JP2801032B2 - Corrosion prevention method for heat exchanger tubes for heat exchangers - Google Patents

Corrosion prevention method for heat exchanger tubes for heat exchangers

Info

Publication number
JP2801032B2
JP2801032B2 JP1196391A JP19639189A JP2801032B2 JP 2801032 B2 JP2801032 B2 JP 2801032B2 JP 1196391 A JP1196391 A JP 1196391A JP 19639189 A JP19639189 A JP 19639189A JP 2801032 B2 JP2801032 B2 JP 2801032B2
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
film
iron
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1196391A
Other languages
Japanese (ja)
Other versions
JPH0361388A (en
Inventor
堅樹 源
光紘 大久保
定保 稲垣
繁 京原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1196391A priority Critical patent/JP2801032B2/en
Publication of JPH0361388A publication Critical patent/JPH0361388A/en
Application granted granted Critical
Publication of JP2801032B2 publication Critical patent/JP2801032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は管内に海水等の冷却水を通水する熱交換器用
伝熱管の冷却水による腐食を保護皮膜の形成により防止
する熱交換器用伝熱管の防食方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat exchanger tube for preventing the corrosion of a heat exchanger tube for a heat exchanger through which cooling water such as seawater flows by the cooling water by forming a protective film. The present invention relates to a method for preventing corrosion of heat tubes.

[従来の技術] 管内に、海水、河海水又は淡水を冷却水として通水す
る熱交換器においては、銅又は銅合金製伝熱管が多用さ
れている。また、管の内面にあらかじめ保護皮膜を形成
した熱交換器用伝熱管が用いられることもある。しかし
ながら、この銅又は銅合金製伝熱管はその使用条件によ
っては冷却水によって腐食を受けることがある。例え
ば、冷却水の入口側の管端部の近傍は激しい乱渦流のた
めにインレットアタックといわれる局部的な潰食を受け
ることがある。このインレットアタックを防止するため
に、従来電気防食法が適用されており、電気防食のみで
は不十分は場合には管端部近傍にのみ樹脂被覆が施され
ている。
[Related Art] Copper or copper alloy heat transfer tubes are frequently used in heat exchangers in which seawater, river seawater, or freshwater flows as cooling water. In some cases, a heat exchanger tube for a heat exchanger having a protective film formed on the inner surface of the tube in advance is used. However, the heat transfer tube made of copper or copper alloy may be corroded by cooling water depending on its use conditions. For example, the vicinity of the pipe end on the inlet side of the cooling water may be subject to local erosion called inlet attack due to strong turbulence. Conventionally, in order to prevent this inlet attack, a cathodic protection method has been applied. If only cathodic protection is not sufficient, a resin coating is applied only near the pipe end.

[発明が解決しようとする課題] しかしながら、樹脂皮膜を形成した後、電気防食処理
した場合に、その電気防食条件によっては樹脂皮膜に膨
れが発生するという難点がある。また、防食効果を高め
るために、樹脂皮膜を厚くすると、伝熱性能が低下する
のに加え、製造コストが高くなるという欠点もある。
[Problems to be Solved by the Invention] However, when a cathodic protection treatment is performed after the formation of the resin coating, there is a drawback that the resin coating swells depending on the cathodic protection conditions. Further, when the resin film is made thicker to enhance the anticorrosion effect, there is a disadvantage that the heat transfer performance is reduced and the production cost is increased.

更に、管の内面にあらかじめ保護皮膜を形成しておく
技術では、伝熱管を熱交換器に装着する際には管板に拡
管加工で取付ける作業を行なうので、あらかじめ形成し
た皮膜の一部が損傷を受けることがあった。
Furthermore, with the technology of forming a protective film on the inner surface of the tube in advance, when the heat transfer tube is mounted on the heat exchanger, the work is performed by expanding the tube onto the tube plate, so that a part of the previously formed film is damaged. Was received.

なお、内面に防食皮膜を形成していない伝熱管を熱交
換器に設置し、熱交換器の運転中に冷却水に第一鉄イオ
ンを注入することにより、伝熱管内面に保護皮膜を形成
する方法も採用されている。この第一鉄イオンの注入に
より良好な保護皮膜を形成することができ、電気防食の
効果が得られやすいという利点がある。しかしながら、
この方法においては、保護皮膜の形成までに時間がかか
り、通水初期の腐食防止には有効でないという欠点があ
る。このため、インレットアタックを受けるような厳し
い腐食条件下では、通水初期においても防食効果が優れ
ている前者の方法を採用せざるを得ない。従って、予め
保護皮膜を形成しておく前者の方法を改善することによ
り、管端部の腐食を十分防止することができる防食方法
の開発が要望されている。
In addition, a heat transfer tube without an anticorrosion film formed on the inner surface is installed in the heat exchanger, and ferrous ions are injected into cooling water during operation of the heat exchanger to form a protective film on the inner surface of the heat transfer tube. Methods have also been adopted. There is an advantage that a good protective film can be formed by the implantation of ferrous ions, and the effect of cathodic protection is easily obtained. However,
This method has the disadvantage that it takes a long time to form a protective film and is not effective in preventing corrosion at the beginning of water passage. For this reason, under severe corrosive conditions such as receiving an inlet attack, the former method, which has an excellent anticorrosion effect even in the initial stage of water passage, must be employed. Therefore, there is a demand for the development of an anticorrosion method capable of sufficiently preventing corrosion of a pipe end by improving the former method of forming a protective film in advance.

本発明はかかる問題点に鑑みてなされたものであっ
て、電気防食処理により皮膜に膨れを発生させることが
なく、また皮膜の形成による伝熱性能の低下が極めて少
ない耐食性保護皮膜をを低コストで形成することができ
る熱交換器用伝熱管の防食方法を提供することを目的と
する。
The present invention has been made in view of such a problem, and a low-cost corrosion-resistant protective film that does not cause swelling of the film due to the electrolytic protection process and that has a very small decrease in heat transfer performance due to the formation of the film is provided. It is an object of the present invention to provide a method for preventing corrosion of a heat exchanger tube for a heat exchanger, which can be formed by using a heat exchanger.

[課題を解決するための手段] 本発明に係る熱交換器用伝熱管の防食方法は、管内に
冷却水を通水する熱交換器用伝熱管の防食方法におい
て、伝熱管素管の管端から100mm以上の領域の管内面に
鉄粉懸濁液を塗布した後、酸化性ガスを通過させて前記
鉄粉懸濁液中の鉄分を酸化させることにより、水酸化鉄
又は酸化鉄を主成分とすると共に透磁率が1.00乃至1.15
である皮膜を管端から100mm以上の範囲に形成すること
を特徴とする。
[Means for Solving the Problems] The method for preventing corrosion of a heat exchanger tube for a heat exchanger according to the present invention is a method for preventing corrosion of a heat exchanger tube for a heat exchanger that allows cooling water to flow through the inside of the tube. After applying the iron powder suspension to the inner surface of the tube in the above region, by passing an oxidizing gas to oxidize iron in the iron powder suspension, iron hydroxide or iron oxide is used as a main component. With magnetic permeability of 1.00 to 1.15
Is formed in a range of 100 mm or more from the end of the tube.

[作用] 本発明においては、管端部の内面に形成する皮膜の主
成分が水酸化鉄又は酸化鉄であるから、十分な耐食性が
得られると共に、電気防食条件の如何に拘らず皮膜に膨
れが発生することがない。そして、この水酸化鉄又は酸
化鉄を主成分とする皮膜はそれ自体が耐食性向上に寄与
するのに加え、この皮膜を均一に形成することにより、
電気防食を実施した場合に管内面が防食電位に到達し易
くなる。このため、この皮膜は電気防食の効果を高める
作用も有する。
[Action] In the present invention, since the main component of the film formed on the inner surface of the tube end is iron hydroxide or iron oxide, sufficient corrosion resistance is obtained and the film swells regardless of the cathodic protection conditions. Does not occur. And, in addition to the film itself containing iron hydroxide or iron oxide as a main component, which contributes to the improvement of corrosion resistance, by forming this film uniformly,
When the cathodic protection is performed, the inner surface of the tube easily reaches the anticorrosion potential. For this reason, this film also has the effect of enhancing the effect of cathodic protection.

保護皮膜の形成領域は、管端から少なくとも100mm以
上、最大でも2000mm以内である。いわゆるインレットア
タックを受けるのは管端から100mm以内の領域が多く、
少なくともこの領域を含む管端から100mm以上の領域に
保護皮膜を形成することにより、管端部が腐食を受けや
すい環境下でもインレットアタックを確実に防止するこ
とができる。また、保護皮膜の形成領域が最大でも管端
から2000mm以内であると、伝熱性能の低下を最小限に抑
えることができる。
The formation area of the protective film is at least 100 mm or more from the pipe end, and at most 2000 mm or less. The area that receives the so-called inlet attack is often within 100 mm from the pipe end,
By forming a protective film at least in a region 100 mm or more from the end of the tube including this region, the inlet attack can be reliably prevented even in an environment where the end of the tube is susceptible to corrosion. Further, when the formation area of the protective film is at most 2,000 mm from the pipe end, a decrease in heat transfer performance can be minimized.

また、皮膜の透磁率は1.00乃至1.15である。皮膜の透
磁率が1.15を超えると、保護皮膜の形成後熱交換器の使
用過程で、渦流探傷検査により管内面の腐食の進行を非
破壊的に監視する場合に、皮膜の磁性の影響により渦流
探傷の検査精度が低下するからである。
The magnetic permeability of the film is 1.00 to 1.15. If the permeability of the coating exceeds 1.15, the progress of corrosion on the inner surface of the pipe is monitored nondestructively by eddy current inspection during the use of the heat exchanger after the formation of the protective coating. This is because the inspection accuracy of the flaw detection is reduced.

更に、皮膜の組成としては、鉄分を10%以上含有する
ことが必要であると共に、この鉄分のうち50%以上が水
酸化鉄又は酸化鉄として存在することが必要である。こ
のような皮膜は管内面に薄く均一に形成することができ
るのに加え、耐食性も優れている。このため、伝熱性能
を劣化させることなく、電気防食の効果を高め、インレ
ットアタックを有効に防止することができる。
Further, the composition of the film needs to contain 10% or more of iron, and it is necessary that 50% or more of the iron is present as iron hydroxide or iron oxide. Such a film can be formed thinly and uniformly on the inner surface of the tube, and also has excellent corrosion resistance. For this reason, the effect of the cathodic protection can be enhanced without deteriorating the heat transfer performance, and the inlet attack can be effectively prevented.

次に、上述の特性を有する皮膜の形成方法について具
体的に説明する。先ず、伝熱管を熱交換器の管板に取り
付ける。次いで、この伝熱管の内面に鉄粉懸濁液を塗布
した後、酸化性ガスを管内面に通過させて管内面に塗布
されている鉄粉を酸化させることにより管内面に水酸化
鉄又は酸化鉄を主成分とする皮膜を形成する。ところ
で、伝熱管を熱交換器の管板に取り付ける前に伝熱管の
内面を皮膜で被覆しておくと、伝熱管を熱交換器の管板
に取り付けるために拡管加工した場合に、拡管部の皮膜
が剥離してしまう。しかしながら、上述の鉄粉懸濁液の
塗布後酸化性ガスを通過させる方法においては、伝熱管
を熱交換器に装着した後、つまり拡管加工した後、冷却
水を通水する前に、耐食性が優れた保護皮膜を形成する
ことができる。
Next, a method for forming a film having the above-described characteristics will be specifically described. First, the heat transfer tube is attached to the tube plate of the heat exchanger. Then, after applying an iron powder suspension to the inner surface of the heat transfer tube, an oxidizing gas is passed through the inner surface of the tube to oxidize the iron powder applied to the inner surface of the tube, thereby causing iron hydroxide or oxidizing on the inner surface of the tube. Form a film mainly composed of iron. By the way, if the inner surface of the heat transfer tube is coated with a film before attaching the heat transfer tube to the heat exchanger tube sheet, if the heat transfer tube is expanded to attach to the heat exchanger tube sheet, The film peels off. However, in the above-described method of passing an oxidizing gas after the application of the iron powder suspension, after the heat transfer tube is attached to the heat exchanger, that is, after expanding the pipe, and before passing the cooling water, the corrosion resistance is reduced. An excellent protective film can be formed.

酸化性ガスとしては、処理コストが低いことから、水
分を含有する空気を使用することが好ましい。この場合
に、空気中の水蒸気分圧が1.9mmHg未満の場合は、鉄分
の酸化に長時間を要し、作業性が悪いのに加え、皮膜の
透磁率が高くなって渦流探傷検査の信頼性が低下する。
一方、水蒸気分圧が32.0mmHgを超える空気を通過させる
と、密着性が悪い皮膜が得られる。このような理由で水
蒸気分圧が1.9乃至32.0mmHgの水分含有空気を酸化性ガ
スとして使用する。
As the oxidizing gas, it is preferable to use air containing moisture because the processing cost is low. In this case, if the partial pressure of water vapor in the air is less than 1.9 mmHg, it takes a long time to oxidize the iron, and the workability is poor. Decrease.
On the other hand, when air having a water vapor partial pressure exceeding 32.0 mmHg is passed, a film having poor adhesion is obtained. For this reason, air containing water having a partial pressure of water vapor of 1.9 to 32.0 mmHg is used as the oxidizing gas.

[実施例] 次に、本発明の実施例についてその比較例と比較して
説明する。
[Examples] Next, examples of the present invention will be described in comparison with comparative examples.

先ず、単管を使用して保護皮膜の形成条件に関する予
備試験を実施した。即ち、外径が25.4mm、肉厚が1.245m
mのアルミニウム黄銅管(JISH3300C6872T)の内面に鉄
粉懸濁液を塗布した後、管内面に種々の水蒸気分圧の空
気を送風することにより、形成された皮膜の色調、密着
性並びに皮膜の透磁率及びこれらに伴う渦流探傷検査の
信頼性について試験した。
First, a preliminary test regarding the conditions for forming the protective film was performed using a single tube. That is, the outer diameter is 25.4mm and the wall thickness is 1.245m
After applying an iron powder suspension to the inner surface of an aluminum brass tube (JISH3300C6872T) of m length, air of various partial pressures of steam is blown to the inner surface of the tube, so that the color tone, adhesion, and transparency of the formed film The magnetic susceptibility and the associated eddy current inspection were tested for reliability.

なお、鉄粉懸濁液としては、10の1.6N塩酸及び8
のエタノールの混合液に、平均粒径が4μmの鉄粉を10
Kgだけ添加したものを使用した。また、皮膜の密着性及
び防食効果の評価は海水によるジェット試験により行っ
た。即ち、管状の試料をその長手方向に半割りし、この
試料に対し、口径が2mmのノズルから12.0mm/秒の流速で
海水のジェット流を照射する試験を45日間継続した後、
皮膜の剥離状況及び腐食の発生状況を調査した。更に、
予め管肉厚の20%及び50%の深さまで人工的にドリルホ
ール(人工疵)を付しておき、渦流探傷検査により得ら
れた減肉率の測定結果と、実際の欠陥の深さとを比較す
ることにより、渦流探傷の信頼性を評価した。
In addition, as the iron powder suspension, 10 1.6N hydrochloric acid and 8
Iron powder with an average particle size of 4 μm
The one added with only Kg was used. The evaluation of the adhesion and the anticorrosion effect of the film was performed by a jet test using seawater. That is, the tubular sample was halved in the longitudinal direction, and the test was performed for 45 days after irradiating a seawater jet stream at a flow rate of 12.0 mm / sec from a nozzle having a diameter of 2 mm to the sample for 45 days.
The state of peeling of the film and the state of occurrence of corrosion were investigated. Furthermore,
A drill hole (artificial flaw) is artificially added to a depth of 20% and 50% of the pipe wall thickness in advance, and the measurement result of the thinning rate obtained by the eddy current inspection and the actual defect depth are compared. By comparison, the reliability of the eddy current flaw detection was evaluated.

この試験結果を下記第1表に示す。 The test results are shown in Table 1 below.

この第1表に示すように、水蒸気分圧が低い比較例1,
2の場合は、皮膜中の鉄分の多くが金属鉄として存在す
るため、皮膜の透磁率が高くなり、その結果として渦流
探傷検査の信頼性が低下した。即ち、第1表の減肉率の
推定結果と、人工疵の深さ(20%又は50%)とを比較す
ると、各実施例の場合は略一致しているのに対し、比較
例の場合には推定減肉率が実際の深さよりも極めて深く
測定された。また、比較例1の場合は、皮膜中の鉄分自
体が少ないため、防食効果が不十分であった。更に、水
蒸気分圧が高い比較例3の場合には、皮膜の密着性が不
十分であり、十分な防食効果が得られなかった。これら
の結果から、伝熱管を熱交換器に装着した後に皮膜を形
成する場合には、送風する空気の水蒸気分圧を1mmHg以
下又は33.0mmHg以上にしないようにすることが必要であ
る。
As shown in Table 1, Comparative Example 1 having a low water vapor partial pressure
In the case of 2, most of the iron in the film was present as metallic iron, so that the magnetic permeability of the film was high, and as a result, the reliability of the eddy current inspection was reduced. That is, when comparing the estimation results of the wall thinning rate in Table 1 with the depth of the artificial flaw (20% or 50%), the results in each example are almost the same, while those in the comparative example are almost the same. The estimated wall loss was measured much deeper than the actual depth. In the case of Comparative Example 1, the anticorrosion effect was insufficient because the iron content in the film itself was small. Furthermore, in the case of Comparative Example 3 having a high water vapor partial pressure, the adhesion of the film was insufficient, and a sufficient anticorrosion effect was not obtained. From these results, when forming a film after mounting the heat transfer tube on the heat exchanger, it is necessary to keep the water vapor partial pressure of the air to be blown from 1 mmHg or less or 33.0 mmHg or more.

次に、外径が19.0mm、肉厚が1.2mm、長さが6150mmの
アルミニウム黄銅管(JISH3300 C6872T)を1750本装着
する熱交換器において、定期検査と同時に300本の伝熱
管を新しい伝熱管に交換した。その新管のうち、一部の
ものは拡管加工によって管板に取り付けた後、管内面に
鉄粉懸濁液を塗布し、次いで水蒸気を含有する空気を送
風して水酸化鉄を主成分とする皮膜を形成した。但し、
鉄粉懸濁液は平均粒径が4μmの鉄粉10Kgを10の1.6N
塩酸及び8のエタノールと混合した液である。この鉄
粉懸濁液を管内に塗布する範囲は管端部から50mm(比較
例1),120mm(実施例6),350mm(実施例7)又は1000
mm(実施例8)迄の4種類とした。また、比較のため
に、管端から1000mm迄の領域に従来と同様にエポキシ樹
脂皮膜を形成したもの(比較例5)、及び管内面に皮膜
形成処理を実施せずにそのまま使用するもの(比較例
6)を用意した。
Next, in a heat exchanger equipped with 1750 aluminum brass tubes (JISH3300 C6872T) having an outer diameter of 19.0 mm, a wall thickness of 1.2 mm, and a length of 6150 mm, 300 heat transfer tubes were replaced with new heat transfer tubes at the same time as the periodic inspection. Was replaced. Some of the new pipes are attached to the tube sheet by pipe expansion, then an iron powder suspension is applied to the inner surface of the pipe, and then air containing steam is blown to make iron hydroxide as the main component. A film was formed. However,
For iron powder suspension, 10 kg of iron powder with an average particle size of 4 μm is 10 1.6 N
It is a mixture of hydrochloric acid and 8 ethanol. The range of application of this iron powder suspension in the tube is 50 mm (Comparative Example 1), 120 mm (Example 6), 350 mm (Example 7) or 1000 mm from the end of the tube.
mm (Example 8). For comparison, an epoxy resin film was formed in a region up to 1000 mm from the end of the tube in the same manner as before (Comparative Example 5), and an epoxy resin film was used on the inner surface of the tube without performing a film forming process (Comparative Example). Example 6) was prepared.

このような条件で調整した熱交換器について、管端部
の電気防食は亜鉛を陽極とする犠牲陽極法を採用し、天
然海水を通水しながら、11か月間使用した。使用後の熱
交換器を評価するに際し、先ず、渦流探傷検査により管
全体の腐食発生状況を把握した。その結果を下記第2表
に示す。
With respect to the heat exchanger adjusted under such conditions, the sacrificial anode method using zinc as an anode was employed for the cathodic protection of the end of the tube, and the tube was used for 11 months while passing natural seawater. In evaluating the heat exchanger after use, first, the state of corrosion occurrence of the entire pipe was grasped by eddy current inspection. The results are shown in Table 2 below.

次に、第2表の実施例6〜8及び比較例4〜6の伝熱
管の中から、代表的な渦流探傷信号を示す管を抜管し
て、その皮膜及び腐食の状況を検査した。皮膜及び腐食
の状況の評価には通水前に管内面に形成しておいた皮膜
の残存状況、腐食の発生状況及びその深さ、渦流探傷検
査結果と実際の減肉深さとの対比等により行った。これ
らの結果を下記第3表に示す。
Next, from among the heat transfer tubes of Examples 6 to 8 and Comparative Examples 4 to 6 in Table 2, a tube showing a typical eddy current flaw detection signal was removed, and the state of the film and corrosion was inspected. The evaluation of the film and the state of corrosion is based on the remaining state of the film formed on the inner surface of the pipe before water flow, the occurrence and depth of corrosion, the comparison between the eddy current inspection results and the actual depth of wall thinning, etc. went. The results are shown in Table 3 below.

第2表及び第3表から明らかなように、管端部近傍に
皮膜を形成しなかった管(比較例6)はインレットアタ
ックが生じるものが比較的多く、最大腐食深さは0.40mm
であった。皮膜形成範囲が管端部から50mm迄の管(比較
例4)もインレットアタックを受け易い。また、従来と
同様にエポキシ樹脂を被覆した管(比較例5)は11か月
使用後の時点での腐食は軽いものの、皮膜に剥離及び膨
れが発生し、その後の腐食の進行が予想された。これに
対し、管端部から120mm以上の範囲迄皮膜を形成した管
(実施例6〜8)は腐食が極めて軽微であった。
As is clear from Tables 2 and 3, in the case of a tube in which a film was not formed in the vicinity of the end of the tube (Comparative Example 6), an inlet attack was relatively large, and the maximum corrosion depth was 0.40 mm.
Met. Tubes having a film formation range of up to 50 mm from the end of the tube (Comparative Example 4) are also susceptible to inlet attack. In addition, as in the conventional case, the pipe coated with the epoxy resin (Comparative Example 5) showed little corrosion after 11 months of use, but peeling and swelling occurred in the coating, and the subsequent corrosion was expected to progress. . On the other hand, the corrosion of the pipes (Examples 6 to 8) in which the coating was formed to a range of 120 mm or more from the pipe end was extremely slight.

[発明の効果] 本発明によれば、通水初期から腐食を防止することが
でき、電気防食処理によっても皮膜に膨れが発生するこ
とがないと共に、皮膜による伝熱性能の低下が極めて小
さい。また、この皮膜を低コストで形成することができ
る。従って、この熱交換器用伝熱管はインレットアタッ
クを受けるような激しい腐食環境下において使用される
熱交換器用伝熱管として極めて有効である。
[Effects of the Invention] According to the present invention, corrosion can be prevented from the initial stage of water passage, swelling does not occur in the film even by the cathodic protection treatment, and the decrease in heat transfer performance due to the film is extremely small. In addition, this film can be formed at low cost. Therefore, the heat exchanger tube for a heat exchanger is extremely effective as a heat exchanger tube for a heat exchanger used in a severe corrosive environment such as one subject to an inlet attack.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F28F 19/06 F28F 19/06 C (56)参考文献 特開 昭57−134566(JP,A) 特開 昭57−134567(JP,A) 特公 平6−15959(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C23F 11/00 F28F 19/00 - 19/06────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code FI F28F 19/06 F28F 19/06 C (56) References JP-A-57-134566 (JP, A) JP-A-57-134567 ( JP, A) JP 6-15959 (JP, B2) (58) Field surveyed (Int. Cl. 6 , DB name) C23F 11/00 F28F 19/00-19/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】管内に冷却水を通水する熱交換器用伝熱管
の防食方法において、伝熱管素管の管端から100mm以上
の領域の管内面に鉄粉懸濁液を塗布した後、酸化性ガス
を通過させて前記鉄粉懸濁液中の鉄分を酸化させること
により、水酸化鉄又は酸化鉄を主成分とすると共に透磁
率が1.00乃至1.15である皮膜を管端から100mm以上の範
囲に形成することを特徴とする熱交換器用伝熱管の防食
方法。
In a method for preventing corrosion of a heat exchanger tube for a heat exchanger in which cooling water is passed through a tube, an iron powder suspension is applied to an inner surface of a region of the heat exchanger tube at least 100 mm from an end of the tube and then oxidized. Oxidizing iron in the iron powder suspension by passing a conductive gas to form a coating having iron hydroxide or iron oxide as a main component and a magnetic permeability of 1.00 to 1.15 within a range of 100 mm or more from the pipe end. A method for preventing corrosion of a heat exchanger tube for a heat exchanger, wherein
【請求項2】前記酸化性ガスは水蒸気分圧が1.9乃至32.
0mmHgの空気であることを特徴とする請求項1に記載の
熱交換器用伝熱管の防食方法。
2. The oxidizing gas has a water vapor partial pressure of 1.9 to 32.
The method for preventing corrosion of a heat exchanger tube for a heat exchanger according to claim 1, wherein the air is 0 mmHg air.
JP1196391A 1989-07-28 1989-07-28 Corrosion prevention method for heat exchanger tubes for heat exchangers Expired - Fee Related JP2801032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196391A JP2801032B2 (en) 1989-07-28 1989-07-28 Corrosion prevention method for heat exchanger tubes for heat exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196391A JP2801032B2 (en) 1989-07-28 1989-07-28 Corrosion prevention method for heat exchanger tubes for heat exchangers

Publications (2)

Publication Number Publication Date
JPH0361388A JPH0361388A (en) 1991-03-18
JP2801032B2 true JP2801032B2 (en) 1998-09-21

Family

ID=16357093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196391A Expired - Fee Related JP2801032B2 (en) 1989-07-28 1989-07-28 Corrosion prevention method for heat exchanger tubes for heat exchangers

Country Status (1)

Country Link
JP (1) JP2801032B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020220B2 (en) * 1991-11-06 2000-03-15 株式会社リコー Thermal transfer recording method

Also Published As

Publication number Publication date
JPH0361388A (en) 1991-03-18

Similar Documents

Publication Publication Date Title
US4503099A (en) Heat transfer surfaces having scale resistant polymer coatings thereon
JP2801032B2 (en) Corrosion prevention method for heat exchanger tubes for heat exchangers
US1821702A (en) Conductor for heat exchange apparatus
Jsseling et al. Influence of Temperature on Corrosion Product Film Formation on CuNi10Fe in the Low Temperature Range: I. Corrosion rate as a function of temperature in well aerated sea water
JP2714498B2 (en) Heat transfer tube for heat exchanger and method of manufacturing the same
Robinson et al. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings
Ryen et al. Cathodic protection by distributed sacrificial anodes–Performance at Elevated Temperature and in Mud
Cohen Corrosion of copper and copper alloys
JP3367437B2 (en) Method to generate uniform weathering stable rust early
JPH0359399A (en) Heat transfer pipe for heat exchanger and usage thereof
JP3341242B2 (en) Corrosion resistant copper tube and its manufacturing method
JPH0674388A (en) Inner coated heat conducting pipe and manufacture telereof
JPH0599587A (en) Heat transfer tube for heat exchanger and manufacture thereof
JP3169773B2 (en) Corrosion resistant copper alloy tube for heat exchanger
JP2001343090A (en) Copper or copper alloy pipe and pipe with anticorrosion film
JPH0438958B2 (en)
JPH073183Y2 (en) Heat transfer tube for heat exchanger
Abd El Haleem et al. The role of some organic anions in promoting or inhibiting the corrosion of zinc
CN116180086A (en) Galvanized sheet surface inhibition layer erosion medicament and erosion method
JPH03156298A (en) Heat transfer tube for heat exchanger
Knudsen et al. Cathodic protection of aluminium in seawater
IE63028B1 (en) Process for producing pitting-resistant hard-drawn pipes of copper or copper alloys
JPH03158699A (en) Heat transfer pipe for heat exchanger
JP2001081585A (en) Method of preventing corrosion in steel structure by pasting of metallic thin sheet
Schölin et al. Corrosion resistant aluminium radiator materials for vacuum and controlled atmosphere brazing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees