JP3165830U - Spectroscopic substrate - Google Patents

Spectroscopic substrate Download PDF

Info

Publication number
JP3165830U
JP3165830U JP2010006353U JP2010006353U JP3165830U JP 3165830 U JP3165830 U JP 3165830U JP 2010006353 U JP2010006353 U JP 2010006353U JP 2010006353 U JP2010006353 U JP 2010006353U JP 3165830 U JP3165830 U JP 3165830U
Authority
JP
Japan
Prior art keywords
raman spectroscopy
substrate
enhanced raman
signal
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010006353U
Other languages
Japanese (ja)
Inventor
英男 角田
英男 角田
Original Assignee
英男 角田
英男 角田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英男 角田, 英男 角田 filed Critical 英男 角田
Priority to JP2010006353U priority Critical patent/JP3165830U/en
Application granted granted Critical
Publication of JP3165830U publication Critical patent/JP3165830U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】ラマン分光および表面増強ラマン分光における入射光の多重反射がもたらされ、被分析物質のラマン信号のピーク高さや面積などの強度を著しく増大させる分光用基板を提供する。【解決手段】シリコン基板表面に四角錐状の凸凹構造を形成した後、簡易なガスデポジション法を用いてその表面に銀ナノ粒子堆積膜1を形成した構造とした。この結果、ラマン分光や表面増強ラマン分光における入射光の多重反射がもたらされ、被分析物質のラマン信号強度を著しく増大させる効果がある。また、表面増強ラマン分光における信号やその強度増大に効果的な微小突起を多数形成した膜構造とした。【選択図】図1A spectroscopic substrate is provided that causes multiple reflection of incident light in Raman spectroscopy and surface-enhanced Raman spectroscopy, and significantly increases the intensity of a Raman signal of an analyte, such as the peak height and area. A structure in which a quadrangular pyramid-shaped uneven structure is formed on the surface of a silicon substrate, and a silver nanoparticle deposited film 1 is formed on the surface of the silicon substrate using a simple gas deposition method. As a result, multiple reflection of incident light in Raman spectroscopy or surface enhanced Raman spectroscopy is brought about, which has the effect of significantly increasing the Raman signal intensity of the analyte. In addition, a film structure in which a number of small protrusions effective for increasing the signal and the intensity of the signal in the surface enhanced Raman spectroscopy were formed. [Selection diagram] Fig. 1

Description

本考案は、ラマン分光あるいは表面増強ラマン分光に用いる基板に関するものである。   The present invention relates to a substrate used for Raman spectroscopy or surface-enhanced Raman spectroscopy.

従来のラマン分光あるいは表面増強ラマン分光には、光反射率の高い金属平板や、シリコン基板表面の倒立四角錐孔あるいはシリコン基板表面の多孔質孔に、貴金属ナノ粒子を配置した構造の基板を用いている。   Conventional Raman spectroscopy or surface-enhanced Raman spectroscopy uses a substrate with a structure in which noble metal nanoparticles are arranged in a metal plate with high light reflectivity, an inverted square pyramid hole on the silicon substrate surface, or a porous hole on the silicon substrate surface. ing.

特開2005−524857 公報JP 2005-524857 A 特開2008−519254 公報JP 2008-519254 A

ウエットエッチングによる太陽電池用シリコンウェハーへの低反射表面凸凹構造の形成技術(表面技術、Vol.56、No.12、p843−846、2005)Technology for forming low-reflection surface irregularities on silicon wafers for solar cells by wet etching (Surface Technology, Vol. 56, No. 12, p843-846, 2005)

従来のラマン分光あるいは表面増強ラマン分光に用いられる基板は、光反射率の高い金属基板や、シリコン基板表面の倒立四角錐孔あるいはシリコン基板表面の多孔質孔に、貴金属ナノ粒子を配置する構造である。   Conventional substrates used for Raman spectroscopy or surface-enhanced Raman spectroscopy have a structure in which noble metal nanoparticles are placed in a metal substrate with high light reflectivity, an inverted quadrangular hole on the silicon substrate surface, or a porous hole on the silicon substrate surface. is there.

これらの基板構造では入射光の吸収が少ないためラマン信号強度が弱かったり、表面増強ラマン分光効果をもたらすために用いる基板表面の加工プロセスが複雑であるなどの課題があった。   These substrate structures have problems such as low Raman signal intensity due to low absorption of incident light and complicated processing of the substrate surface used to bring about the surface enhanced Raman spectral effect.

本考案が提供するラマン分光あるいは表面増強ラマン分光用の基板は、上記課題を解決するために、シリコン基板表面に非特許文献1記載の既知手法で四角錐状の凸凹構造を形成し、簡易なガスデポジション法を用いてその表面に銀ナノ粒子堆積膜を形成した構造とした。   In order to solve the above problems, a substrate for Raman spectroscopy or surface-enhanced Raman spectroscopy provided by the present invention forms a quadrangular pyramid-like uneven structure on the surface of a silicon substrate by a known method described in Non-Patent Document 1, and is simple. A structure in which a silver nanoparticle deposition film was formed on the surface by gas deposition was used.

本考案によれば、四角錐状凸凹構造のシリコン基板表面にガスデポジション法を用い
て銀ナノ粒子堆積膜を形成し、ラマン分光および表面増強ラマン分光における入射光の多重反射がもたらされ、被分析物質のラマン信号のピーク高さや面積などの強度を著しく増大させる効果がある。
According to the present invention, a silver nanoparticle deposition film is formed on a silicon substrate surface having a quadrangular pyramidal structure using a gas deposition method, and multiple reflections of incident light in Raman spectroscopy and surface enhanced Raman spectroscopy are brought about. This has the effect of significantly increasing the intensity, such as the peak height and area, of the Raman signal of the analyte.

さらに本考案は、表面増強ラマン分光効果をもたらす活性点となりえる、数十〜数百
nmサイズの微小突起を多数有する銀ナノ粒子堆積膜構造を形成することができ、表面増強ラマン信号を生成する場を多くするとともに、その強度を増大する効果がある。
Furthermore, the present invention provides several tens to several hundreds that can be active sites that bring about surface-enhanced Raman spectral effects.
A silver nanoparticle deposited film structure having a large number of nanometer-sized microprotrusions can be formed, which has the effect of increasing the intensity and increasing the field for generating a surface-enhanced Raman signal.

本考案の分光用基板の構造を示す図である。It is a figure which shows the structure of the board | substrate for spectroscopy of this invention.

本分光用基板は、テクスチャー処理を行った四角錐状凸凹構造のシリコン基板表面に銀ナノ粒子堆積膜を形成する。成膜後の基板は数mm角に切り分けてスライドグラスなどに張り付け、ラマン分光用基板として用いる。被分析サンプルはこの基板上に、例えば水溶液状として、数マイクロリッター程度の液量を滴下して、分光分析を実施する。また同様にして、表面増強ラマン分光用基板として用いる。   In this spectroscopic substrate, a silver nanoparticle deposited film is formed on the surface of a silicon substrate having a textured square pyramidal structure. The substrate after film formation is cut into several mm squares and pasted on a slide glass or the like to be used as a substrate for Raman spectroscopy. The sample to be analyzed is spectroscopically analyzed by dropping a liquid amount of about several microliters on this substrate, for example, in the form of an aqueous solution. Similarly, it is used as a substrate for surface enhanced Raman spectroscopy.

本分光用基板に、例えばモデル化学物質として塩素系殺菌剤であるクロロタロニル40
ppm溶液を3マイクロリットル滴下し、銀蒸着膜基板を用いて同様にラマン分光分析を行った結果と比較を行った。分析には日本電子製JRS-SYSTEM2000型顕微ラマン分光装置(励起波長632.8nm、分解能1cm-1、最大出力30mW、対物レンズ50倍)を用いた。その結果、銀蒸着膜と比較し1267cm-1あるいは2240cmのピーク高さを基準にして計算すると約3倍程度の感度増加効果が確認された。同様の方法で、モデル化学物質として表面増強ラマン効果を有するネオニコチノイド系農薬のクロチアニジン水溶液と銀ナノ粒子混合液を同基板に滴下し分析を行うと、約1ppb程度の低濃度領域まで検出することが可能であった。
For example, chlorothalonil 40, which is a chlorine-based disinfectant, is used as a model chemical substance on this spectroscopic substrate.
3 microliters of a ppm solution was dropped, and the results were compared with the results of Raman spectroscopic analysis using a silver deposited film substrate. A JRS JRS-SYSTEM2000 Raman microscope (excitation wavelength 632.8 nm, resolution 1 cm-1, maximum output 30 mW, objective lens 50 times) was used for analysis. As a result, a sensitivity increase effect of about 3 times was confirmed when calculated based on the peak height of 1267 cm-1 or 2240 cm as compared with the silver deposited film. In the same way, when a mixture of neonicotinoid pesticide clothianidin and an aqueous solution of silver nanoparticles with a surface enhanced Raman effect as a model chemical is dropped onto the same substrate and analyzed, a low concentration range of about 1 ppb is detected. It was possible.

本分光用基板を用いると、食品や環境中の残留農薬や化学物質などの高感度分析を行うことができる。またその他、人間や動物由来の体液などの化学成分をごく微量のサンプルを用いて測定することが可能となる。   When this spectroscopic substrate is used, highly sensitive analysis of residual agricultural chemicals and chemical substances in food and the environment can be performed. In addition, chemical components such as human or animal-derived body fluids can be measured using a very small amount of sample.

1 銀ナノ粒子堆積膜
2 四角錐状凸凹構造のシリコン基板






1 Silver nanoparticle deposited film 2 Silicon substrate with quadrangular pyramidal structure






Claims (2)

四角錐状凸凹構造のシリコン基板表面に、微小突起を有する銀ナノ粒子膜を堆積した構造を特徴とするラマン分光および表面増強ラマン分光用基板   A substrate for Raman spectroscopy and surface-enhanced Raman spectroscopy characterized by a structure in which a silver nanoparticle film having microprotrusions is deposited on the surface of a silicon substrate having a quadrangular pyramid structure. 農薬のクロチアニジン水溶液を用い、表面増強ラマン分光により約1ppb程度まで検出可能となる、銀ナノ粒子水溶液を併用することができる、請求項1の構造を特徴とする表面増強ラマン分光用基板




A substrate for surface-enhanced Raman spectroscopy characterized by the structure of claim 1, which can be used in combination with an aqueous silver nanoparticle solution that can be detected up to about 1 ppb by surface-enhanced Raman spectroscopy using an agrochemical clothianidin aqueous solution.




JP2010006353U 2010-09-24 2010-09-24 Spectroscopic substrate Expired - Fee Related JP3165830U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006353U JP3165830U (en) 2010-09-24 2010-09-24 Spectroscopic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006353U JP3165830U (en) 2010-09-24 2010-09-24 Spectroscopic substrate

Publications (1)

Publication Number Publication Date
JP3165830U true JP3165830U (en) 2011-02-10

Family

ID=54877059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006353U Expired - Fee Related JP3165830U (en) 2010-09-24 2010-09-24 Spectroscopic substrate

Country Status (1)

Country Link
JP (1) JP3165830U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230073705A (en) * 2021-11-19 2023-05-26 한국전자기술연구원 Optical ionization gas sensor electrode and gas detection divice having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230073705A (en) * 2021-11-19 2023-05-26 한국전자기술연구원 Optical ionization gas sensor electrode and gas detection divice having the same
KR102556893B1 (en) 2021-11-19 2023-07-18 한국전자기술연구원 Optical ionization gas sensor electrode and gas detection divice having the same

Similar Documents

Publication Publication Date Title
Jin et al. Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes
Wang et al. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables
Araújo et al. Highly efficient nanoplasmonic SERS on cardboard packaging substrates
Wang et al. Transparent, flexible plasmonic Ag NP/PMMA substrates using chemically patterned ferroelectric crystals for detecting pesticides on curved surfaces
Konrad et al. Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles
Green et al. SERS substrates fabricated by island lithography: the silver/pyridine system
Doron-Mor et al. Ultrathin gold island films on silanized glass. Morphology and optical properties
Wang et al. Preparation of nanoscale Ag semishell array with tunable interparticle distance and its application in surface-enhanced Raman scattering
Chen et al. Tailoring optical properties of silicon nanowires by Au nanostructure decorations: enhanced Raman scattering and photodetection
Burratti et al. Polystyrene photonic crystals as optical sensors for volatile organic compounds
Jana et al. High Raman enhancing shape-tunable Ag nanoplates in alumina: a reliable and efficient SERS technique
Nayef et al. Study of porous silicon humidity sensor vapors by photoluminescence quenching for organic solvents
Clifford et al. Reactive uptake of ozone by chlorophyll at aqueous surfaces
Lin et al. A porous silicon− palladium composite film for optical interferometric sensing of hydrogen
Fischereder et al. Mesoporous ZnS thin films prepared by a nanocasting route
Leng et al. Nanoclustered gold honeycombs for surface-enhanced Raman scattering
Chamuah et al. SERS on paper: an extremely low cost technique to measure Raman signal
Zhang et al. 3D flexible SERS substrates integrated with a portable raman analyzer and wireless communication for point-of-care application
Domingo et al. Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy
Bottomley et al. Reflection and absorption spectra of silver nanocubes on a dielectric substrate: anisotropy, angle, and polarization dependencies
JP2014190909A (en) Optical device, detector, and electronic equipment
Yin et al. Plasmonic and sensing properties of vertically oriented hexagonal gold nanoplates
Zhu et al. Three-dimensional surface-enhanced Raman scattering substrates constructed by integrating template-assisted electrodeposition and post-growth of silver nanoparticles
Leng et al. Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering
Zhang et al. Reproducible plasmonic nanopyramid array of various metals for highly sensitive refractometric and surface-enhanced Raman biosensing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees