounds is 10 pp
m is less than 750 pp.
If it exceeds m, the adhesion between the protective film and the base material decreases, and peeling from the interface tends to occur. Therefore, P and Cr
And the content of the compound is 10 to 750 ppm in total.
It is preferred that

【0014】更に、本発明において、保護皮膜は、オキ
シ水酸化鉄、酸化鉄又は水酸化鉄等の鉄化合物を主成分
として形成される。この場合に、保護皮膜の透磁率が
1.15を超えると、熱交換器の定期検査の際に行う渦
流探傷検査にノイズが発生して、正確な検査結果を得る
ことができない。このため、保護皮膜の透磁率は1.1
5以下とする。なお、この透磁率は比透磁率である。こ
の透磁率は、管を半割にし、低透磁率計(米国セバン社
製)を使用して測定したものである。具体的には、透磁
率が既知の永久磁石を標準サンプルとし、この標準サン
プルの透磁率を基に前記低透磁率計のプローブを標準化
し、この標準化したプローブを、半割した供試材の内面
の保護皮膜に、皮膜に対して垂直方向の引力が得られる
ように近づけ、保護皮膜の磁化が最も近い標準サンプル
の透磁率又はその範囲を保護皮膜の透磁率測定値又はそ
の範囲とした。また、測定点は、管の全長に亘って採取
した。即ち、半割の管の周方向中央部にて、管長手方向
の中央部と、この中央部から管両端部側に1mおきに測
定した。そして、これらの測定点の平均値をその保護皮
膜の透磁率とした。
Further, in the present invention, the protective film is formed mainly of an iron compound such as iron oxyhydroxide, iron oxide or iron hydroxide. In this case, if the magnetic permeability of the protective film exceeds 1.15, noise is generated in the eddy current inspection performed at the time of the periodic inspection of the heat exchanger, and an accurate inspection result cannot be obtained. For this reason, the magnetic permeability of the protective film is 1.1
5 or less. This magnetic permeability is a relative magnetic permeability. The magnetic permeability was measured by using a low permeability meter (manufactured by Sevan Corporation, USA) by dividing the tube in half. Specifically, a permanent magnet having a known magnetic permeability is used as a standard sample, the probe of the low permeability meter is standardized based on the magnetic permeability of the standard sample, and the standardized probe is divided into half of the test material. The inner protective film was brought close to the protective film so that an attractive force in a direction perpendicular to the film was obtained, and the magnetic permeability or the range of the standard sample having the closest magnetization of the protective film was defined as the measured value or the range of the magnetic permeability of the protective film. The measurement points were collected over the entire length of the tube. That is, the measurement was performed at the center in the circumferential direction of the half of the pipe in the circumferential direction, and every 1 m from the center to both ends of the pipe. The average value of these measurement points was defined as the magnetic permeability of the protective film.

【0015】また、分極抵抗が2×104Ωcm2未満で
は耐食性が低下する。但し、この分極抵抗の測定方法は
JIS H 0530による。従って、分極抵抗は2×
104Ωcm2以上とする。
On the other hand, if the polarization resistance is less than 2 × 10 4 Ωcm 2 , the corrosion resistance decreases. However, this polarization resistance is measured according to JIS H 0530. Therefore, the polarization resistance is 2 ×
At least 10 4 Ωcm 2 .

【0016】そして、保護皮膜中の鉄化合物の含有量が
鉄に換算して20重量%未満になると、耐食性が低下す
る。従って、オキシ水酸化鉄、酸化鉄又は水酸化鉄等の
鉄化合物を主成分とする保護皮膜は透磁率が1.15以
下、分極抵抗が2×104Ωcm2以上で、鉄化合物の含
有量が鉄に換算して20重量%以上であることが好まし
い。
When the content of the iron compound in the protective film is less than 20% by weight in terms of iron, the corrosion resistance is reduced. Therefore, the protective film mainly composed of an iron compound such as iron oxyhydroxide, iron oxide or iron hydroxide has a magnetic permeability of 1.15 or less, a polarization resistance of 2 × 10 4 Ωcm 2 or more, and a content of the iron compound. Is preferably at least 20% by weight in terms of iron.

【0017】更にまた、保護皮膜の厚さが2μm未満で
は十分な防食効果が期待できず、35μmを超える保護
皮膜を形成すると、伝熱性能が低下する。従って保護皮
膜の厚さは2〜35μmであることが好ましい。
Further, if the thickness of the protective film is less than 2 μm, a sufficient anticorrosion effect cannot be expected, and if the protective film exceeds 35 μm, the heat transfer performance is reduced. Therefore, the thickness of the protective film is preferably 2 to 35 μm.

【0018】[0018]

【実施例】以下、本発明の実施例について具体的に説明
する。市販のアルミニウム黄銅管(JIS H3300
C6872T)、70/30キュプロニッケル管(J
IS H3300 C7150T)、90/10キュプ
ロニッケル管(JIS H3300 C7060T)及
びKCB(Cu-7%Sn-5%Zn-0.8%Al )を母材として使用し
た。これらの母材はいずれも、外径が25.4mm、肉
厚が1.24mm、長さが10mである。保護皮膜は管
内面に鉄粉懸濁液を付着させた後、管外表面の温度を2
5〜35℃に保持して、管内に水蒸気分圧が5.5〜1
5.5mmHgの酸化性ガスを管内径1cmあたり10
〜30リットル/分の流速で通過させることにより形成し
た。ここで、鉄粉懸濁液作成時に、銅(塩化銅(2
価))、Cr(クロム酸)及びP(リン酸)を添加し
た。そして、この添加量を変化させて保護皮膜中の成分
を変化させた。このようにして、熱交換器用耐食銅合金
管の保護皮膜の成分及び厚さを種々変化させて熱交換器
用耐食銅合金管を作製した。各実施例及び比較例の具体
的な成分及び厚さを下記表1に示す。
Embodiments of the present invention will be specifically described below. Commercially available aluminum brass tube (JIS H3300
C6872T), 70/30 cupronickel tube (J
IS H3300 C7150T), 90/10 cupronickel tube (JIS H3300 C7060T) and KCB (Cu-7% Sn-5% Zn-0.8% Al) were used as base materials. Each of these base materials has an outer diameter of 25.4 mm, a wall thickness of 1.24 mm, and a length of 10 m. After the iron powder suspension is applied to the inner surface of the tube, the protective film is heated to a temperature of 2
While maintaining the temperature at 5 to 35 ° C., the partial pressure of water vapor was 5.5 to 1 in the tube.
Oxidizing gas of 5.5 mmHg is supplied at a rate of 10
It was formed by passing at a flow rate of 3030 liters / min. Here, copper (copper chloride (2
)), Cr (chromic acid) and P (phosphoric acid). Then, by changing the amount of addition, the components in the protective film were changed. In this way, corrosion-resistant copper alloy tubes for heat exchangers were produced by varying the composition and thickness of the protective coating of the corrosion-resistant copper alloy tubes for heat exchangers. Table 1 below shows specific components and thicknesses of the respective examples and comparative examples.

【0019】これらの実施例1乃至27及び比較例28
乃至55について、剥離試験、スポンジボール洗浄試験
及び通水試験を実施した。以下にこれらの試験の詳細な
方法及び評価方法を示す。
Examples 1 to 27 and Comparative Example 28
A peeling test, a sponge ball cleaning test, and a water flow test were performed on the samples No. to No. 55. The detailed methods and evaluation methods of these tests are shown below.

【0020】剥離試験 作製した熱交換器用耐食銅合金管から管軸を含む平面で
半割した300mmの長さの半割管をサンプリングし
て、その内面に10mmの長さでX字状にナイフで内面
の保護皮膜に傷を付けた。そして、その上に粘着テープ
を貼り、これを勢いよく剥がすことにより保護皮膜の剥
離の有無を調べた。
Peeling test A 300 mm-length half-split pipe sampled by a plane including the pipe axis was sampled from the prepared corrosion-resistant copper alloy pipe for a heat exchanger, and a 10 mm long X-shaped knife was formed on the inner surface thereof. Scratched the inner protective film. Then, an adhesive tape was stuck thereon, and the adhesive tape was vigorously peeled off to examine whether or not the protective film was peeled.

【0021】スポンジボール洗浄試験 試作した熱交換器用耐食銅合金管から300mmの長さ
の管を切り出し、直径25mmのスポンジボールを繰り
返し3000回通過させた後に、全皮膜付着量に対する
皮膜減量の割合を調べた。
Sponge ball washing test A 300 mm length tube was cut out from the corrosion-resistant copper alloy tube for a heat exchanger prepared as a trial, and a sponge ball having a diameter of 25 mm was repeatedly passed through 3000 times. Examined.

【0022】通水試験 試作した熱交換器用耐食銅合金管から3000mmの長
さの管を切り出し、清浄海水を2m/sで1年間通水し
た後、管軸を含む平面で管を半割りして最大腐食深さを
測定した。
Water flow test A 3000 mm length pipe was cut out from the corrosion-resistant copper alloy pipe for a heat exchanger produced as a trial, and clean seawater was passed at 2 m / s for 1 year, and then the pipe was cut in half on a plane including the pipe axis. To determine the maximum corrosion depth.

【0023】上記の各試験に使用した実施例及び比較例
に対する各試験の結果及び熱貫流率低下率も表1に併せ
て示す。但し、表中、摩耗減量率は、スポンジボール洗
浄試験摩耗減量率(%)である。
Table 1 also shows the results of each test and the rate of decrease in the heat transmission coefficient for the examples and comparative examples used in each of the above tests. However, in the table, the wear loss rate is the sponge ball cleaning test wear loss rate (%).

【0024】[0024]

【表1】 [Table 1]

【0025】但し、管材料欄のアルミニウム黄銅はアル
ミニウム黄銅管(JIS H3300 C6872T)
であり、70/30 Cu−Niは70/30キュプロ
ニッケル管(JIS H3300 C7150T)であ
り、90/10 Cu−Niは90/10キュプロニッ
ケル管(JIS H3300 C7060T)であり、
KCBはCu-7%Sn-5%Zn-0.8%Al を示す。
However, aluminum brass in the tube material column is an aluminum brass tube (JIS H3300 C6872T).
70/30 Cu-Ni is a 70/30 cupronickel tube (JIS H3300 C7150T), 90/10 Cu-Ni is a 90/10 cupronickel tube (JIS H3300 C7060T),
KCB indicates Cu-7% Sn-5% Zn-0.8% Al.

【0026】また、比較例55は、裸のアルミニウム黄
銅管に硫酸第一鉄を加えた海水を通水して、その海水中
の鉄分が0.5ppmであるようにして3カ月連続して
通水することにより保護皮膜を形成したものである。
In Comparative Example 55, a bare aluminum brass tube was passed through seawater with ferrous sulfate added thereto, and passed continuously for three months so that the iron content in the seawater was 0.5 ppm. A protective film was formed by watering.

【0027】更に、表1の剥離試験(試験1)の結果欄
の○は剥離がないことを示して、×は僅かでも剥離した
ことを示す。
Further, in the results column of the peeling test (test 1) in Table 1, a circle indicates that there was no peeling, and a cross indicates that even a slight peeling occurred.

【0028】表1に示した結果から明らかなように、膜
厚が薄い比較例28,43、又は鉄分の含有量が低い比
較例29,43,44,54では通水試験において腐食
が発生していて防食性が低い。また、本発明にて規定し
た範囲を超えてCu,Cr,Pを含有する比較例36,
37,38,39,41,42,44,50,52では
耐剥離性が低い。Cuを含有していないか又はCuの含
有量が本発明にて規定した範囲より少ない比較例31,
32,33,34,35,40,43,45,46,4
7,48,49,51,53,54ではスポンジボール
洗浄試験において磨耗減量が極めて多くなっていて耐磨
耗性が低い。しかし、Cuの含有量が本発明の規定範囲
外でもCr,Pを本発明の規定量含有している比較例3
4,35,46,47,48,53においてはCr,P
を含有しない比較例より若干耐磨耗性が向上している。
膜厚が40μmを超える比較例30,44,52は熱貫
流率低下率が15%以上あり、伝熱性能が低下する。従
来の方法である冷却水中に第1鉄イオン(2価)を注入
しながら生成させた保護皮膜を有する比較例55は、通
水初期に保護皮膜がなかったため腐食が発生してスポン
ジボール試験に対する耐久性が低くなっている。
As is clear from the results shown in Table 1, in Comparative Examples 28 and 43 having a small film thickness or Comparative Examples 29, 43, 44 and 54 having a low iron content, corrosion occurred in the water flow test. And low corrosion protection. Comparative Example 36 containing Cu, Cr, and P beyond the range specified in the present invention,
37, 38, 39, 41, 42, 44, 50, and 52 have low peel resistance. Comparative Example 31 containing no Cu or having a Cu content less than the range specified in the present invention,
32, 33, 34, 35, 40, 43, 45, 46, 4
In Nos. 7, 48, 49, 51, 53, and 54, the loss of abrasion was extremely large in the sponge ball cleaning test, and the abrasion resistance was low. However, Comparative Example 3 containing Cr and P in the specified amounts of the present invention even when the Cu content was outside the specified range of the present invention.
Cr, P in 4,35,46,47,48,53
The abrasion resistance is slightly improved as compared with the comparative example containing no.
In Comparative Examples 30, 44 and 52 having a film thickness of more than 40 μm, the rate of decrease in the heat transmission coefficient is 15% or more, and the heat transfer performance is reduced. Comparative Example 55, which has a protective film formed by injecting ferrous ions (divalent) into cooling water, which is a conventional method, has a protective film in the early stage of water passage, and therefore, corrosion occurs and the sponge ball test is not performed. The durability is low.

【0029】これに対して、本発明の実施例1〜27は
いずれも優れた耐磨耗性及び耐剥離性を有している。ま
た、本発明の実施例1〜27はいずれも通水試験におい
て優れた防食効果を示している。
On the other hand, Examples 1 to 27 of the present invention all have excellent abrasion resistance and peeling resistance. In addition, Examples 1 to 27 of the present invention all show an excellent anticorrosion effect in a water flow test.

【0030】このように、鉄化合物を含有する保護皮膜
に銅又は銅化合物を添加することにより、保護皮膜の耐
磨耗性、耐食性及び耐剥離性が向上する。また、銅又は
銅化合物にP又はCrを同時に添加することにより、そ
れらの相乗効果として耐磨耗性、耐食性及び耐剥離性が
格段に向上する。従って、本実施例に係る熱交換器用耐
食銅合金管は、信頼性が高く且つ寿命が長い。
As described above, by adding copper or a copper compound to a protective film containing an iron compound, the abrasion resistance, corrosion resistance and peeling resistance of the protective film are improved. Further, by simultaneously adding P or Cr to copper or a copper compound, wear resistance, corrosion resistance and peel resistance are remarkably improved as a synergistic effect thereof. Therefore, the corrosion-resistant copper alloy tube for a heat exchanger according to the present embodiment has high reliability and a long life.

【0031】[0031]

【発明の効果】本発明に係る熱交換器用耐食銅合金管
は、鉄化合物を含有する保護皮膜に銅又は銅化合物を添
加したので、機械的洗浄に対する保護皮膜の耐磨耗性を
著しく向上させることができる。また、耐剥離性、耐食
性及び伝熱性能も優れている。更に、渦流探傷検査にお
いてもノイズの発生が少なく、定期検査を正確に行うこ
とができる。従って、本発明により、信頼性が高く且つ
寿命が長い熱交換器用耐食銅合金管を提供することがで
きる。
According to the corrosion-resistant copper alloy tube for a heat exchanger according to the present invention, since copper or a copper compound is added to a protective film containing an iron compound, the abrasion resistance of the protective film against mechanical cleaning is remarkably improved. be able to. In addition, peel resistance, corrosion resistance and heat transfer performance are also excellent. Further, even in the eddy current inspection, the occurrence of noise is small, and the periodic inspection can be accurately performed. Therefore, according to the present invention, it is possible to provide a corrosion-resistant copper alloy tube for a heat exchanger having high reliability and a long life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】銅の含有量が10重量%である鉄化合物皮膜の
金属組織を示す走査型電子顕微鏡(SEM)写真であ
る。
FIG. 1 is a scanning electron microscope (SEM) photograph showing the metal structure of an iron compound film having a copper content of 10% by weight.

【図2】銅の含有量が10重量%、Crの含有量が10
0ppmである鉄化合物皮膜の金属組織を示すSEM写
真である。
FIG. 2 shows a copper content of 10% by weight and a Cr content of 10%.
It is a SEM photograph which shows the metal structure of a 0 ppm iron compound film.

【図3】銅及び/又は銅化合物を含有していない鉄化合
物皮膜の金属組織を示すSEM写真である。
FIG. 3 is an SEM photograph showing a metal structure of an iron compound film not containing copper and / or a copper compound.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F28F 19/06 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) F28F 19/06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 管の内面に鉄化合物を含有する保護皮膜
を形成した熱交換器用耐食銅合金管において、前記保護
皮膜は更に銅及び/又は銅化合物を含有しており、前記
保護皮膜の透磁率が1.15以下、分極抵抗が2×10
4Ωcm2以上であり、前記保護皮膜の管周方向での平均
の厚さが2乃至35μmであることを特徴とする熱交換
器用耐食銅合金管。
1. A corrosion-resistant copper alloy tube for a heat exchanger having a protective film containing an iron compound formed on the inner surface of the tube, wherein the protective film further contains copper and / or a copper compound. Magnetic susceptibility is 1.15 or less, polarization resistance is 2 × 10
A corrosion-resistant copper alloy tube for a heat exchanger, wherein the thickness is 4 Ωcm 2 or more, and the average thickness of the protective film in the circumferential direction of the tube is 2 to 35 μm.
【請求項2】 前記保護皮膜中の銅及び/又は銅化合物
の含有量が銅に換算して3乃至15重量%であることを
特徴とする請求項1に記載の熱交換器用耐食銅合金管。
2. The corrosion-resistant copper alloy tube for a heat exchanger according to claim 1, wherein the content of copper and / or copper compound in the protective film is 3 to 15% by weight in terms of copper. .
【請求項3】 前記鉄化合物はオキシ水酸化鉄、酸化鉄
及び水酸化鉄からなる群から選択された少なくとも1種
であることを特徴とする請求項1又は2に記載の熱交換
器用耐食銅合金管。
3. The corrosion-resistant copper for a heat exchanger according to claim 1, wherein the iron compound is at least one selected from the group consisting of iron oxyhydroxide, iron oxide, and iron hydroxide. Alloy tube.
【請求項4】 前記保護皮膜中の鉄化合物の含有量が鉄
に換算して20重量%以上であることを特徴とする請求
項1乃至3のいずれか1項に記載の熱交換器用耐食銅合
金管。
4. The corrosion-resistant copper for a heat exchanger according to claim 1, wherein the content of the iron compound in the protective film is not less than 20% by weight in terms of iron. Alloy tube.
【請求項5】 前記保護皮膜はP及びCr並びにその化
合物からなる群から選択された少なくとも1種を総量で
10乃至750ppm含有することを特徴とする請求項
1乃至4のいずれか1項に記載の熱交換器用耐食銅合金
管。
5. The protective film according to claim 1, wherein the protective film contains at least one selected from the group consisting of P and Cr and a compound thereof in a total amount of 10 to 750 ppm. Corrosion resistant copper alloy tube for heat exchanger.
【請求項6】 前記銅化合物は酸化物、ハロゲン化物、
炭酸塩、硫酸塩、硝酸塩、有機スルホン酸塩及びカルボ
ン酸塩からなる群から選択された少なくとも1種である
ことを特徴とする請求項1乃至5のいずれか1項に記載
の熱交換器用耐食銅合金管。
6. The copper compound is an oxide, a halide,
The corrosion resistance for a heat exchanger according to any one of claims 1 to 5, wherein the corrosion resistance is at least one selected from the group consisting of carbonate, sulfate, nitrate, organic sulfonate, and carboxylate. Copper alloy tube.
JP18544694A 1994-03-18 1994-07-13 Corrosion resistant copper alloy tube for heat exchanger Expired - Fee Related JP3169773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18544694A JP3169773B2 (en) 1994-03-18 1994-07-13 Corrosion resistant copper alloy tube for heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-74424 1994-03-18
JP7442494 1994-03-18
JP18544694A JP3169773B2 (en) 1994-03-18 1994-07-13 Corrosion resistant copper alloy tube for heat exchanger

Publications (2)

Publication Number Publication Date
JPH07305993A JPH07305993A (en) 1995-11-21
JP3169773B2 true JP3169773B2 (en) 2001-05-28

Family

ID=26415569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18544694A Expired - Fee Related JP3169773B2 (en) 1994-03-18 1994-07-13 Corrosion resistant copper alloy tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP3169773B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791276B2 (en) * 2019-01-29 2020-11-25 ダイキン工業株式会社 Refrigerant piping inspection method and refrigerant piping

Also Published As

Publication number Publication date
JPH07305993A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
JP3515183B2 (en) Corrosion resistant resin coating structure on metal tube
JPS61186164A (en) Production of aluminum heat exchanger
GB2225591A (en) Corrosion-resistant plating layers
JP3169773B2 (en) Corrosion resistant copper alloy tube for heat exchanger
JPWO2003029520A1 (en) Non-hexavalent chromium-based corrosion resistant coating structure having a metal layer and a resin layer excellent in adhesion to the resin layer
EP0449268B1 (en) Material for expanded graphite gasket
CA2092268C (en) Method for making organism deposit-inhibiting pipe
US2224095A (en) Tube for heat exchanging apparatus
Zhu et al. Long term corrosion characteristics of metallic materials in marine environments
JP2584180B2 (en) Method for manufacturing biofouling prevention tube
EP0406579B1 (en) Electroplated steel sheet having a plurality of coatings, excellent in workability, corrosion resistance and water-resistant paint adhesivity
JP2801032B2 (en) Corrosion prevention method for heat exchanger tubes for heat exchangers
Krogstad et al. Galvanic Corrosion of Nickel Aluminium Bronze Exposed to Seawater in a Magnetic Field
Schölin et al. Corrosion resistant aluminium radiator materials for vacuum and controlled atmosphere brazing
JP2001343090A (en) Copper or copper alloy pipe and pipe with anticorrosion film
JPH0814790A (en) Copper alloy pipe with inner surface corrosion proof film excellent in sulfide reistant corrosion prevention
Lewis et al. Evaluation of copper-nickel alloys for OTEC applications
JPH0438958B2 (en)
Fukuda et al. Development of quad-layer clad brazing sheet for drawn cup type evaporators: Part 1
Gilbert Materials for Use in Ships' Condensers and Other Seawater-carrying Systems
JP2587408B2 (en) Magneto-optical recording medium
Sheldon et al. The heat transfer resistance of various heat exchanger tubing alloys in natural and synthetic seawaters
TW209264B (en)
JP2714498B2 (en) Heat transfer tube for heat exchanger and method of manufacturing the same
Gray et al. Development of an Understanding of the Critical Factors Influencing Waterside Corrosion Behaviour of Brazed Aluminium Radiators

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees