JP3168416U - Ocean current power generation system - Google Patents

Ocean current power generation system Download PDF

Info

Publication number
JP3168416U
JP3168416U JP2011001780U JP2011001780U JP3168416U JP 3168416 U JP3168416 U JP 3168416U JP 2011001780 U JP2011001780 U JP 2011001780U JP 2011001780 U JP2011001780 U JP 2011001780U JP 3168416 U JP3168416 U JP 3168416U
Authority
JP
Japan
Prior art keywords
power generation
ocean current
mine
generation system
strait
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2011001780U
Other languages
Japanese (ja)
Inventor
穀晏 村岡
穀晏 村岡
Original Assignee
穀晏 村岡
穀晏 村岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 穀晏 村岡, 穀晏 村岡 filed Critical 穀晏 村岡
Priority to JP2011001780U priority Critical patent/JP3168416U/en
Application granted granted Critical
Publication of JP3168416U publication Critical patent/JP3168416U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

【課題】安定的に、安価で大量な電気を生み出すことができる海流発電システムを提供する。【解決手段】海峡の一方の出入り口から他方の出入り口に向かう海流によって回転するように海中に設置された水車と、青函トンネルに接続された地中の発電室と、その発電室内に設置され、水車の回転エネルギーに基づいて発電する発電機とを備えている。【選択図】図1An ocean current power generation system capable of stably generating a large amount of electricity at low cost is provided. SOLUTION: A water turbine installed in the sea so as to be rotated by a current flowing from one doorway of the strait to the other doorway, an underground power generation room connected to the Seikan Tunnel, and a water turbine installed in the power generation room. And a generator for generating electricity based on the rotational energy of the. [Selection] Figure 1

Description

本考案は、海流発電システム、特に、自然に循環し、しかも無料で無尽蔵な海流流動エネルギーを、トンネルという既存の施設を利用し、水中に設置した水車を介して電気に変換する海流発電システムに関するものである。   The present invention relates to an ocean current power generation system, and more particularly, to an ocean current power generation system that converts a naturally circulating, free and inexhaustible ocean current fluid energy into electricity through a water turbine installed in water using an existing facility called a tunnel Is.

自然のエネルギーを電気に変換する技術は、川の流れを利用した水車発電、水路式発電、風力発電、太陽光発電、太陽熱発電、波力発電、潮の干満を利用した潮汐発電、地熱発電、海洋温度差発電など、世界中で実験が行われていたり、すでに実用化もされている。   Technologies that convert natural energy into electricity include water turbine power generation using river flows, water channel power generation, wind power generation, solar power generation, solar thermal power generation, wave power generation, tidal power generation using tides, geothermal power generation, Experiments such as ocean thermal power generation have been conducted all over the world, and have already been put into practical use.

しかし、川の流れを利用した水車発電、水路式発電に関しては、安価に建設でき、我が国では比較的設置に適した場所も多いが、発電量が小さいという欠点がある。   However, water turbine power generation and water channel power generation using river flow can be constructed at low cost, and there are many places in Japan that are relatively suitable for installation, but there is a drawback that the amount of power generation is small.

風力に関しては、デンマーク、ドイツ、オランダ、イギリス、アメリカ、カナダ他、多くの国々で盛んに発電が行われている。日本でも全国で数多くの風力発電設備があり、通産省のサンシャイン計画などもあって、有望地点の大型機設置が推進されてきた。コンピューター制御の可変ピッチ型ブレードの開発も行われており、年々その発電量が増大している。しかし、大型化が進めば進むほどクリーンエネルギーであるはずの風力発電が別の公害を生んでいる。それは、騒音障害、電波障害、景観への影響、野性動物や鳥類への影響、大型ブレードの高速回転に伴う安全性、設備が台風や落雷によって破壊された場合の二次災害などである。そもそも我が国の場合は季節風と言う言葉が存在するくらい、風は、季節や、その日の天候によって非常に不規則であり、風力も方向も不安定である。したがって無公害で安全で安価な発電方式とは言えなくなってきた。   In terms of wind power, power generation is actively performed in Denmark, Germany, the Netherlands, the United Kingdom, the United States, Canada and many other countries. In Japan, there are many wind power generation facilities nationwide, and the installation of large-scale machines at promising points has been promoted due to the Sunshine project of the Ministry of International Trade and Industry. Computer-controlled variable pitch blades are also being developed, and the amount of power generation is increasing year by year. However, wind power generation, which should be clean energy, is causing another pollution as the size increases. These include noise, radio interference, landscape effects, wild animals and birds, safety associated with high-speed rotation of large blades, and secondary disasters when facilities are destroyed by typhoons or lightning strikes. In the first place, the wind is very irregular depending on the season and the weather of the day, and the wind force and direction are unstable. Therefore, it is no longer a pollution-free, safe and inexpensive power generation method.

太陽光発電に関しては、太陽電池パネルの光エネルギー変換効率が5%程度と低く、パネルに使用されるシリコンも高額であるため費用対効果が悪い。パネルを製造するために新たな資源と費用が大量に消費される事にもなる。さらにパネルの劣化や瑕疵にともなう更新の必要性がある。また地域によって受光時間と日数に大きな差があり、積雪や雨天、昼夜という宿命的な問題があるので課題も多い。   Regarding photovoltaic power generation, the light energy conversion efficiency of the solar cell panel is as low as about 5%, and the silicon used for the panel is also expensive, so it is not cost-effective. A large amount of new resources and costs will be consumed to produce the panels. In addition, there is a need to update the panel due to deterioration and wrinkles. In addition, the light reception time and the number of days vary greatly depending on the region, and there are many problems because there are fateful problems such as snow, rain and day and night.

太陽熱発電に関しては、太陽熱を集熱器で集め、蒸気を作って蒸気タービンを回して発電する方法である。実用には高額な設備投資が予想され、太陽光発電と同じ積雪や雨天、昼夜にどう対処するかという宿命的な問題がある。   Regarding solar thermal power generation, solar heat is collected by a heat collector, steam is generated, and a steam turbine is rotated to generate electricity. For practical use, expensive capital investment is expected, and there is a fatal problem of how to deal with the same snowfall, rain, and day and night as solar power generation.

波力発電に関しては、波の上下運動やうねりなどの動揺運動をエアーポンプで圧縮し、空気タービンを回して発電する方法である。イギリスの国土2300Kmに打ち寄せる波のエネルギーの1/4を利用できれば、イギリス全電力消費量の1/2を波力発電で賄えると言う。ところが波のエネルギーはいかにも不安定であり、電力への変換装置の技術開発や開発費用、波の破壊力に対する耐久性など未知の部分が多い。日本でも山形県の沖合いで実験稼動中であるが、まだ開発段階である。   With regard to wave power generation, a method of generating electric power by compressing an up-and-down motion of a wave and a swaying motion such as a wave with an air pump and turning an air turbine. If 1/4 of the wave energy hitting the UK's land of 2300km can be used, half of the UK's total electricity consumption can be covered by wave power generation. However, wave energy is extremely unstable, and there are many unknown aspects such as technological development and development costs for power converters and durability against wave breaking force. In Japan, the experiment is in operation off the coast of Yamagata Prefecture, but it is still in the development stage.

潮の干満を利用した潮汐発電に関しては、すでにフランスや米国・カナダの国境になっているファンジー湾で発電が行われている。湾の入り口にダムを作り満潮時に水門でせき止め、干潮時にその水を落として水力タービンを回すのである。したがってダムを作る必要があり、干満の差が大きい適地は限られている。さらに潮力で発電できる時間帯と電気の需要パターンが一致しないなど、欠点がある。   Regarding tidal power generation using tides, power generation has already been carried out in the Bay of Fungi, which is the border between France, the US and Canada. A dam is created at the entrance of the bay and dammed at the sluice gate at high tide, and the water turbine is turned off at low tide and the water turbine is turned. Therefore, it is necessary to make a dam, and the suitable land where the difference in tidal range is large is limited. In addition, there are drawbacks, such as the time when electricity can be generated by tidal power and the demand pattern of electricity do not match.

地熱発電に関しては、300mから2000m位の井戸を掘り、地下から100℃から200℃の蒸気を取り出してタービンに導き発電するのである。井戸には蒸気に含まれる不純物が多く付着し、頻繁に除去しなければならない。また人為的に作る蒸気と違って、蒸気圧力や温度が低く熱効率は劣るため単機の発電量は小さい。しかし、建設単価は高いが燃料費がかからず機器構成が簡単などの利点もある。   For geothermal power generation, a well of about 300m to 2000m is dug, steam from 100 ° C to 200 ° C is taken out from the underground, and is led to a turbine to generate power. Many impurities in the vapor adhere to the well and must be removed frequently. In contrast to artificially generated steam, the steam pressure and temperature are low and thermal efficiency is inferior, so the power generation of a single machine is small. However, although the construction unit cost is high, there are advantages such as no fuel costs and simple equipment configuration.

海洋温度差発電に関しては、海洋表層の温水(20℃から30℃)と深層冷水(4℃から7℃)の温度差を利用するもので、暖かい海水でアンモニア、フロン等の低沸点媒体を加熱して気化させ、その蒸気でタービンを回し発電するのである。使用した蒸気は冷水で冷却して循環させるのである。まだ実験段階である。   Regarding ocean thermal power generation, it uses the temperature difference between hot water (20 ° C to 30 ° C) on the surface of the ocean and deep cold water (4 ° C to 7 ° C), and heats low boiling point media such as ammonia and chlorofluorocarbon in warm seawater. Then, it is vaporized and the steam is used to generate electricity. The used steam is cooled with cold water and circulated. It is still experimental.

しかし、上記に示した自然エネルギー利用の発電方式には、いずれも一長一短があり、安定的に火力発電より安価で大容量の電気を生み出してはいない。   However, each of the above-described power generation methods using natural energy has advantages and disadvantages, and does not stably generate large-capacity electricity that is cheaper than thermal power generation.

桂井 誠著「ハンディブック 電気」オーム社Makoto Katsurai, “Handy Book Electric” Ohmsha 村田良平著「海が日本の将来を決める」成山堂書店Ryohei Murata “The Sea Determines the Future of Japan” Naruyamado Shoten 石綿良三著「流体力学」ナツメ社Ryuzo Asbestos “Hydrodynamics” Natsume 牛山 泉著「さわやかエネルギー風車入門」三省堂Ishi Ushiyama “Introduction to Refreshing Energy Windmill” Sanseido

電気の需要は年々増加するばかりである。発電に要するエネルギーは日本の場合は約60%が地球温暖化の原因と考えられるCO2を排出する化石燃料である。その原料の80%を輸入に頼っている。原油は高騰し、将来も上がり続けることが容易に予想される。しかも、化石燃料はいずれ枯渇する。それらの代替エネルギーを模索することは緊急の課題である。   The demand for electricity only increases year by year. In Japan, about 60% of the energy required for power generation is fossil fuel that emits CO2, which is thought to cause global warming. 80% of the raw materials are imported. Crude oil soars and is expected to continue to rise in the future. Moreover, the fossil fuel will eventually be exhausted. Searching for alternative energy is an urgent task.

本考案は、津軽海峡の流れである流動エネルギーを、水車を介して回転エネルギーに変換して発電する。この方法は、水力、火力、原子力で発生した水や蒸気の流動エネルギーを、タービンを介して回転エネルギーに変換して発電する方式とまったく同じで、確実に電気として取り出す事が出来るのである。本案の、早い海流と、既存の施設を組み合わせて発電を行うシステムは、当然、英仏のドーバー海峡にも適用できる。むしろ水深が60mと浅く、安定した地質のためドーバートンネルを活用した発電システムの方が工事は容易と思われる。しかも、英仏とも電力需要は非常に高く、環境問題に厳しいため、クリーンで安価な電力を渇望している。いつ、両国がこのトンネル利用の海流発電システムに気づき、国際特許を出願するかも分からない。彼らより前に、日本による取得を急がなければならないと決心した次第である。津軽海峡と青函トンネルの位置関係は以下のとおりである。青函トンネル総延長は53850mあり、本州側13550m、海峡部23300m、北海道側17kmである。津軽海峡の海面から140m下に海底があり、そのわずか100m下に青函トンネルがあり、列車が走行しているのである。この海峡部分の23300m区間に、作業坑から複数の連絡坑を掘削し、数個の発電室をつくり、発電機を設置して発電するのである。発生した電気は作業坑とケーブル用斜坑か他の未使用斜坑を使って地上に取り出す。海には膨大なエネルギーが秘められている事は多くの人達が知っている。実際に波力発電や潮力発電、海洋温度差発電に取り組んでいる。しかし、どの方式にも弱点があり、電気の安価な大量生産が実現していない。日本の近海にも大きな潮の流れがあるが、方向と幅と流量が安定せず、エネルギーとしての利用は、ほとんどなされていない。その点、津軽海峡の場合は、幅は一定であり、流速も流量も方向もほぼ安定している。ただ、どの様な方法でこの流れの持っているエネルギーを取り出す事ができるのかが課題であった。普通は海底下に発電設備を設置する事など、なかなか思いつかない。非常に危険で、技術的困難と莫大な費用と工期がかかるからである。そこで発案者は青函トンネルに着目した。本考案はこの既存の設備を活用して、海流の持っている流動エネルギーを海底に設置した水車を介して回転エネルギーに変換し、発電する事を最も主要な特徴として、課題を解決しようとするものである。以上の背景、課題及び考案経緯を踏まえ、本考案は、青函トンネル又はいずれかの海峡トンネルと、海峡の一方の出入り口から他方の出入り口に向かう海流によって回転するように海中に設置された水車と、前記海峡トンネルに接続された地中の発電室と、前記発電室内に設置され、前記水車の回転エネルギーに基づいて発電する発電機とを備えているというものである。   The present invention generates electric power by converting fluid energy, which is the flow of the Tsugaru Strait, into rotational energy via a water turbine. This method is exactly the same as the method of generating power by converting the flow energy of water and steam generated by hydropower, thermal power, and nuclear power into rotational energy via a turbine, and can be reliably taken out as electricity. Naturally, the proposed system that generates power by combining the rapid current and existing facilities can also be applied to the Dover Channel in the UK and France. Rather, the water depth is as shallow as 60m, and the power generation system using the Dover tunnel is considered easier to construct because of its stable geology. In addition, the demand for electricity in Britain and France is very high and environmental issues are severe, so they are craving for clean and inexpensive electricity. I don't know when both countries notice this tunnel-based ocean current power generation system and apply for an international patent. Before they decided, I decided I had to hurry to acquire it in Japan. The positional relationship between the Tsugaru Strait and the Seikan Tunnel is as follows. The total length of the Seikan Tunnel is 53850 m, 13550 m on the Honshu side, 23300 m on the strait, and 17 km on the Hokkaido side. The seabed is 140m below the surface of the Tsugaru Strait, and the Seikan Tunnel is just 100m below it, and the train is running. In this 23300m section of the strait, a plurality of connecting pits are excavated from the working mine, several power generation chambers are created, and a generator is installed to generate electricity. The electricity generated is taken to the ground using a working mine and a cable or other unused pit. Many people know that enormous energy is hidden in the sea. In fact, he is working on wave power generation, tidal power generation, and ocean temperature difference power generation. However, all methods have weaknesses, and inexpensive mass production of electricity has not been realized. There is a large tidal current in the sea near Japan, but the direction, width, and flow rate are not stable, and it is hardly used as energy. On the other hand, in the Tsugaru Strait, the width is constant and the flow velocity, flow rate and direction are almost stable. However, the issue was how to extract the energy of this flow in any way. Usually, it is difficult to think of installing power generation facilities under the seabed. This is very dangerous and requires technical difficulties and enormous costs and construction. Therefore, the inventor focused on Seikan Tunnel. The present invention makes use of this existing equipment to solve the problem by converting the flow energy of the ocean current into rotational energy via the water turbine installed on the seabed, and generating electricity. Is. Based on the above background, problems, and background of the invention, the present invention comprises a Seikan tunnel or one of the strait tunnels, and a water wheel installed in the sea so as to rotate by a current flowing from one entrance to the other entrance of the strait. An underground power generation chamber connected to the strait tunnel, and a generator that is installed in the power generation chamber and generates electricity based on the rotational energy of the water turbine.

本考案は、海流という未利用で無料のエネルギーを使用するため、電気を大量にしかも安価に安定供給できる。   Since the present invention uses unused and free energy called ocean currents, it can stably supply a large amount of electricity at low cost.

海流発電システムの実施方法を説明した図である。It is a figure explaining the implementation method of an ocean current power generation system.

日本海には大和海盆と日本海盆にゆっくりと沈み込んだ海流が、その温度と塩分濃度の変化で浮き上がってくる循環がある。その湧き上がった海流が北上してくる対馬海流と重なって押し流され、津軽海峡の馬の背になった狭い地形に盛り上りながら、南下してくる親潮に引っ張られる。さらに日本海より潮位差の大きい太平洋の潮汐によっても加速される。これこそが「ショッパイ川」と言われる津軽海峡の早い流れの、みなもとである。流速は最速10ノットあるといわれ、数万トンの大型艦船でもエンジントラブルで航行できなくなったら簡単に押し流され座礁する。これらは、日本海の海底構造と津軽海峡の地形と潮流の営みによって生み出された恒久的な流れであるため、夏冬で多少の差はあっても安定している。本発想は、この安定した未利用の膨大な流動自然エネルギーを青函トンネルの作業坑を活用して電気に変換しようとする発電システムである。具体的には、作業坑を通路にして専用の発電用トンネル空間を数箇所掘削し、ここに発電設備を設置する。この設備の真上に当る海底部分に水車を設置して連結し、海流の流動エネルギーを水車のブレードで回転エネルギーに変換して発電するのである。通常、海底下に発電設備を設置する事は、非常に危険で、技術的困難と費用と工期が莫大にかかるものと思われるが、20年以上も安全に運用されている既存の青函トンネルを利用するため、これらの問題点を全てクリアーできる。この点がこのシステムの主要な発想点である。水車のブレードや他の構造部を空洞化し、海中の浮力を利用すれば超大型の回転装置が設置でき、メンテナンスに伴う脱着、移送も容易である。夏冬や、潮の干満などその時々における流速の変化には、コンピューター制御により回転ギヤーの組み合わせを自動化し、増減速しながら回転数をコントロールする事によって、電力を安定して生産できる。青函トンネルの長さを勘案すれば複数の発電設備が設置可能で、大容量の発電が行える。   In the Sea of Japan, the Yamato Basin and the ocean currents that have slowly submerged in the Japan Basin are circulating due to changes in temperature and salinity. The currents that flow up are swept over the Tsushima Current that flows northward, and are pulled by the Oyashio Current that moves southward while swelling on the narrow terrain behind the horses in the Tsugaru Strait. It is also accelerated by the Pacific tide, which has a greater tide difference than the Sea of Japan. This is the origin of the early flow of the Tsugaru Strait, which is called the “Shippai River”. The flow rate is said to be 10 knots at the fastest, and even a large ship of tens of thousands of tons can be easily washed away and stranded if it becomes impossible to navigate due to engine trouble. These are permanent flows created by the submarine structure of the Sea of Japan and the topography and tidal currents of the Tsugaru Strait, so they are stable in summer and winter. The idea is a power generation system that attempts to convert this stable, unused, massive flow of natural energy into electricity using the working tunnel of the Seikan Tunnel. Specifically, several working tunnels for power generation are excavated using the working mine as a passage, and power generation facilities are installed here. A water turbine is installed and connected to the sea floor part directly above this facility, and the flow energy of the ocean current is converted into rotational energy by the blades of the water turbine to generate electricity. Usually, it is very dangerous to install power generation facilities under the sea floor, and it seems that technical difficulties, cost and construction time will be enormous. However, the existing Seikan Tunnel that has been operating safely for more than 20 years will be installed. All these problems can be cleared for use. This is the main idea of this system. If the blades and other structures of the turbine wheel are hollowed out and the buoyancy in the sea is used, an ultra-large rotating device can be installed, and attachment / detachment and transfer accompanying maintenance are easy. For changes in current speed such as summer and winter and tides, the combination of rotating gears can be automated by computer control, and the number of rotations can be controlled while increasing or decreasing the speed. Considering the length of Seikan Tunnel, multiple power generation facilities can be installed, and large-capacity power generation can be performed.

発生した電気は作業坑とケーブル用斜坑か他の未使用斜坑を使って地上に出す。   The electricity generated is delivered to the ground using a working pit and cable pit or other unused pit.

50メートル以下の海中に設置するため船舶の航行には影響しないし、台風等の自然災害を受けない。問題は耐震性の強化だけである。   Because it is installed in the sea below 50 meters, it does not affect the navigation of the ship and does not suffer from natural disasters such as typhoons. The only problem is strengthening earthquake resistance.

海流と同じ速度で回転するため魚類やその他の動植物に対する影響が少ない。   Since it rotates at the same speed as the ocean current, it has little effect on fish and other animals and plants.

発電設備は海中と海底下にあるため騒音、景観には影響がなく、人間が容易に近づけず周辺に危険を及ぼす事がない。逆にメンテナンス等で水中での作業が増加することが予想されるので、新しい潜水技術、潜水船舶、潜水機械器具の開発や改善が進み、別の海洋開発に役立つと考えられる。   Since the power generation facilities are underwater and under the seafloor, there is no impact on noise and scenery, and humans cannot easily approach them and do not pose any danger to the surroundings. On the other hand, it is expected that work in the water will increase due to maintenance, etc., so development and improvement of new diving technologies, submersibles, and diving machinery and equipment will progress and it will be useful for other ocean development.

安価で安定した電力を必要としている産業は非常に多い。本案が具体化すれば、地球温暖化防止に役立つだけでなく、燃料費のかからない安価でクリーンな電気を生産できるので、化石燃料に依存している産業にも変化があるかも知れない。調査をすればまだまだ海流発電システムの設置に適した地域があると考えている。このため、他の国々に適地があれば日本が世界をリードして海流発電システムの技術指導、供与が可能となる。   There are a lot of industries that need cheap and stable power. If this plan is realized, it will not only help prevent global warming, but it can produce cheap and clean electricity that does not require fuel costs, so industries that rely on fossil fuels may also change. If the survey is conducted, I think that there is still an area suitable for the installation of the ocean current power generation system. For this reason, if there is a suitable place in other countries, Japan can lead the world and provide technical guidance and provision of ocean current power generation systems.

1 津軽海峡の水面
2 水車ブレード回転イメージ
3 水車ブレード
4 海流の流れるイメージ
1 Tsugaru Strait Water Surface 2 Turbine Blade Rotation Image 3 Turbine Blade 4 Ocean Current Flow Image

Claims (6)

青函トンネル又はいずれかの海峡トンネルと、
海峡の一方の出入り口から他方の出入り口に向かう海流によって回転するように海中に設置された水車と、
前記海峡トンネルに接続された地中の発電室と、
前記発電室内に設置され、前記水車の回転エネルギーに基づいて発電する発電機とを備えていることを特徴とする海流発電システム。
Seikan tunnel or any strait tunnel,
A water wheel installed in the sea so as to be rotated by a current flowing from one doorway to the other doorway in the strait;
An underground power generation room connected to the strait tunnel;
An ocean current power generation system comprising: a generator that is installed in the power generation chamber and generates electric power based on rotational energy of the water turbine.
青函トンネルの作業坑と前記発電室とを接続する連絡坑が設けられていることを特徴とする請求項1に記載の海流発電システム。   The ocean current power generation system according to claim 1, wherein a connection mine that connects a working mine of the Seikan Tunnel and the power generation chamber is provided. 前記発電室から前記連絡坑、青函トンネルの作業坑、並びに、ケーブル用斜坑及び未使用斜坑の少なくともいずれかを介して地上へと至る電力取り出し用の配線が設けられていることを特徴とする請求項2に記載の海流発電システム。   A wiring for taking out electric power is provided from the power generation chamber to the ground via at least one of the connecting mine, the working mine of the Seikan Tunnel, a cable mine shaft and an unused mine shaft. Item 3. The ocean current power generation system according to item 2. 前記発電室が前記作業坑より上方に配置され、
前記連絡坑が、前記作業坑から斜め上方に向かって前記発電室まで延びていることを特徴とする請求項1〜3のいずれか1項に記載の海流発電システム。
The power generation chamber is disposed above the working mine,
The ocean current power generation system according to any one of claims 1 to 3, wherein the communication mine extends obliquely upward from the working mine to the power generation chamber.
前記水車が、内部に空洞が形成されたブレードを有していることを特徴とする請求項1〜3のいずれか1項に記載の海流発電システム。   The ocean current power generation system according to any one of claims 1 to 3, wherein the water wheel has a blade having a cavity formed therein. 前記水車が、海峡の前記一方の出入り口から流入し、海峡の海底において馬の背になった地形に盛り上がりながら前記他方の出入り口へと流出する海流により回転するように設置されていることを特徴とする請求項1に記載の海流発電システム。   The water turbine is installed so as to rotate by a current flowing from the one entrance of the strait and flowing out to the other entrance while rising to the topography of the back of the horse at the bottom of the strait. Item 1. An ocean current power generation system according to item 1.
JP2011001780U 2011-03-31 2011-03-31 Ocean current power generation system Expired - Lifetime JP3168416U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001780U JP3168416U (en) 2011-03-31 2011-03-31 Ocean current power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001780U JP3168416U (en) 2011-03-31 2011-03-31 Ocean current power generation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008110984A Continuation JP2009264119A (en) 2008-04-22 2008-04-22 Ocean current power generation system dedicated to future of our dear earth and children

Publications (1)

Publication Number Publication Date
JP3168416U true JP3168416U (en) 2011-06-09

Family

ID=54879399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001780U Expired - Lifetime JP3168416U (en) 2011-03-31 2011-03-31 Ocean current power generation system

Country Status (1)

Country Link
JP (1) JP3168416U (en)

Similar Documents

Publication Publication Date Title
Chen et al. Attraction, challenge and current status of marine current energy
CN101649813B (en) Integrated system for generating electricity by current, sea wave as well as tide kinetic energy and wind and solar energy
Elghali et al. Marine tidal current electric power generation technology: State of the art and current status
CN101975133A (en) Turbine generating device capable of adjusting blade angle
KR20100131078A (en) Float type hydraulic power generater
CN201588730U (en) Ocean current generator
JP2009270491A (en) Ocean current power generating system in english channel
KR20140027654A (en) Power generation system using current and wind power
KR20120095752A (en) Complex generator using current and wind
JP2009264119A (en) Ocean current power generation system dedicated to future of our dear earth and children
KR101395399B1 (en) Power system of tidal power generation
KR101295812B1 (en) Dual blade type ocean generator
EP2102490B1 (en) Geothermal energy system
JP3168416U (en) Ocean current power generation system
US20180258903A1 (en) In-bank vertical axis hydropower system
KR20140014302A (en) Variable Aberration Blade Device for Current Generation
Narula et al. Renewable energy from oceans
KR101338950B1 (en) A hybrid power plant utilizing the sunlight and rainwater
WO2018042447A1 (en) Permanent power from ocean currents
Jones et al. Offshore hydrokinetic energy conversion for onshore power generation
Lundin et al. Ocean energy
RU2073795C1 (en) Drum for taking energy off water streams and wind
Mukherjee et al. Energy From the Ocean
Ramkissoon et al. Vertical Axis Marine Current Turbine Modelling
Neupert Wind, water and geothermal energy

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term