JP3168592B2 - Solid electrode composition - Google Patents

Solid electrode composition

Info

Publication number
JP3168592B2
JP3168592B2 JP07097491A JP7097491A JP3168592B2 JP 3168592 B2 JP3168592 B2 JP 3168592B2 JP 07097491 A JP07097491 A JP 07097491A JP 7097491 A JP7097491 A JP 7097491A JP 3168592 B2 JP3168592 B2 JP 3168592B2
Authority
JP
Japan
Prior art keywords
solid
electrode
battery
electrode composition
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07097491A
Other languages
Japanese (ja)
Other versions
JPH04306560A (en
Inventor
正 外村
佳子 佐藤
裕史 上町
輝寿 神原
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP07097491A priority Critical patent/JP3168592B2/en
Publication of JPH04306560A publication Critical patent/JPH04306560A/en
Application granted granted Critical
Publication of JP3168592B2 publication Critical patent/JP3168592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固形電極組成物に関し、
特に固体あるいは固形状のリチウムイオン伝導性電解質
を用いるリチウム二次電池等の電気化学素子用の固形電
極組成物に関する。
The present invention relates to a solid electrode composition,
In particular, the present invention relates to a solid electrode composition for an electrochemical element such as a lithium secondary battery using a solid or solid lithium ion conductive electrolyte.

【0002】[0002]

【従来の技術】軽量で高エネルギー密度の電池や、大面
積のエレクトロクロミック素子、微小電極を用いた生物
化学センサー等の電気化学素子が期待できることから、
導電性高分子電極が盛んに検討されている。ポリアセチ
レンは不安定で電極としては実用性に乏しいことから他
のπ電子共役系導電性高分子が検討され、ポリアニリ
ン,ポリピロール,ポリアセン,ポリチオフェンといっ
た比較的安定な高分子が開発され、これらを正極に用い
たリチウム二次電池が開発されるに及んでいる。これら
の高分子電極は、専ら電解重合法により膜状に形成さ
れ、非プロトン性有機溶媒にリチウム塩を溶解した液体
電解質と組み合わせてリチウム二次電池に用いられてい
る。
2. Description of the Related Art Electrochemical devices such as lightweight, high-energy density batteries, large-area electrochromic devices, and biochemical sensors using microelectrodes can be expected.
Conductive polymer electrodes are being actively studied. Since polyacetylene is unstable and impractical as an electrode, other π-electron conjugated conductive polymers have been studied, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene have been developed. The lithium secondary batteries used have been developed. These polymer electrodes are formed in a film form exclusively by an electrolytic polymerization method, and are used in a lithium secondary battery in combination with a liquid electrolyte in which a lithium salt is dissolved in an aprotic organic solvent.

【0003】[0003]

【発明が解決しようとする課題】液体の電解質を用いる
場合は、電解質が電解重合膜の内部まで入り込むことが
できるので分極が大きくなることなく電池反応を良好に
行なわせることができるが、固形あるいは固体の電解質
を用いて固体状のリチウム二次電池を構成する際には、
電極材料と良好な親和性を有する電解質材料が得られて
おらず、電解質と電極との接触が不十分で分極が大きく
なり、電池から大きな出力電流を取り出すことが困難で
あった。すなわち、固形電極組成物中において必ずしも
良好な電子とイオンのネットワークが形成されず、分極
が大きくなる欠点を有していた。
When a liquid electrolyte is used, the electrolyte can enter the inside of the electropolymerized film, and therefore the battery reaction can be performed well without increasing the polarization. When configuring a solid state lithium secondary battery using a solid electrolyte,
An electrolyte material having a good affinity for the electrode material has not been obtained, the contact between the electrolyte and the electrode has been insufficient, the polarization has increased, and it has been difficult to extract a large output current from the battery. That is, a good electron-ion network is not necessarily formed in the solid electrode composition, and the solid-state electrode composition has a disadvantage of increasing polarization.

【0004】本発明は、この様な欠点を解決し、固形あ
るいは固体状であっても大きな電流を取り出すことので
きるリチウム二次電池用の固形電極組成物を提供するこ
とを目的とする。
An object of the present invention is to solve the above-mentioned drawbacks and to provide a solid electrode composition for a lithium secondary battery capable of extracting a large current even in a solid or solid state.

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
本発明の固形電極組成物は、π電子共役系導電性高分子
粉末と、アクリロニトリルとアクリル酸メチルまたはメ
タアクリル酸メチルとの共重合体と、リチウム塩と、プ
ロピレンカーボネートおよびエレチンカーボネートの少
なくとも一方を含有するものである。
Means for Solving the Problems To solve this problem, a solid electrode composition of the present invention comprises a π-electron conjugated conductive polymer powder, a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate. And a lithium salt, and at least one of propylene carbonate and eletine carbonate.

【0006】[0006]

【作用】この構成により本発明の固形電極組成物は、ア
クリロニトリルとアクリル酸メチルあるいはメタアクリ
ル酸メチルとの共重合体は、リチウム塩を溶解したプロ
ピレンカーボネートおよびエレチンカーボネートの少な
くとも一方に溶解してゲル状の固形電解質を形成する。
この固形電解質は導電性高分子粉末にたいし高い親和性
を有している。導電性高分子粉末は固形電極組成物内に
おいて均一分散され低分極性の電極/電解質界面が形成
される。さらに、固形電解質は導電性高分子粉末にたい
し結合剤として作用し、固形電極組成物に良好な機械的
強度と加工性を与えることとなる。
According to this structure, the solid electrode composition of the present invention is characterized in that a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate is dissolved in at least one of propylene carbonate and eletine carbonate in which a lithium salt is dissolved. A gel-like solid electrolyte is formed.
This solid electrolyte has a high affinity for the conductive polymer powder. The conductive polymer powder is uniformly dispersed in the solid electrode composition to form a low-polarization electrode / electrolyte interface. Furthermore, the solid electrolyte acts as a binder for the conductive polymer powder, and gives the solid electrode composition good mechanical strength and workability.

【0007】[0007]

【実施例】以下本発明の一実施例の固形電極組成物につ
いて図面を基にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid electrode composition according to one embodiment of the present invention will be described below with reference to the drawings.

【0008】π電子共役系導電性高分子粉末としては、
ポリアニリン,ポリピロール,ポリチオフェン,ポリア
セン等のAg/AgCl電極に対して0〜±1.0volt
で可逆性の高い酸化還元反応を起こす導電性高分子粉末
が有効に用いられる。電解重合,化学重合のいずれの方
法により得られたものであってもよい。平均粒子径が
0.1〜10ミクロン、電導度が10-1s/cmのものが好
ましく用いられる。必要に応じて導電材を混合してもよ
い。この場合の導電材としては、炭素材料が好ましく用
いられる。天然黒鉛,人造黒鉛,無定形炭素,繊維状,
粉末状,石油ピッチ系,石炭コークス系のいずれも用い
ることができる。粒子あるいは繊維の大きさは、直径あ
るいは繊維径が0.01〜10ミクロン、繊維長が数μ
mから数mmまでが好ましい。
As the π-electron conjugated conductive polymer powder,
0 to ± 1.0 volt for Ag / AgCl electrode of polyaniline, polypyrrole, polythiophene, polyacene, etc.
And a conductive polymer powder which causes a highly reversible oxidation-reduction reaction is effectively used. It may be obtained by any of electrolytic polymerization and chemical polymerization. Those having an average particle diameter of 0.1 to 10 microns and an electric conductivity of 10 -1 s / cm are preferably used. You may mix a conductive material as needed. As the conductive material in this case, a carbon material is preferably used. Natural graphite, artificial graphite, amorphous carbon, fibrous,
Any of powder, petroleum pitch, and coal coke can be used. The particle or fiber size is 0.01 to 10 microns in diameter or fiber diameter and several microns in fiber length.
It is preferably from m to several mm.

【0009】アクリロニトリルとアクリル酸メチルある
いはメタアクリル酸メチルとの共重合体は、通常の重合
法でアクリロニトリルモノマーとアクリル酸メチルある
いはメタアクリル酸メチルとを重合することで得られ
る。分子量が30,000〜100,000のものが好ま
しく用いられる。アクリロニトリル(以下ANと言う)
とアクリル酸メチルあるいはメタアクリル酸メチル(以
下MAと言う)との共重合比(AN/MA)は50:1
〜2:1(モル比)程度が好ましい。
A copolymer of acrylonitrile and methyl acrylate or methyl methacrylate can be obtained by polymerizing an acrylonitrile monomer with methyl acrylate or methyl methacrylate by a usual polymerization method. Those having a molecular weight of 30,000 to 100,000 are preferably used. Acrylonitrile (hereinafter referred to as AN)
And a copolymerization ratio (AN / MA) of methyl acrylate or methyl methacrylate (hereinafter referred to as MA) is 50: 1.
About 2: 1 (molar ratio) is preferred.

【0010】リチウム塩としては、沃化リチウム,過塩
素酸リチウム,トリフルオロスルホン酸リチウム,ホウ
フッ化リチウム等が用いられる。
As the lithium salt, lithium iodide, lithium perchlorate, lithium trifluorosulfonate, lithium borofluoride and the like are used.

【0011】本実施例の固形電解質組成物は次のように
して製造される。まず、プロピレンカーボネートおよび
エチレンカーボネートの少なくとも一方を主体とする溶
媒にリチウム塩を加熱溶解してリチウム塩の溶液を得
る。次にこの溶液にアクリロニトリルとアクリル酸メチ
ルあるいはメタアクリル酸メチルとの共重合体の粉末を
添加し、150℃〜180℃で加熱して粉末を溶解し均
一な透明な溶液を得る。アクリロニトリルを添加し溶液
を重量で2〜3倍に希釈する。希釈した溶液と導電性高
分子粉末とを混合し、得られたスラリーをガラス板上に
流延する。室温で乾燥後、60℃で1Torrの減圧下で真
空加熱乾燥することで固形電解質組成物が得られる。必
要に応じ、スラリー中にLiI,Li3N−LiI−B2
3、LiI・H2O、Li−β−Al23等のリチウム
イオン伝導性粉末を添加してもよい。
The solid electrolyte composition of this embodiment is manufactured as follows. First, a lithium salt is heated and dissolved in a solvent mainly composed of at least one of propylene carbonate and ethylene carbonate to obtain a solution of the lithium salt. Next, a powder of a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate is added to this solution, and the mixture is heated at 150 ° C. to 180 ° C. to dissolve the powder to obtain a uniform transparent solution. Acrylonitrile is added and the solution is diluted 2-3 times by weight. The diluted solution and the conductive polymer powder are mixed, and the resulting slurry is cast on a glass plate. After drying at room temperature, the solid electrolyte composition is obtained by vacuum heating and drying at 60 ° C. under a reduced pressure of 1 Torr. If necessary, LiI in the slurry, Li 3 N-LiI-B 2
Lithium ion conductive powders such as O 3 , LiI.H 2 O, and Li-β-Al 2 O 3 may be added.

【0012】(実施例1)トリフルオロスルホン酸リチ
ウム3.58g、プロピレンカーボネート10.47g、
エチレンカーボネート7.86gを混合し、120℃に
加熱して均一溶液を得た。この溶液に、分子量6万のア
クリロニトリルとアクリル酸メチル共重合体(AN/M
A=10/1、モル比)粉末3gを混合し、密封した1
00mlの三角フラスコ中で150℃に加熱した。共重
合体が完全に溶解し透明の液体を得た。この液体にアク
リロニトリルを30g添加し希釈溶液を得た。希釈溶液
10gと平均粒径が3ミクロンのポリアニリン粉末1.
0gとを混合して、電極ペーストを得た。用いたポリア
ニリン粉末は、1M(M=mol/dm3)のアニリンおよび
5MのNa2SO4を溶解したPH=1.0の硫酸酸性水
溶液中で、飽和カロメル参照電極に対し1.2〜1.5vo
ltで定電位電解することで得た。このようにして得られ
た硫酸ドープポリアニリンの電導度を、密度1.6g/cm
3のペレットに加圧成形して測定したところ室温で約2S
/cmであった。電極ペーストを平滑なガラス板上でドク
ターブレードを用い塗布した後、40℃の乾燥アルゴン
気流中で1時間乾燥しさらに60℃で5時間真空乾燥す
ることで、大きさ40×80mm、厚さ150μmのシ
ート状の固形電極組成物Aを得た。
Example 1 3.58 g of lithium trifluorosulfonate, 10.47 g of propylene carbonate,
7.86 g of ethylene carbonate was mixed and heated to 120 ° C. to obtain a homogeneous solution. Acrylonitrile having a molecular weight of 60,000 and a methyl acrylate copolymer (AN / M) were added to this solution.
A = 10/1, molar ratio) 3 g of powder were mixed and sealed 1
Heat to 150 ° C. in a 00 ml Erlenmeyer flask. The copolymer was completely dissolved to obtain a transparent liquid. 30 g of acrylonitrile was added to this liquid to obtain a diluted solution. 10 g of dilute solution and polyaniline powder having an average particle size of 3 microns 1.
And 0 g to obtain an electrode paste. The polyaniline powder used was prepared in a sulfuric acid acidic aqueous solution of 1M (M = mol / dm 3 ) and 5M Na 2 SO 4 having a pH of 1.0 and a saturated calomel reference electrode in a concentration of 1.2 to 1%. .5vo
It was obtained by performing constant potential electrolysis with lt. The conductivity of the sulfuric acid-doped polyaniline thus obtained was measured at a density of 1.6 g / cm.
It is about 2S at room temperature when measured by pressure molding into the pellet of 3.
/ cm. After applying the electrode paste on a smooth glass plate using a doctor blade, the electrode paste is dried for 1 hour in a dry argon gas stream at 40 ° C., and further vacuum-dried at 60 ° C. for 5 hours to obtain a size of 40 × 80 mm and a thickness of 150 μm. The solid electrode composition A in the form of a sheet was obtained.

【0013】(実施例2)アニリンを酸性水溶液中でホ
ウフッ化第二銅を酸化剤として化学重合法により合成し
た平均粒径が1.5ミクロンのポリアニリン粉末1.0
g、LiI−Li3N−B23(モル比1:1:1)粉
末1.0gを乳鉢で混合して混合粉末を得た。AN/M
Aモル比が20/1で分子量が55,000の共重合体
を用いた以外は実施例1と同様にして希釈溶液を得た。
混合粉末に希釈溶液を10g混合して電極スラリーを
得、実施例1と同様に直径90mmのガラスシャーレに
流延したのち、乾燥して可撓性のあるシート状の厚さ約
180μmの固形電極組成物Bを得た。
Example 2 Polyaniline powder having an average particle size of 1.5 μm was synthesized by a chemical polymerization method using aniline in an acidic aqueous solution and cupric borofluoride as an oxidizing agent.
g, LiI-Li 3 N- B 2 O 3 ( molar ratio 1: 1: 1) to obtain a mixed powder by mixing powder 1.0g in a mortar. AN / M
A diluted solution was obtained in the same manner as in Example 1 except that a copolymer having an A molar ratio of 20/1 and a molecular weight of 55,000 was used.
An electrode slurry was obtained by mixing 10 g of the diluted solution with the mixed powder, cast into a glass Petri dish having a diameter of 90 mm as in Example 1, and then dried to form a flexible sheet-like solid electrode having a thickness of about 180 μm. Composition B was obtained.

【0014】(比較例1)分子量が450万の直鎖のポ
リエチレンオキサイド5g,トリフルオロスルホン酸リ
チウム2.36gを350mlをアセトニトリルに溶解
しアセトニトリルで希釈したポリマー電解質溶液を得
た。この溶液200mlに実施例1と同様の方法で得た
ポリアニリン粉末1.0gを添加し、ホモジナイザーに
より均一に分散した、分散液を攪はんしながら、30m
lまで濃縮した。濃縮液を直径90mmのガラスシャー
レに流延した後、乾燥して厚さ約145μmの固形電極
組成物Cを得た。
Comparative Example 1 A polymer electrolyte solution was prepared by dissolving 5 g of linear polyethylene oxide having a molecular weight of 4.5 million and 2.36 g of lithium trifluorosulfonate in 350 ml of acetonitrile and diluting with acetonitrile. To 200 ml of this solution was added 1.0 g of the polyaniline powder obtained in the same manner as in Example 1, and the mixture was uniformly dispersed with a homogenizer.
and concentrated to 1. The concentrated solution was cast on a glass Petri dish having a diameter of 90 mm, and then dried to obtain a solid electrode composition C having a thickness of about 145 μm.

【0015】(比較例2)アクリロニトリルとアクリル
酸メチル共重合体に代えて、分子量が55,000のポ
リアクリロニトリルを用いた以外は実施例1と同様にし
て厚さ約150μmの固形電極組成物Dを得た。
Comparative Example 2 A solid electrode composition D having a thickness of about 150 μm was prepared in the same manner as in Example 1 except that polyacrylonitrile having a molecular weight of 55,000 was used instead of acrylonitrile and methyl acrylate copolymer. I got

【0016】(電池特性評価)図1において実施例1,
2、および比較例1,2で得られた固形電極組成物を直
径22mmの円板状に打ち抜き、打ち抜いた電極円板1
を内径が22mmのステンレス鋼でできたケース2にケ
ース底面と接触するよう配置し正極モジュールを構成し
た。一方、凹部に厚さ0.3mm、直径17mmの金属
リチウム円板3を当接したケース2の開口部をポリプロ
ピレン製の封口リング4とで密閉する封口板5に、15
0℃に加熱して流動性をもたせた希釈前の固形電解質6
を流し込み負極モジュールを構成した。電極円板1に固
形電解質6が当接するように正極モジュールの開口部を
負極モジュールで塞ぐことで電極特性評価用の電池を組
み立てた。なお、比較例の電池の固形電解質6として
は、実施例1の固形電解質を用いた。評価はすべて20
℃で行なった。
(Evaluation of Battery Characteristics) In FIG.
2, and the solid electrode compositions obtained in Comparative Examples 1 and 2 were punched into a disk having a diameter of 22 mm, and the punched electrode disk 1
Was placed in a case 2 made of stainless steel having an inner diameter of 22 mm so as to be in contact with the bottom surface of the case to form a positive electrode module. On the other hand, the opening of the case 2 in which the concave portion is in contact with the lithium metal disk 3 having a thickness of 0.3 mm and a diameter of 17 mm is sealed with a sealing ring 4 made of polypropylene.
Solid electrolyte 6 before heating diluted to 0 ° C. to give fluidity
To form a negative electrode module. A battery for evaluating electrode characteristics was assembled by closing the opening of the positive electrode module with the negative electrode module so that the solid electrolyte 6 was in contact with the electrode disk 1. Note that the solid electrolyte of Example 1 was used as the solid electrolyte 6 of the battery of the comparative example. All evaluations are 20
C. was performed.

【0017】このようにして組み立てた電池について、
1.5〜4.0Vの間でサイクリックボルタモグラムを測
定した。電圧の掃引速度は10mV/secとした。実
施例1および2の電池A,電池B、比較例1,2の電池
C,電池Dのサイクリックボルタモグラムを図2に示
す。また、各電池の組立後の開路電圧および内部抵抗、
4.0Vの定電圧で17時間充電した後500μAの定
電流で放電した際の電池電圧が3.5Vにおける分極値
を(表1)にまとめて示す。
Regarding the battery assembled in this manner,
Cyclic voltammograms were measured between 1.5-4.0V. The voltage sweep speed was 10 mV / sec. FIG. 2 shows cyclic voltammograms of the batteries A and B of Examples 1 and 2, and the batteries C and D of Comparative Examples 1 and 2. In addition, the open circuit voltage and internal resistance after assembly of each battery,
The polarization values at a battery voltage of 3.5 V when charged at a constant voltage of 4.0 V for 17 hours and then discharged at a constant current of 500 μA are summarized in (Table 1).

【0018】[0018]

【表1】 [Table 1]

【0019】内部抵抗は、10mV、10KHzの交流
信号を用いて得た開路電圧における交流インピーダンス
値である。分極値は、放電電圧が3.5Vになった際、
一時放電を中止し開路状態とし、その後電池電圧が一定
になるまで放置し、放電中止0.1sec後の電池電圧
と放置1時間後の電池電圧との差として得た。なお、比
較例の電池Cについては電流値が500μAでは大きす
ぎて分極値が測定できないので、10分の1の電流値、
50μA、で測定した。
The internal resistance is an AC impedance value at an open circuit voltage obtained using an AC signal of 10 mV and 10 KHz. When the discharge voltage reaches 3.5 V, the polarization value
The temporary discharge was stopped to open the circuit, and the battery was allowed to stand until the battery voltage became constant. The difference was obtained as the difference between the battery voltage 0.1 sec after the discharge was stopped and the battery voltage one hour after the discharge. Note that for the battery C of the comparative example, the current value was too large at 500 μA and the polarization value could not be measured.
It was measured at 50 μA.

【0020】(表1)に示したように、実施例の電池A
およびBでは分極値が比較例の電池Cに較べて極めて小
さい。また、図2から明らかなように、実施例1および
2の電池Aおよび電池Bでは、電圧が3.6V付近で
は、1mAを越える大きな酸化電流(充電電流)が得ら
れ、2.8V付近ではやはり1mAを越える大きな還元
電流(放電電流)が得られる。これに対し、比較例1の
電池Cでは、3.6V付近で20μA程度の小さい酸化
電流しか得られず、また、2.8V付近でも20μAの
還元電流しか得られない。また、比較例2の電池Dで
は、3.6V付近および2.8V付近で0.3mAの酸化
還元電流しか得られない。
As shown in Table 1, the battery A of the embodiment
In B and B, the polarization value is extremely small as compared with the battery C of the comparative example. As is clear from FIG. 2, in the batteries A and B of Examples 1 and 2, a large oxidizing current (charging current) exceeding 1 mA was obtained when the voltage was around 3.6 V, and around 2.8 V when the voltage was around 3.6 V. Also, a large reduction current (discharge current) exceeding 1 mA is obtained. On the other hand, in the battery C of Comparative Example 1, only a small oxidation current of about 20 μA was obtained at around 3.6 V, and only a reduction current of 20 μA was obtained at around 2.8 V. In the battery D of Comparative Example 2, only a redox current of 0.3 mA was obtained at around 3.6 V and 2.8 V.

【0021】[0021]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明の固形電極組成物によれば、π電子共役系導電
性高分子粉末と、アクリロニトリルとアクリル酸メチル
あるいはメタアクリル酸メチルとの共重合体とリチウム
との共重合体とリチウム塩とプロピレンカーボネートお
よびエチレンカーボネートの少なくとも一方を主体とす
る固形電解質とを組み合わせることにより分極の小さな
固形電極組成物を得ることができる。この電極を、例え
ば金属リチウムを主体とする負極とリチウムイオン伝導
性の固体あるいは固形電解質と組み合わせて用いること
により大電流充放電が期待できる固体状態の高エネルギ
ー密度リチウム二次電池を構成することができる。
As is apparent from the above description of the examples, according to the solid electrode composition of the present invention, π-electron conjugated conductive polymer powder, acrylonitrile and methyl acrylate or methyl methacrylate are used. By combining a copolymer of a copolymer and lithium, a lithium salt, and a solid electrolyte mainly composed of at least one of propylene carbonate and ethylene carbonate, a solid electrode composition having small polarization can be obtained. By using this electrode in combination with, for example, a negative electrode mainly composed of metallic lithium and a lithium ion conductive solid or solid electrolyte, it is possible to constitute a solid state high energy density lithium secondary battery in which a large current charge / discharge can be expected. it can.

【0022】なお、実施例においては、π電子共役系導
電性高分子粉末としてポリアニリン粉末についてのみ示
したが、ポリチオフェン粉末,ポリピロール粉末,ポリ
アセン粉末等、ポリアニリン粉末以外のπ電子共役系導
電性高分子粉末についても同様の効果が得られることは
言うまでもない。
In the examples, only the polyaniline powder was shown as the π-electron conjugated conductive polymer powder. Needless to say, the same effect can be obtained with powder.

【0023】また、実施例として電池のみを示したが、
電池の他に、本発明の固形電極組成物を対極に用いるこ
とで発色・退色速度の速いエレクトロクロミック素子、
応答速度の速いグルコースセンサー等の生物化学センサ
ーを得ることができるし、また、書き込み・読み出し速
度の速い電気化学アナログメモリを構成することもでき
る。
Although only the battery is shown as an example,
In addition to batteries, an electrochromic device having a high coloring / fading speed by using the solid electrode composition of the present invention as a counter electrode,
A biochemical sensor such as a glucose sensor having a fast response speed can be obtained, and an electrochemical analog memory having a fast writing / reading speed can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の固形電極組成物の特性を評
価するために用いた電池の構成を示す縦断面図
FIG. 1 is a longitudinal sectional view showing a configuration of a battery used for evaluating characteristics of a solid electrode composition according to one embodiment of the present invention.

【図2】同電池の電流−電圧特性を示すグラフFIG. 2 is a graph showing current-voltage characteristics of the battery.

【符号の説明】[Explanation of symbols]

1 電極円板(固形電解質組成物) 3 金属リチウム円板 6 固形電解質 Reference Signs List 1 electrode disk (solid electrolyte composition) 3 metal lithium disk 6 solid electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神原 輝寿 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−297867(JP,A) 特開 平1−311561(JP,A) 特開 昭63−135453(JP,A) 特開 昭62−119860(JP,A) 特開 昭61−133582(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01B 1/06 H01M 4/60 H01M 4/62 H01M 10/40 JICSTファイル(JOIS)──────────────────────────────────────────────────の Continued on the front page (72) Inventor Teruju Kamihara 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-2-297867 (JP, A) JP-A-1-311561 (JP, A) JP-A-63-135453 (JP, A) JP-A-62-119860 (JP, A) JP-A-61-133582 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01B 1/06 H01M 4/60 H01M 4/62 H01M 10 / 40 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 π電子共役系導電性高分子粉末と、アク
リロニトリルとアクリル酸メチルまたはメタアクリル酸
メチルとの共重合体と、リチウム塩と、プロピレンカー
ボネートおよびエチレンカーボネートの少なくとも一方
を含む固形電極組成物。
1. A solid electrode composition comprising a π-electron conjugated conductive polymer powder, a copolymer of acrylonitrile and methyl acrylate or methyl methacrylate, a lithium salt, and at least one of propylene carbonate and ethylene carbonate. object.
JP07097491A 1991-04-03 1991-04-03 Solid electrode composition Expired - Fee Related JP3168592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07097491A JP3168592B2 (en) 1991-04-03 1991-04-03 Solid electrode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07097491A JP3168592B2 (en) 1991-04-03 1991-04-03 Solid electrode composition

Publications (2)

Publication Number Publication Date
JPH04306560A JPH04306560A (en) 1992-10-29
JP3168592B2 true JP3168592B2 (en) 2001-05-21

Family

ID=13447004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07097491A Expired - Fee Related JP3168592B2 (en) 1991-04-03 1991-04-03 Solid electrode composition

Country Status (1)

Country Link
JP (1) JP3168592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474095A (en) * 2019-08-28 2019-11-19 易航时代(北京)科技有限公司 A kind of composite solid electrolyte and application, all solid lithium metal battery and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635713B2 (en) * 1995-01-26 2005-04-06 ソニー株式会社 Gel electrolyte and battery
JP3617197B2 (en) * 1996-06-15 2005-02-02 ソニー株式会社 Flame retardant gel electrolyte and battery using the same
JP2001052746A (en) 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd High-molecular solid electrolyte and lithium secondary battery using the same
JP2001052747A (en) 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP4412808B2 (en) 2000-05-12 2010-02-10 パナソニック株式会社 Lithium polymer secondary battery
JP4412840B2 (en) 2000-10-11 2010-02-10 パナソニック株式会社 Lithium polymer battery and manufacturing method thereof
US7316864B2 (en) 2001-10-26 2008-01-08 Zeon Corporation Slurry composition, electrode and secondary cell
JP2014053298A (en) * 2012-08-08 2014-03-20 Nitto Denko Corp Cathode for power storage device and method of manufacturing the same, cathode active material for power storage device and method of manufacturing the same, and power storage device
JP6103521B2 (en) 2012-12-27 2017-03-29 日東電工株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474095A (en) * 2019-08-28 2019-11-19 易航时代(北京)科技有限公司 A kind of composite solid electrolyte and application, all solid lithium metal battery and preparation method thereof
CN110474095B (en) * 2019-08-28 2020-11-13 易航时代(北京)科技有限公司 Composite solid electrolyte and application thereof, all-solid-state lithium metal battery and preparation method thereof

Also Published As

Publication number Publication date
JPH04306560A (en) 1992-10-29

Similar Documents

Publication Publication Date Title
Killian et al. Polypyrrole composite electrodes in an all‐polymer battery system
KR100496090B1 (en) Anode for lithium secondary battery and lithium secondary battery
US6482299B1 (en) Polymer gel electrode
JP3168592B2 (en) Solid electrode composition
Kumar Effect of organic solvent addition on electrochemical properties of ionic liquid based Na+ conducting gel electrolytes
WO2009113585A1 (en) Film for an electrochemical element, electrode for an electrochemical element, and a battery
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
Vengadesan et al. One-step fabrication of poly (aniline-co-2, 5 dimethoxyaniline) nanohybrid coated graphitic sheet electrode for efficient energy application
Novák et al. Cycling behaviour of the polypyrrole—polyethylene oxide composite electrode
JPS6289749A (en) Electrode material
JP2001052746A (en) High-molecular solid electrolyte and lithium secondary battery using the same
JPH11339808A (en) Electrode
Radhi et al. Electrochemical characterization of the redox couple of [Fe (CN) 6] 3−/[Fe (CN) 6] 4− mediated by a grafted polymer modified glassy carbon electrode
Lan-sheng et al. Performance of polyaniline positive in a lithium battery
JP2940198B2 (en) Solid electrode composition
US5413882A (en) Composite electrode
Ryu et al. The polyaniline electrode doped with Li salt and protonic acid in lithium secondary battery
JP3089707B2 (en) Solid electrode composition
JP4214691B2 (en) Electrode material, method for producing the electrode material, battery electrode using the electrode material, and battery using the electrode
JP3115153B2 (en) Electrochemical devices and secondary batteries
Lee et al. The preparation of polypyrrole and polythiophene in the presence of ferrocene derivatives
WO2012150900A1 (en) Composites from biopolymers
JP3047492B2 (en) Solid electrode composition
JP3239374B2 (en) Electrode composition
Jeon et al. A Rechargeable Battery Using Electrochemically-Doped Poly (3-vinylperylene) as an Electrode Material.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees