JP3168445B2 - Dense silica brick - Google Patents
Dense silica brickInfo
- Publication number
- JP3168445B2 JP3168445B2 JP13499893A JP13499893A JP3168445B2 JP 3168445 B2 JP3168445 B2 JP 3168445B2 JP 13499893 A JP13499893 A JP 13499893A JP 13499893 A JP13499893 A JP 13499893A JP 3168445 B2 JP3168445 B2 JP 3168445B2
- Authority
- JP
- Japan
- Prior art keywords
- brick
- silica
- dense
- amorphous phase
- tridymite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、コークス炉、熱風炉、
ガラス溶解炉等の炉材に用いるけい石れんがに関する。The present invention relates to a coke oven, a hot blast oven,
The present invention relates to silica brick used for furnace materials such as a glass melting furnace.
【0002】[0002]
【従来の技術】けい石れんがは、使用する原料の性質
上、緻密な組織にすることが難しく、デンスれんがと称
するものでも気孔率は約18%以上あり、嵩比重も1.
9以下が普通である。2. Description of the Related Art It is difficult for silica brick to have a dense structure due to the nature of the raw materials used, and even a so-called dense brick has a porosity of about 18% or more and a bulk specific gravity of 1.
9 or less is common.
【0003】コークス炉用のけい石れんがを例にとる
と、コークス炉の寿命が20年から30年程度の長期に
亘って連続稼働するため、高温における容積安定性が重
視される。従って、焼成に際してクリストバライト,ト
リジマイトへの転移を促進させて残存石英量を減少させ
ることを指向するが、結果として焼成膨脹率が大きくな
り緻密なけい石れんがが得られない。In the case of silica brick for a coke oven, for example, the coke oven is continuously operated for a long time of about 20 to 30 years. Therefore, during firing, the aim is to promote the transition to cristobalite and tridymite to reduce the amount of residual quartz, but as a result, the expansion rate of firing increases, and dense silica stone cannot be obtained.
【0004】その対策として、Cu2O,TiO2,F
e2O3等の金属酸化物の添加によって緻密化、高熱伝
導化する試みも行われた。しかし、金属酸化物の添加に
より緻密化させたけい石れんがは、高温における機械的
な特性が通常のけい石れんがに比較して著しく低下し、
炉構造体の崩壊につながる問題が発生する。As a countermeasure, Cu 2 O, TiO 2 , F
Attempts have been made to increase the density and increase the thermal conductivity by adding a metal oxide such as e 2 O 3 . However, silica brick densified by the addition of metal oxides, mechanical properties at high temperatures are significantly reduced compared to normal silica brick,
A problem that leads to collapse of the furnace structure occurs.
【0005】そこで、特公昭59−13470号公報に
開示されているように、金属珪素の窒化物あるいは炭化
物を添加して、特定の温度条件で焼成することにより、
加成的に高熱伝導化する方法が開発された。Therefore, as disclosed in Japanese Patent Publication No. 59-13470, a nitride or carbide of metallic silicon is added and fired under a specific temperature condition.
A method for additively increasing the thermal conductivity has been developed.
【0006】しかし、金属珪素の窒化物あるいは炭化物
等の珪素化合物を添加して得られたけい石れんがは、添
加した珪素化合物の酸化反応が不完全な場合、これが、
れんが内部に未反応相としてそのまま残留することがあ
り、不均一な組織となって実用上大きな障害となる。ま
た、珪素化合物の酸化反応が完全に進行した場合でもそ
の酸化反応過程で気相成分を生じるためにれんがの緻密
化が阻害されることになる。このため、焼成工程の温度
と雰囲気管理条件を難しくし、さらに得られたれんがの
緻密性に問題を残す。However, silica brick obtained by adding a silicon compound such as a nitride or carbide of metallic silicon, when the oxidation reaction of the added silicon compound is incomplete, this causes
The unreacted phase may remain in the brick as it is, resulting in a non-uniform structure, which is a serious obstacle in practical use. Further, even when the oxidation reaction of the silicon compound proceeds completely, a gas phase component is generated in the oxidation reaction process, so that the densification of the brick is hindered. For this reason, the temperature and atmosphere control conditions in the firing step are made difficult, and there is a problem in the denseness of the obtained brick.
【0007】このように、従来のけい石れんがは、緻密
性が不十分であるため熱伝導率が低く、高温における機
械的な特性が低いために、例えばコークス炉炭化室の炉
材として使用した場合には、操業時間が長くなるととも
に、熱損失が大きくなって操業率の向上が望めず、エネ
ルギー消費量も高くなり、さらには、石炭あるいはコー
クス等による摩耗によって炉材の損耗が生じるという欠
点がある。As described above, conventional silica brick has low thermal conductivity due to insufficient denseness and low mechanical properties at high temperatures, and thus has been used as a furnace material in a coke oven carbonization chamber, for example. In this case, the operating time is prolonged, the heat loss increases, the improvement of the operating rate cannot be expected, the energy consumption increases, and furthermore, the furnace material is worn out due to wear by coal or coke. There is.
【0008】[0008]
【発明が解決しようとする課題】本発明は、従来のけい
石れんがの欠点を解消するもので、高温において優れた
熱伝導性,耐圧強度,耐摩耗性を有する、組織的に緻密
なけい石れんがを提供することを目的とする。SUMMARY OF THE INVENTION The present invention solves the drawbacks of the conventional silica brick, and has an excellent thermal conductivity, high pressure strength, and abrasion resistance at high temperatures, and has a systematically dense silica stone. The purpose is to provide brick.
【0009】[0009]
【課題を解決するための手段】本発明は、れんが化学組
成における結晶構造が結晶相と非晶質相からなる緻密質
けい石れんがであって、けい石耐火骨材により、クリス
トバライト:トリジマイトの構成比率が重量%で10〜
40:90〜60の転移した結晶相を有し、非晶質相の
形態で存在する金属酸化物は、二酸化珪素以外に、酸化
カルシウム及び酸化銅または酸化鉄をれんがを構成する
全化学組成中2〜12重量%含有し、嵩比重が1.95
以上、気孔率が15%以下であることを特徴とする。The present invention relates to a brick chemical group.
Compact structure in which the crystalline structure consists of a crystalline phase and an amorphous phase
It is silica brick, and the composition ratio of cristobalite: tridymite is 10% by weight by refractory silica aggregate.
40: having a crystalline phase of 90 to 60 and having an amorphous phase
Metal oxides that exist in the form include, in addition to silicon dioxide,
Calcium and copper oxide or iron oxide make up brick
Contains 2 to 12% by weight of the total chemical composition and has a bulk specific gravity of 1.95
As described above, the porosity is not more than 15%.
【0010】また、この本発明の緻密質けい石れんが
は、これに、コロイダルシリカを含浸して使用に供する
ことができる。The dense silica brick of the present invention can be used by impregnating it with colloidal silica.
【0011】本発明の緻密質けい石れんがは、従来のけ
い石れんがを製造する成形装置および焼成炉等を使用し
て製造できる。The dense silica brick of the present invention can be produced by using a conventional molding apparatus for producing silica brick, a firing furnace, and the like.
【0012】けい石質耐火骨材としては、通常のけい石
れんがと同様に白けい石,複合けい石等の原料の他、天
然の石英を含有するケイ岩と呼ばれるけい石原料も使用
できる。As the silica-based refractory aggregate, in addition to raw materials such as white silica stone and composite silica stone as in the case of ordinary silica stone bricks, a silica stone raw material called quartzite containing natural quartz can also be used.
【0013】本発明の緻密質けい石れんがの結晶相であ
るクリストバライトとトリジマイトとの構成比率を10
〜40:90〜60重量%の範囲内に収めるためには、
焼成工程で、けい石質耐火骨材である石英をクリストバ
ライトヘ完全に転移させ、生成したクリストバライトか
らトリジマイトへの転移を遅滞なく進行させる必要があ
る。The composition ratio of cristobalite and tridymite, which are the crystal phases of the dense silica brick of the present invention, is 10
~ 40: In order to fall within the range of 90 to 60% by weight,
In the firing step, it is necessary that quartz, which is a silica-based refractory aggregate, be completely transferred to cristobalite, and that the transition from cristobalite to tridymite proceed without delay.
【0014】このトリジマイトへの転移を促進させるた
めに、従来の鉱化剤である酸化カルシュウムに加えて、
Siと促進金属との合金を添加する。ここで言う促進金
属とは金属の酸化物がシリカの高温における結晶転移に
促進作用を示す金属を意味し促進金属としては、アルカ
リ金属,アルカリ土類金属,IVa族,VIa族,Mn,F
e,Co,Cu,Zn,B,Ti,Pb,Tl,Ce等
が使用可能である。In order to promote the transformation to tridymite, in addition to the conventional mineralizer calcium oxide,
An alloy of Si and a promoting metal is added. The term "promoting metal" as used herein means a metal in which an oxide of the metal has a promoting effect on the crystal transition of silica at a high temperature. Examples of the promoting metal include alkali metals, alkaline earth metals, Group IVa, Group VIa, Mn, and F.
e, Co, Cu, Zn, B, Ti, Pb, Tl, Ce and the like can be used.
【0015】非晶質相として存在するSiO2 以外の金
属酸化物となる合金の組成は、Siと促進金属の重量比
で15:85〜80:20の範囲のものを使用すること
が好ましく、重量比の範囲内でけい石質耐火骨材に対し
1.5〜13.0重量%添加することができる。It is preferable that the composition of the alloy which is a metal oxide other than SiO 2 existing as an amorphous phase be in the range of 15:85 to 80:20 by weight ratio of Si and the promoting metal. 1.5 to 13.0% by weight can be added to the silica-based refractory aggregate within the range of the weight ratio.
【0016】使用する合金は、できるだけ細かい粒度を
添加するほうが望ましいが、比較的大きい粒度を添加す
る場合でも、けい石れんがの焼成過程の条件を適切に設
定することによって、完全に酸化させて金属成分を存在
させないことが可能である。It is desirable that the alloy used has as fine a grain size as possible. However, even when a relatively large grain size is added, the metal can be completely oxidized by setting the conditions of the firing process of the silica brick to an appropriate value. It is possible that no components are present.
【0017】また、含浸するコロイダルシリカとして
は、粒子径1〜100mμの無定形シリカのコロイド溶
液を使用し、SiO2 成分を1〜10重量%の範囲で含
浸することによってさらに緻密性は向上し、それに伴う
熱伝導率と摩耗抵抗が増大する。As the colloidal silica to be impregnated, a dense solution is further improved by using a colloidal solution of amorphous silica having a particle diameter of 1 to 100 μm and impregnating the SiO 2 component in a range of 1 to 10% by weight. As a result, the thermal conductivity and abrasion resistance increase.
【0018】[0018]
【作用】焼成での液相焼結の過程において、結晶相であ
るクリストバライトからトリジマイトへの転移を促進さ
せることと、非晶質相として存在するSiO2 以外の金
属酸化物量を制限することによって緻密なけい石れんが
が得られる。In the process of liquid phase sintering during firing, the transition from cristobalite, which is a crystalline phase, to tridymite is promoted, and the amount of metal oxides other than SiO 2 existing as an amorphous phase is restricted, thereby achieving a high density. You can get a stone brick.
【0019】添加する合金は焼結過程で液相形成に関与
しており、合金成分中のSiは最終的にSiO2 とな
り、れんが組織中の結晶相あるは非晶質相になるため、
得られたれんがの高温における機械的特性は、その緻密
化の程度が進んでいるためむしろ優れた特性を示す。The alloy to be added is involved in the formation of a liquid phase during the sintering process, and the Si in the alloy component eventually becomes SiO 2 and the crystalline or amorphous phase in the brick structure becomes
The mechanical properties of the obtained brick at high temperatures show rather excellent properties because the degree of densification is advanced.
【0020】本発明による緻密質けい石れんがの組織を
考えると、れんが中におけるトリジマイトは、焼成工程
で生成したクリストバライトが、液相中に溶解しながら
過飽和になり、過飽和になった液相中からシリカ成分が
トリジマイトの結晶として生成する。この時生成するト
リジマイト結晶の形態は針状乃至柱状であり、それらが
相互に交錯した状態でれんが中に存在しており、液相は
それらのトリジマイト結晶の間隙に残存している。この
れんが組織は合金を添加することによって容易に達成で
きる。Considering the structure of the dense silica brick according to the present invention, tridymite in the brick becomes supersaturated while cristobalite produced in the calcination step dissolves in the liquid phase. The silica component is formed as tridymite crystals. The form of the tridymite crystals formed at this time is needle-like or columnar, and they are present in the brick in a state where they intersect with each other, and the liquid phase remains in the gaps between the tridymite crystals. This brick structure can be easily achieved by adding an alloy.
【0021】つまり、合金成分中の促進金属により焼結
過程で金属酸化物の液相を形成し、石英からクリストバ
ライトヘ、さらに、クリストバライトからトリジマイト
への転移促進に寄与するものであり、合金の代わりに促
進金属とSiとの混合物を添加した場合は、焼結過程に
おける活性状態になんらかの差異が生じ、このような効
果が得られない。That is, the promoting metal in the alloy component forms a liquid phase of a metal oxide in the sintering process, and contributes to the promotion of the transition from quartz to cristobalite and further from cristobalite to tridymite. In the case where a mixture of a promoting metal and Si is added to the alloy, some difference occurs in the active state during the sintering process, and such an effect cannot be obtained.
【0022】組成中の結晶相であるクリストバライト及
びトリジマイトの構成比率を10〜40:90〜60重
量%としたのは、トリジマイトへの転移率が60%より
少ないと、転移に関与する焼結過程で生成する液相量が
少ないために緻密なれんがが得られず、90%を越える
と焼結過程で生成する液相量が多くなり過ぎ、高温にお
ける耐圧強度等が低下する。つまり、クリストバライト
の存在を10〜40重量%に留まらせトリジマイトへの
転移を促進させることで、高熱伝導性,耐圧強度等に優
れた緻密なれんがが得られる。The composition ratio of cristobalite and tridymite, which are crystalline phases in the composition, is set to 10 to 40:90 to 60% by weight. When the amount exceeds 90%, the amount of liquid phase generated during the sintering process becomes too large, and the pressure resistance at high temperatures is reduced. In other words, the presence of cristobalite is kept at 10 to 40% by weight to promote the transition to tridymite, whereby a dense brick excellent in high thermal conductivity, pressure resistance and the like can be obtained.
【0023】非晶質相として存在するSiO2 以外の金
属酸化物の含有量は2重量%より少ないと、焼結過程で
生成する液相成分の総量が少ないために緻密にならず、
クリストバライトからトリジマイトへの転移もあまり進
行しなくなり、目的とする高熱伝導性,耐圧強度等に優
れ組織的に緻密なけい石れんがは得られない。12重量
%を越えると得られたれんが中に含まれる非晶質成分の
総量が多くなり、高温における耐圧強度が低下する。そ
のため添加する合金は1.5〜13重量%の範囲で調整
するとよい。If the content of the metal oxide other than SiO 2 existing as an amorphous phase is less than 2% by weight, the liquid phase component generated in the sintering process is small, so that it does not become dense.
The transition from cristobalite to tridymite does not progress very much, and the desired high thermal conductivity, high pressure resistance, and the like cannot be obtained, and dense silica brick cannot be obtained systematically. If the content exceeds 12% by weight, the total amount of the amorphous components contained in the obtained brick increases, and the pressure resistance at high temperatures decreases. Therefore, the alloy to be added may be adjusted in the range of 1.5 to 13% by weight.
【0024】本発明における、コロイダルシリカを表面
開放気孔に充填したけい石れんがの緻密性は増大する。
したがって、熱伝導率あるいは耐圧強度等も増大すると
同時に摩耗抵抗性も増大する。含浸するコロイダルシリ
カは、その粒径がlmμよりも細かいと、けい石れんが
の表面開放気孔に充填させる時間が非常に長くなるため
実用的ではなく、100mμより大きいと含浸過程で、
れんが表面付近にコロイダルシリカの皮膜を生成し内部
までの含浸が妨げられ、緻密化が不十分のままとなる。In the present invention, the compactness of silica brick filled with colloidal silica in open pores increases.
Therefore, the thermal conductivity, the pressure resistance, and the like also increase, and the wear resistance also increases. If the particle size of the colloidal silica to be impregnated is smaller than 1 μm, the time for filling the open pores of the silica brick is extremely long, so that it is not practical.
A film of colloidal silica is formed near the surface of the brick, impregnation into the interior is hindered, and densification remains insufficient.
【0025】また、コロイダルシリカの含浸量として、
1重量%より少ない場合は含浸によるれんがの緻密化の
程度が低く、熱伝導率,耐圧強度,摩耗抵抗性等の増大
が不十分であり、10重量%を超えるとれんがの緻密化
の程度がほぼ飽和状態に達しており、熱伝導率,耐圧強
度,摩耗抵抗性等が殆ど変化しなくなっている。The impregnation amount of colloidal silica is as follows:
When the amount is less than 1% by weight, the degree of densification of the brick by impregnation is low, and the thermal conductivity, the pressure resistance, the abrasion resistance and the like are insufficiently increased. When the amount exceeds 10% by weight, the degree of densification of the brick is low. It has almost reached a saturated state, and the thermal conductivity, pressure resistance, wear resistance, and the like hardly change.
【0026】嵩比重は1.95より大きく、気孔率は1
5%より小さくなり高熱伝導性,耐圧強度等に優れ組織
的に緻密なけい石れんがとなる。The bulk specific gravity is greater than 1.95 and the porosity is 1
It is smaller than 5% and has high thermal conductivity, excellent pressure resistance and the like, and becomes dense silica brick in a systematic manner.
【0027】したがって、本発明による緻密質けい石れ
んがは、高温における機械的特性の低下が起らず、例え
ばコークス炉炭化室の壁材等に対して格好の特性を示す
炉材となる。Therefore, the dense silica brick according to the present invention is a furnace material which does not cause a decrease in mechanical properties at high temperatures and exhibits excellent properties with respect to, for example, a wall material of a coke oven carbonization chamber.
【0028】[0028]
【実施例】本発明の実施例におけるけい石れんがの特性
値をその比較例と共に示す。EXAMPLES The characteristics of silica brick in Examples of the present invention are shown together with Comparative Examples.
【0029】添加する合金および比較例用金属の粒度は
全て150μm以下を使用した。The particle size of the alloy to be added and the metal for the comparative example were all 150 μm or less.
【0030】表1は、フェロシリコン3号,フェロシリ
コン4号(JIS G 2302相当のFe−Si合
金)、および、Cu:Si重量比が6:1のCu−Si
合金を添加した例を示す。Table 1 shows Ferrosilicon No. 3 and Ferrosilicon No. 4 (Fe-Si alloy corresponding to JIS G 2302) and Cu-Si having a Cu: Si weight ratio of 6: 1.
An example in which an alloy is added is shown.
【0031】[0031]
【表1】 試料作製は、鉱化剤,バインダー及び合金を所定量添加
した配合物を混練後、1軸プレス機より1,500Kg
f/cm2 の圧力で300×80×90mmのれんがを
成形し、重油燃焼式単独窯内で1450℃まで毎時7℃
の割合で昇温加熱した。[Table 1] The sample was prepared by kneading a mixture to which a predetermined amount of a mineralizer, a binder, and an alloy had been added, followed by 1,500 kg using a uniaxial press.
A brick of 300 × 80 × 90 mm is formed at a pressure of f / cm 2 , and is heated up to 1450 ° C. in a heavy oil combustion type single kiln at 7 ° C.
And heated.
【0032】コロイダルシリカの含浸方法は、粒子径7
〜9mμの無定形シリカを30重量%含有するコロイド
溶液中に、室温で緻密質けい石れんがを4時間浸漬した
後、110℃で乾燥させ、コロイダルシリカを3%含浸
させた。The method of impregnating colloidal silica is as follows.
Dense silica brick was immersed in a colloid solution containing 30% by weight of amorphous silica of about 9 μm at room temperature for 4 hours and then dried at 110 ° C. to impregnate 3% of colloidal silica.
【0033】実施例1〜9の緻密質けい石れんがは、従
来の比較例1に示す窒化珪素を使用し昇温条件をコント
ロールして得た超デンス質けい石れんが、および、比較
例2に示す合金を添加しないデンス質けい石れんがと比
較して、軟化開始点が同等の1630℃であり、しか
も、比較例l,2よりクリストバライトからトリジマイ
トへの転移が促進されて気孔率,嵩比重,圧縮強さ,熱
伝導率について、いずれも優れた数値を示す。また、過
剰に合金を添加した比較例3〜5の気孔率,嵩比重につ
いては実施例より優れ、熱伝導率,圧縮強さは実施例と
同様の数値を示しているのに対し、軟化開始点が下がり
高温における構造体としての耐圧強度が下がっている。The dense silica bricks of Examples 1 to 9 were the same as those of the super-dense silica brick obtained by using silicon nitride shown in the conventional comparative example 1 and controlling the temperature raising conditions, and Comparative Example 2. The softening start point is 1630 ° C., which is the same as that of the densitic silica brick to which the alloy is not added, and the transition from cristobalite to tridymite is promoted from Comparative Examples 1 and 2, and the porosity, bulk specific gravity, Both the compressive strength and the thermal conductivity show excellent numerical values. The porosity and bulk specific gravity of Comparative Examples 3 to 5 in which the alloy was excessively added were superior to those of the example, and the thermal conductivity and the compressive strength were the same as those of the example. The points are lowered, and the pressure resistance as a structure at high temperatures is lowered.
【0034】また、実施例2と実施例3でコロイダルシ
リカの未含浸品と含浸品を比較すると実施例3の耐摩耗
指数が大幅に上昇していることがわかる。Further, when comparing the non-impregnated product and the impregnated product of colloidal silica in Examples 2 and 3, it can be seen that the wear resistance index of Example 3 is significantly increased.
【0035】尚、本実施例では、フェシリコンとCu−
Siのみ挙げたが、その他の促進金属との合金も同様に
クリストバライトからトリジマイトへの転移促進効果が
得られる。Note that, in this embodiment, FeSi and Cu-
Although only Si is mentioned, alloys with other promoting metals can also have the effect of promoting the transition from cristobalite to tridymite.
【0036】[0036]
【発明の効果】本発明によって以下の効果を奏する。According to the present invention, the following effects can be obtained.
【0037】(1)クリストバライトからトリジマイト
への転移が高度に進み、高嵩比重,低気孔率であるた
め、高熱伝導性,耐圧強度等に優れ組織的に緻密なけい
石れんがであり、熱風炉、ガラス溶解炉は言うに及ば
ず、高温容積安定性を要求されるコークス炉等の炉材と
して優れた性能を示し、これら各種工業窯炉の構造的欠
陥をなくすことで、炉体寿命を向上することができる。(1) Since the transition from cristobalite to tridymite is highly advanced and has high bulk specific gravity and low porosity, it is excellent in high thermal conductivity, pressure resistance, etc., and is structurally dense silica brick. In addition to glass melting furnaces, it exhibits excellent performance as a furnace material for coke ovens and other furnaces that require high-temperature volume stability, and eliminates structural defects in these various types of industrial kilns to improve furnace life. can do.
【0038】(2)炉体寿命の向上と、熱伝導率が高く
なったことによりコークス炉の操業効率が上がる。(2) The operating efficiency of the coke oven increases due to the improvement in the life of the furnace and the increase in the thermal conductivity.
【0039】(3)高熱伝導率であるため、少ない燃料
で従来と同量のコークスを生産することが可能になり、
エネルギーの節約にもなる。(3) Because of its high thermal conductivity, it is possible to produce the same amount of coke as before using less fuel,
It also saves energy.
【0040】(4)コロイダルシリカの含浸によって、
耐摩耗性が向上するので、炉体の寿命向上はさらに顕著
となる。(4) By impregnation with colloidal silica,
Since the wear resistance is improved, the life of the furnace body is more significantly improved.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大槻 雄三 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 平2−279560(JP,A) 特開 昭63−252961(JP,A) 特公 昭50−33081(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C04B 35/14 - 35/22 C04B 33/00 - 33/36 C04B 41/85 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yuzo Otsuki 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (56) References JP-A-2-279560 (JP, A) 63-262961 (JP, A) JP 50-33081 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/14-35/22 C04B 33/00- 33/36 C04B 41/85
Claims (2)
相と非晶質相からなる緻密質けい石れんがであって、 けい石耐火骨材により、 クリストバライト:トリジマイ
トの構成比率が重量%で10〜40:90〜60の転移
した結晶相を有し、 非晶質相の形態で存在する金属酸化物は、二酸化珪素以
外に、酸化カルシウム及び酸化銅または酸化鉄を、れん
がを構成する全化学組成中2〜12重量%含有し、 嵩比重が1.95以上、気孔率が15%以下である緻密
質けい石れんが。(1) a crystalline structure of a brick having a chemical composition
Is a dense silicalite brick consisting of an amorphous phase and an amorphous phase, wherein the composition ratio of cristobalite: tridymite is 10-40: 90-60% by weight due to the silica refractory aggregate.
Metal oxides having a crystalline phase and present in the form of an amorphous phase
In addition, calcium oxide and copper oxide or iron oxide
Is a dense silica brick having a content of 2 to 12% by weight based on the total chemical composition, a bulk specific gravity of 1.95 or more, and a porosity of 15% or less.
相と非晶質相からなる緻密質けい石連れんがであって、 けい石耐火骨材により、 クリストバライト:トリジマイ
トの構成比率が重量%で10〜40:90〜60の転移
した結晶相を有し、 非晶質相の形態で存在する金属酸化物は、 二酸化珪素以外に、酸化カルシウム及び酸化銅または酸
化鉄をれんがを構成する全化学組成中2〜12重量%含
有し、 嵩比重が1.95以上、気孔率が15%以下であるコロ
イダルシリカを含浸した緻密質けい石れんが。2. The crystalline structure in the brick chemical composition is crystalline.
Is a dense silicalite composed of an amorphous phase and an amorphous phase, and the transition ratio of cristobalite: tridymite is 10 to 40:90 to 60 by weight due to the refractory silica aggregate .
Metal oxides having a crystalline phase and having an amorphous phase include, in addition to silicon dioxide, calcium oxide and copper oxide or acid.
Iron fossil containing 2 to 12% by weight of the total chemical composition of the brick
A dense silica brick impregnated with colloidal silica having a bulk specific gravity of 1.95 or more and a porosity of 15% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13499893A JP3168445B2 (en) | 1993-06-04 | 1993-06-04 | Dense silica brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13499893A JP3168445B2 (en) | 1993-06-04 | 1993-06-04 | Dense silica brick |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000354968A Division JP2001192261A (en) | 2000-11-21 | 2000-11-21 | Dense silica brick |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06345528A JPH06345528A (en) | 1994-12-20 |
JP3168445B2 true JP3168445B2 (en) | 2001-05-21 |
Family
ID=15141552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13499893A Expired - Fee Related JP3168445B2 (en) | 1993-06-04 | 1993-06-04 | Dense silica brick |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3168445B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HRP950552B1 (en) * | 1994-11-28 | 2000-04-30 | Glaverbel | Production of a siliceous refractory mass |
JP3584624B2 (en) * | 1996-07-22 | 2004-11-04 | 日本精工株式会社 | Torque sensor |
MXPA05001211A (en) * | 2005-01-31 | 2006-07-31 | Gcc Technology And Processes S | Improved microsilica, its application like pozzolanic material and methods for its obtaining. |
JP4617190B2 (en) * | 2005-04-08 | 2011-01-19 | 新日本製鐵株式会社 | Refractory manufacturing method |
CN114262234B (en) * | 2021-12-31 | 2023-07-04 | 洛阳安耐克科技股份有限公司 | Special dense silica brick for blast furnace hot blast stove and preparation method thereof |
CN115894055A (en) * | 2022-12-22 | 2023-04-04 | 郑州通达耐材有限责任公司 | High wear-resistant coke oven silica brick and manufacturing process thereof |
CN115849923A (en) * | 2022-12-22 | 2023-03-28 | 郑州通达耐材有限责任公司 | Ultrahigh heat conduction coke oven silica brick and manufacturing process thereof |
-
1993
- 1993-06-04 JP JP13499893A patent/JP3168445B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06345528A (en) | 1994-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3753744A (en) | Graphite-alumina-silicon carbide base refractory | |
CN111533571B (en) | Mullite ceramic with tough whisker frame and preparation method thereof | |
JP3168445B2 (en) | Dense silica brick | |
US4183761A (en) | Silica bricks and method for manufacturing silica bricks | |
JP2001192261A (en) | Dense silica brick | |
JP2003321276A (en) | Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material | |
JP2004508271A (en) | Refractory | |
JPH026371A (en) | Production of silicon carbide brick having sialon linkage | |
KR950007708B1 (en) | Composite refractory materials | |
JP4960541B2 (en) | Magnesia-alumina-titania brick | |
JP2000351679A (en) | Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form | |
JP3661958B2 (en) | Refractory for casting | |
JP3236992B2 (en) | High density silica brick for coke oven | |
JPH02500267A (en) | ceramic material | |
RU2263648C2 (en) | Refractory foamed carbon-containing material | |
JP3031192B2 (en) | Sliding nozzle plate refractories | |
JPH09301766A (en) | Porous spinel clinker and its production | |
JP2004292704A (en) | Silica brick for coke furnace and method for producing the same | |
JPS5857391B2 (en) | Silicon carbide refractory mixture | |
JPH03205362A (en) | Graphite-silicon carbide refractory brick and production thereof | |
JPS6127350B2 (en) | ||
JPH05294743A (en) | Thermal shock resistant ceramics and its production | |
JPH0517242A (en) | Castable refractory for furnace containing gaseous atmosphere | |
JPH0656517A (en) | Calcium silicate sintered compact and its production | |
JPS6047224B2 (en) | Manufacturing method for carbon-silicon carbide refractories |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010119 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090316 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100316 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110316 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |