JP3166563U - Nanoparticle substrate for spectroscopy - Google Patents

Nanoparticle substrate for spectroscopy Download PDF

Info

Publication number
JP3166563U
JP3166563U JP2010008439U JP2010008439U JP3166563U JP 3166563 U JP3166563 U JP 3166563U JP 2010008439 U JP2010008439 U JP 2010008439U JP 2010008439 U JP2010008439 U JP 2010008439U JP 3166563 U JP3166563 U JP 3166563U
Authority
JP
Japan
Prior art keywords
substrate
raman spectroscopy
spectroscopy
silicon substrate
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010008439U
Other languages
Japanese (ja)
Inventor
英男 角田
英男 角田
Original Assignee
英男 角田
英男 角田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英男 角田, 英男 角田 filed Critical 英男 角田
Priority to JP2010008439U priority Critical patent/JP3166563U/en
Application granted granted Critical
Publication of JP3166563U publication Critical patent/JP3166563U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】被分析物質のラマン信号の強度を増大させるラマン分光用基板を提供する。【解決手段】四角錐状凸凹構造のシリコン基板表面に、球状の銀ナノ粒子膜を堆積させる。【選択図】図1A Raman spectroscopic substrate for increasing the intensity of a Raman signal of an analyte is provided. A spherical silver nanoparticle film is deposited on a surface of a silicon substrate having a quadrangular pyramid-shaped uneven structure. [Selection diagram] Fig. 1

Description

本考案は、ラマン分光あるいは表面増強ラマン分光に用いる基板に関するものである。 The present invention relates to a substrate used for Raman spectroscopy or surface-enhanced Raman spectroscopy.

従来のラマン分光あるいは表面増強ラマン分光に用いられる基板は、光反射率の高い金属平板や、シリコン基板表面の倒立四角錐孔あるいはシリコン基板表面の多孔質孔に、貴金属ナノ粒子を配置する構造である。 Conventional substrates used for Raman spectroscopy or surface-enhanced Raman spectroscopy have a structure in which noble metal nanoparticles are placed in a metal plate with high light reflectivity, an inverted quadrangular pyramid hole on the silicon substrate surface, or a porous hole on the silicon substrate surface. is there.

特開2005−524857 公報JP 2005-524857 A 特開2008−519254 公報JP 2008-519254 A

ウエットエッチングによる太陽電池用シリコンウェハーへの低反射表面凸凹構造の形成技術(表面技術、Vol.56、No.12、p843−846、2005)Technology for forming low-reflection surface irregularities on silicon wafers for solar cells by wet etching (Surface Technology, Vol. 56, No. 12, p843-846, 2005)

従来のラマン分光あるいは表面増強ラマン分光に用いられる基板は、光反射率の高い金属基板や、シリコン基板表面の倒立四角錐孔あるいはシリコン基板表面の多孔質孔に、貴金属ナノ粒子を配置する構造である。 Conventional substrates used for Raman spectroscopy or surface-enhanced Raman spectroscopy have a structure in which noble metal nanoparticles are placed in a metal substrate with high light reflectivity, an inverted quadrangular hole on the silicon substrate surface, or a porous hole on the silicon substrate surface. is there.

これらの基板構造では入射光の吸収が少ないためラマン信号強度が低かったり、表面
増強ラマン分光効果をもたらすために用いる基板表面の加工プロセスが複雑であるなど
の課題があった。
These substrate structures have problems such as low Raman signal intensity due to low absorption of incident light and complicated processing of the substrate surface used to bring about the surface enhanced Raman spectral effect.

本考案が提供するラマン分光あるいは表面増強ラマン分光用の基板は、上記課題を解
決するために、シリコン基板表面に非特許文献1記載の既知手法で四角錐状の凸凹構造
を形成し、真空蒸着法を用いてその表面に球状(半球状および扁平球状を含む)銀ナノ
粒子堆積膜を形成した構造とした。
In order to solve the above problems, the substrate for Raman spectroscopy or surface-enhanced Raman spectroscopy provided by the present invention forms a quadrangular pyramid-like uneven structure on the surface of a silicon substrate by a known method described in Non-Patent Document 1, and vacuum deposition is performed. Using this method, a spherical (including hemispherical and flat spherical) silver nanoparticle deposited film was formed on the surface.

本考案によれば、四角錐状凸凹構造のシリコン基板表面に真空蒸着法を用いて銀ナノ
球状(半球状および扁平球状を含む)粒子堆積膜を形成し、ラマン分光および表面増強
ラマン分光における入射光の多重反射がもたらされ、被分析物質のラマン信号の強度を
著しく増大させる効果がある。
According to the present invention, a silver nanosphere (including hemisphere and flat sphere) particle deposition film is formed on the surface of a silicon substrate having a quadrangular pyramidal structure by vacuum evaporation, and incident in Raman spectroscopy and surface-enhanced Raman spectroscopy. Multiple reflection of light is brought about, which has the effect of significantly increasing the intensity of the Raman signal of the analyte.

さらに本考案は、表面増強ラマン分光効果をもたらす活性点となりえる十〜百nm程
度の球状(半球状および扁平球状を含む)銀ナノ粒子堆積膜構造を形成することができ、
表面増強ラマン信号を生成する場を多くするとともに、その強度を増大する効果がある。
Furthermore, the present invention can form a spherical (including hemispherical and flat spherical) silver nanoparticle deposited film structure of about 10 to 100 nm, which can be an active point that brings about a surface enhanced Raman spectral effect,
While increasing the field for generating the surface-enhanced Raman signal, there is an effect of increasing its intensity.

本考案の分光用基板の構造を示す図である。It is a figure which shows the structure of the board | substrate for spectroscopy of this invention.

本分光用基板は、テクスチャー処理を行った四角錐状凸凹構造のシリコン基板表面
に球状(半球状および扁平球状を含む)銀ナノ粒子堆積膜を形成する。成膜後の基板は
切り分けてスライドグラスなどに張り付け、ラマン分光用基板として用いる。被分析サ
ンプルはこの基板上に、例えば水溶液状として、数マイクロリッター程度の液量を滴下
して、分光分析を実施する。また同様にして、表面増強ラマン分光用基板として用いる。
In this spectroscopic substrate, a spherical (including hemispherical and flat spherical) silver nanoparticle deposition film is formed on the surface of a silicon substrate having a textured square pyramidal structure. The substrate after film formation is cut out and attached to a slide glass or the like to be used as a substrate for Raman spectroscopy. The sample to be analyzed is spectroscopically analyzed by dropping a liquid amount of about several microliters on this substrate, for example, as an aqueous solution. Similarly, it is used as a substrate for surface enhanced Raman spectroscopy.

本分光用基板に、例えばモデル化学物質として塩素系殺菌剤であるクロロタロニル40
ppm溶液を3マイクロリットル滴下し、平坦な構造の銀蒸着膜基板を用いて同様にラマ
ン分光分析を行った結果と比較を行った。分析には日本電子製JRS-SYSTEM2000型顕微ラ
マン分光装置(励起波長632.8nm、分解能1cm-1、最大出力30mW、対物レンズ50倍)を
用いた。その結果、平坦な構造の銀蒸着膜基板と比較し1267cm-1あるいは2240cmのピ
ーク高さを基準にして計算すると約2倍程度以上の感度増加効果が確認された。同様の
方法で、ネオニコチノイド系農薬のクロチアニジン水溶液と銀ナノ粒子混合液を同基板
に滴下し分析を行うと、約0.1ppb程度の低濃度領域まで検出することが可能であった。
For example, chlorothalonil 40, which is a chlorine-based disinfectant, is used as a model chemical substance on this spectroscopic substrate.
3 microliters of ppm solution was dropped, and the results were compared with the results of Raman spectroscopic analysis using a flat silver deposited film substrate. A JRS JRS-SYSTEM2000 Raman microscope (excitation wavelength 632.8 nm, resolution 1 cm-1, maximum output 30 mW, objective lens 50 times) was used for analysis. As a result, a sensitivity increase effect of about twice or more was confirmed when calculated on the basis of the peak height of 1267 cm-1 or 2240 cm as compared with the flat deposited silver substrate. In the same way, when a neonicotinoid pesticide clothianidin aqueous solution and silver nanoparticle mixed solution were dropped onto the same substrate and analyzed, it was possible to detect even a low concentration region of about 0.1 ppb.

本分光用基板を用いると、食品や環境中の残留農薬や化学物質などの高感度分析を行
うことができる。またその他、人間や動物由来の体液などの化学成分をごく微量のサン
プルを用いて測定することが可能となる。
When this spectroscopic substrate is used, highly sensitive analysis of residual agricultural chemicals and chemical substances in food and the environment can be performed. In addition, chemical components such as human or animal-derived body fluids can be measured using a very small amount of sample.

1 銀ナノ粒子堆積膜
2 四角錐状凸凹構造のシリコン基板

1 Silver nanoparticle deposition film 2 Silicon substrate with quadrangular pyramidal structure

Claims (1)

四角錐状凸凹構造のシリコン基板表面に、球状(半球状および扁平球状を含む)の銀ナノ粒子膜を堆積した構造を特徴とするラマン分光および表面増強ラマン分光用基板

A substrate for Raman spectroscopy and surface-enhanced Raman spectroscopy characterized by a structure in which spherical (including hemispherical and flat spherical) silver nanoparticle films are deposited on the surface of a silicon substrate having a quadrangular pyramidal structure.

JP2010008439U 2010-12-27 2010-12-27 Nanoparticle substrate for spectroscopy Expired - Fee Related JP3166563U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008439U JP3166563U (en) 2010-12-27 2010-12-27 Nanoparticle substrate for spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008439U JP3166563U (en) 2010-12-27 2010-12-27 Nanoparticle substrate for spectroscopy

Publications (1)

Publication Number Publication Date
JP3166563U true JP3166563U (en) 2011-03-10

Family

ID=54877730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008439U Expired - Fee Related JP3166563U (en) 2010-12-27 2010-12-27 Nanoparticle substrate for spectroscopy

Country Status (1)

Country Link
JP (1) JP3166563U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031140A1 (en) * 2014-08-27 2016-03-03 富士フイルム株式会社 Optical electric-field enhancing device
CN106323938A (en) * 2016-08-11 2017-01-11 上海师范大学 Thiophanate-methyl residue measuring method based on surface-enhanced Raman spectroscopy technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031140A1 (en) * 2014-08-27 2016-03-03 富士フイルム株式会社 Optical electric-field enhancing device
JPWO2016031140A1 (en) * 2014-08-27 2017-05-25 富士フイルム株式会社 Photoelectric field enhancement device
CN106323938A (en) * 2016-08-11 2017-01-11 上海师范大学 Thiophanate-methyl residue measuring method based on surface-enhanced Raman spectroscopy technology

Similar Documents

Publication Publication Date Title
Jin et al. Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes
Araújo et al. Highly efficient nanoplasmonic SERS on cardboard packaging substrates
Baalousha et al. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure
Wang et al. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection
Wang et al. Preparation of nanoscale Ag semishell array with tunable interparticle distance and its application in surface-enhanced Raman scattering
Araújo et al. Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms
Jana et al. High Raman enhancing shape-tunable Ag nanoplates in alumina: a reliable and efficient SERS technique
Losurdo et al. Demonstrating the capability of the high-performance plasmonic gallium–graphene couple
Fischereder et al. Mesoporous ZnS thin films prepared by a nanocasting route
Leng et al. Nanoclustered gold honeycombs for surface-enhanced Raman scattering
Li et al. PDMS/TiO2/Ag hybrid substrate with intrinsic signal and clean surface for recyclable and quantitative SERS sensing
Chamuah et al. SERS on paper: an extremely low cost technique to measure Raman signal
CN104568849A (en) Three-dimensional sub-wavelength metal cavity structure spectrum multi-tape light perfect absorption plasmon sensor as well as preparation method and application thereof
Zhang et al. 3D flexible SERS substrates integrated with a portable raman analyzer and wireless communication for point-of-care application
JP6201369B2 (en) Detection device and electronic device
Zhang et al. Plasmonic structure with nanocavity cavities for SERS detection of pesticide thiram
Domingo et al. Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy
Tang et al. Waste fiber powder functionalized with silver nanoprism for enhanced Raman scattering analysis
Yin et al. Plasmonic and sensing properties of vertically oriented hexagonal gold nanoplates
JP3166563U (en) Nanoparticle substrate for spectroscopy
Yu et al. An optical humidity sensor: A compact photonic chip integrated with artificial opal
Morais et al. Visible photoluminescent zinc oxide nanorods for label-free nonenzymatic glucose detection
Ke et al. Preparation of SERS substrate with Ag nanoparticles covered on pyramidal Si structure for abamectin detection
Floris et al. Optical sensitivity gain in silica-coated plasmonic nanostructures
JP3165830U (en) Spectroscopic substrate

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees