JP3161310B2 - Battery - Google Patents

Battery

Info

Publication number
JP3161310B2
JP3161310B2 JP32544895A JP32544895A JP3161310B2 JP 3161310 B2 JP3161310 B2 JP 3161310B2 JP 32544895 A JP32544895 A JP 32544895A JP 32544895 A JP32544895 A JP 32544895A JP 3161310 B2 JP3161310 B2 JP 3161310B2
Authority
JP
Japan
Prior art keywords
pitch
battery
sealing material
atomic ratio
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32544895A
Other languages
Japanese (ja)
Other versions
JPH09161742A (en
Inventor
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32544895A priority Critical patent/JP3161310B2/en
Publication of JPH09161742A publication Critical patent/JPH09161742A/en
Application granted granted Critical
Publication of JP3161310B2 publication Critical patent/JP3161310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池用シール材の
改良、およびこのシール材を用いた電池に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a battery sealing material and a battery using the sealing material.

【0002】[0002]

【従来の技術】電池の封口においては、正極端子と負極
端子を兼ねる金属容器間にナイロン、ポリプロピレン等
の絶縁性封口体を配置し、封口体と正極及び負極容器と
を圧着させることで、電解液の漏出を防いでいる。ま
た、ある種の電池系では、電子機器の部品としてメモリ
ーバックアップ用電源として長期にわたって厳しい環境
条件下で使用されるものが多々あり、この様な電池系の
場合、発電要素を収納した正・負極の金属容器と絶縁性
封口体との間に特開昭56−57254号公報記載の様
にピッチを主成分とするシール材を介在させる試みがあ
った。
2. Description of the Related Art In sealing a battery, an insulating sealing member such as nylon or polypropylene is disposed between a metal container which also functions as a positive electrode terminal and a negative electrode terminal, and the sealing member is pressed against the positive electrode and the negative electrode container. Prevents liquid leakage. In addition, in some types of battery systems, there are many electronic components that are used for a long time under severe environmental conditions as a power source for memory backup, and in such a battery system, the positive and negative electrodes containing power generation elements are used. There has been an attempt to interpose a sealing material having a pitch as a main component, as described in JP-A-56-57254, between a metal container and an insulating sealing body.

【0003】[0003]

【発明が解決しようとする課題】ピッチ系のシール材は
他の有機・無機系のシール材に比べて金属との密着性、
あるいは、アルカリ性、酸性の有機・無機電解液に対し
て優れるものであるが、電池が長期にわたって厳しい環
境条件下で使用される場合にはシール材の流動化、ある
いは電解液による変質により初期の優れた物性に変化が
起こり十分なものではなかった。また、電解液にたいす
る撥水性においても十分なものではなくアルカリ性電解
液特有のクリーピング特性に対する抵抗力に乏しかっ
た。
The pitch-based sealing material has better adhesion to metal than other organic and inorganic sealing materials.
Alternatively, it is excellent for alkaline and acidic organic and inorganic electrolytes, but when the battery is used under severe environmental conditions for a long period of time, the initial excellence due to fluidization of the sealing material or deterioration due to the electrolyte solution The physical properties changed and were not sufficient. In addition, the water repellency of the electrolytic solution was not sufficient, and the resistance to the creeping characteristics peculiar to the alkaline electrolytic solution was poor.

【0004】[0004]

【課題を解決するための手段】これらの課題を解決する
ため本発明は、発電要素を収納した正・負極の金属容器
と絶縁性封口体との間にシール材として炭素原子(C)
とフッ素原子(F)の原子比F/Cが0.5〜1.8で
あるフッ化ピッチを使用するものである。
SUMMARY OF THE INVENTION In order to solve these problems, the present invention provides a method for sealing a carbon atom (C) between a positive / negative metal container accommodating a power generating element and an insulating sealing member.
And fluorine atom (F) having an atomic ratio F / C of 0.5 to 1.8.

【0005】[0005]

【発明の実施の形態】炭素原子(C)とフッ素原子
(F)の原子比F/Cが0.5〜1.8であるフッ化ピ
ッチを使用するのは、原子比F/Cが0.5より小さい
とフッ化ピッチの軟化点が150℃程度となり高温雰囲
気下での流動性が高くなり好ましくない。原子比F/C
が1.8より大きいと、性状が粘稠な液体状となり、他
の有機溶媒に対する相溶性が悪くなるためである。
BEST MODE FOR CARRYING OUT THE INVENTION The use of pitch fluoride having an atomic ratio F / C of carbon atom (C) to fluorine atom (F) of 0.5 to 1.8 is performed when the atomic ratio F / C is 0. If it is less than 0.5, the softening point of the fluorinated pitch becomes about 150 ° C., and the fluidity in a high-temperature atmosphere becomes high, which is not preferable. Atomic ratio F / C
Is more than 1.8, the property becomes a viscous liquid state, and the compatibility with other organic solvents deteriorates.

【0006】[0006]

【実施例】以下、本発明の一実施例をボタン形空気亜鉛
電池について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to a button-type zinc-air battery.

【0007】図1にボタン形空気亜鉛電池の縦断面図を
示す。図1において、1は厚み0.3mmのSUS材と
銅材を張り合わせたクラッド材からなる負極容器、2は
亜鉛粉末からなる負極合剤、3は6.6ナイロンからな
る絶縁性封口体、4はマイクロポーラスフィルムからな
るセパレータ、5はマンガン酸化物を主成分とする空気
極、6は未焼結フッ素樹脂膜からなる撥水膜、7は空気
拡散紙、8は厚み0.3mmの鉄材に表面を耐食ニッケ
ルメッキを施した正極容器、9は空気孔である。電解液
としては酸化亜鉛を溶解した水酸化カリウムの35%溶
液を使用している。
FIG. 1 is a longitudinal sectional view of a button-type zinc-air battery. In FIG. 1, reference numeral 1 denotes a negative electrode container made of a clad material in which a SUS material and a copper material having a thickness of 0.3 mm are bonded together, 2 denotes a negative electrode mixture made of zinc powder, 3 denotes an insulating sealing member made of 6.6 nylon, Is a separator made of a microporous film, 5 is an air electrode mainly composed of manganese oxide, 6 is a water-repellent film made of an unsintered fluororesin film, 7 is an air diffusion paper, and 8 is a 0.3 mm thick iron material. A positive electrode container 9 whose surface is subjected to corrosion-resistant nickel plating, and 9 is an air hole. As the electrolyte, a 35% solution of potassium hydroxide in which zinc oxide is dissolved is used.

【0008】上記に示す構成のボタン形空気亜鉛電池と
してPR44(直径11.4mm,高さ5.4mm)を
構成しこれの評価試験を行った。
[0008] PR44 (diameter: 11.4 mm, height: 5.4 mm) was constructed as a button-type zinc-air battery having the above configuration, and an evaluation test was performed.

【0009】まず、炭素原子(C)とフッ素原子(F)
の原子比F/Cが0.7であるフッ化ピッチをフッ素系
分散溶媒、この場合ジクロロフルオロエタン溶液に30
重量%の濃度に分散させたものを負極容器の封口体当節
部に塗布し、その後、90℃で1時間熱処理し負極容器
の封口体当節部に塗着した。これを封口体とカップリン
グし、電池に構成したものを電池Aとする。また、何も
処理しない従来のものを電池Bとする。シール材として
針入度20のピッチを30重量%の濃度にトルエンに溶
解したものを使用した電池をCとし、これらの電池A,
B,Cを温度45℃、湿度90%RHの環境下で6週
間、9週間保存後の漏液個数を調べた。試料数はいずれ
も50個とした。その結果を表1に示す。
First, a carbon atom (C) and a fluorine atom (F)
Of fluorinated pitch having an atomic ratio F / C of 0.7 to a fluorine-based dispersion solvent, in this case, a dichlorofluoroethane solution,
The dispersion dispersed in a concentration of weight% was applied to the joint of the negative electrode container, and then heat-treated at 90 ° C. for 1 hour, and applied to the joint of the negative electrode container. This was coupled with a sealing body to form a battery, which is referred to as a battery A. A conventional battery that does not perform any processing is referred to as a battery B. The batteries using a solution in which a pitch having a penetration of 20 was dissolved in toluene at a concentration of 30% by weight as a sealing material were designated as C, and these batteries A,
B and C were examined for the number of leaked liquids after storage for 6 weeks and 9 weeks in an environment at a temperature of 45 ° C. and a humidity of 90% RH. The number of samples was 50 in each case. Table 1 shows the results.

【0010】[0010]

【表1】 [Table 1]

【0011】また、他の実施例として、電解液としてポ
リプレンカーボネート、ジメトキシエタンの混合溶媒に
フッ素系リチウム塩を電解質として使用し、正極に二酸
化マンガン、負極に金属リチウムを使用した円筒形二酸
化マンガンリチウム電池、CR123A(直径17m
m,高さ34mm,電気容量1300mAh)を使用し
て前記A,B,Cと同様のシール材を使用して電池D,
E,Fを各々100個作成し、温度60℃,相対湿度9
0%の雰囲気に1,3,6か月保存した時の漏液個数を
調べた。試料数はいずれも50個とした。その結果を表
2に示す。
In another embodiment, a cylindrical manganese dioxide in which fluorinated lithium salt is used as an electrolyte in a mixed solvent of polypropylene carbonate and dimethoxyethane as an electrolytic solution, manganese dioxide is used in a positive electrode, and metallic lithium is used in a negative electrode. Lithium battery, CR123A (diameter 17m
m, height 34 mm, electric capacity 1300 mAh), using the same sealing material as A, B, C,
100 pieces of E and F were prepared at a temperature of 60 ° C. and a relative humidity of 9
The number of leaked liquids when stored in a 0% atmosphere for 1, 3, 6 months was examined. The number of samples was 50 in each case. Table 2 shows the results.

【0012】[0012]

【表2】 [Table 2]

【0013】(表1)(表2)からわかるように、本発
明のフッ化ピッチを使用した電池A、及びDは十分な耐
漏液性能が得られる。
As can be seen from Tables 1 and 2, the batteries A and D using the pitch fluoride of the present invention have sufficient leakage resistance.

【0014】なお、実施例として炭素原子(C)とフッ
素原子(F)の原子比F/Cが0.7であるフッ化ピッ
チを使用したが炭素原子(C)とフッ素原子(F)の原
子比F/Cが0.5〜1.8のものであれば同様の結果
が得られている。また、フッ化ピッチの分散溶媒として
実施例以外のものとしては、モノクロロトリフルオロメ
タン、モノクロロジフルオロメタン、トリクロロトリフ
ルオロエタン、モノクロロペンタフルオロエタン、パー
フルオロアルキルアミン等のフッ素系溶媒の単独、ある
いは混合したものであれば使用可能である。
As an example, a pitch fluoride having an atomic ratio F / C of carbon atom (C) to fluorine atom (F) of 0.7 was used. Similar results are obtained when the atomic ratio F / C is 0.5 to 1.8. Further, as the dispersion solvent other than the examples as the dispersion solvent of the pitch fluoride, monofluorotrifluoromethane, monochlorodifluoromethane, trichlorotrifluoroethane, monochloropentafluoroethane, a single fluorinated solvent such as perfluoroalkylamine, or a mixture thereof was used. Anything can be used.

【0015】この様なフッ化ピッチはフッ素ガスでピッ
チをピッチの軟化点以下の温度、具体的には350℃以
下の温度でフッ素化する事で得られる。この場合、ピッ
チ材としては石油蒸留残渣、ナフサ蒸留残渣、コールタ
ール等の石油系または石炭系重質油を蒸留した等方性ピ
ッチ、メソフェーズピッチ、水素化メソフェーズピッ
チ、メソカーボンマイクロビーズである。
Such a fluorinated pitch can be obtained by fluorinating the pitch with a fluorine gas at a temperature lower than the softening point of the pitch, specifically at a temperature lower than 350 ° C. In this case, the pitch material is a petroleum distillation residue, a naphtha distillation residue, an isotropic pitch obtained by distilling petroleum or coal heavy oil such as coal tar, a mesophase pitch, a hydrogenated mesophase pitch, and a mesocarbon microbead.

【0016】[0016]

【発明の効果】以上のように本発明は、フッ化ピッチを
発電要素を収納した正・負極の金属容器と絶縁性封口体
との間に介在することで、電池の耐漏液性能を著しく向
上させるものである。これはフッ化ピッチの電解液に対
する耐薬品性、耐環境特性が優れると共に、撥水性が従
来のシール材に比べて極めて高いためと考えられる。ち
なみに撥水性能を比較する上のパラメーターとして水に
対する接触角を比較すると、接触角の高い代表的な材料
としてポリテトラフルオロエチレンが105°であるの
に対しフッ化ピッチは120〜150°の範囲である。
このようにフッ化ピッチは電解液に対し強い撥水性をし
めし電解液の漏れを防止する。
As described above, according to the present invention, the pitch resistance is significantly improved by interposing the fluoride fluoride between the positive and negative metal containers accommodating the power generating element and the insulating sealing body. It is to let. This is considered to be because the chemical resistance and environmental resistance of the pitch fluoride to the electrolytic solution are excellent, and the water repellency is much higher than that of the conventional sealing material. By the way, when comparing the contact angle with water as the above parameter for comparing the water repellency, polytetrafluoroethylene is 105 ° as a typical material having a high contact angle, while the pitch fluoride is in the range of 120 to 150 °. It is.
As described above, the pitch fluoride shows strong water repellency to the electrolytic solution and prevents leakage of the electrolytic solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のボタン形空気亜鉛電池の縦断面図FIG. 1 is a longitudinal sectional view of a button-type zinc-air battery of the present invention.

【符号の説明】[Explanation of symbols]

1 負極容器 2 負極合剤 3 絶縁性封口体 4 セパレータ 5 空気極 6 撥水膜 7 空気拡散紙 8 正極容器 9 空気孔 10 シール材 Reference Signs List 1 negative electrode container 2 negative electrode mixture 3 insulating sealing member 4 separator 5 air electrode 6 water repellent film 7 air diffusion paper 8 positive electrode container 9 air hole 10 sealing material

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発電要素を収納した正・負極の金属容器と
絶縁性封口体との間にシール材を配した電池であって、
前記シール材がピッチとフッ素ガスを反応させて得られ
るフッ化ピッチであることを特徴とする電池。
1. A battery comprising a sealing material disposed between positive and negative metal containers accommodating a power generating element and an insulating sealing body,
A battery, wherein the sealing material is a pitch fluoride obtained by reacting the pitch with a fluorine gas.
【請求項2】ピッチが等方性ピッチ、メソフェーズピッ
チ、水素化メソフェーズピッチ、メソカーボンマイクロ
ビーズのうちのいずれかである請求項1記載の電池。
2. The battery according to claim 1, wherein the pitch is any one of isotropic pitch, mesophase pitch, hydrogenated mesophase pitch, and mesocarbon microbeads.
【請求項3】フッ化ピッチの炭素原子(C)とフッ素原
子(F)の原子比F/Cが0.5〜1.8である請求項
1記載の電池。
3. The battery according to claim 1, wherein the atomic ratio F / C of carbon atoms (C) to fluorine atoms (F) of the fluorinated pitch is 0.5 to 1.8.
JP32544895A 1995-12-14 1995-12-14 Battery Expired - Fee Related JP3161310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32544895A JP3161310B2 (en) 1995-12-14 1995-12-14 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32544895A JP3161310B2 (en) 1995-12-14 1995-12-14 Battery

Publications (2)

Publication Number Publication Date
JPH09161742A JPH09161742A (en) 1997-06-20
JP3161310B2 true JP3161310B2 (en) 2001-04-25

Family

ID=18176983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32544895A Expired - Fee Related JP3161310B2 (en) 1995-12-14 1995-12-14 Battery

Country Status (1)

Country Link
JP (1) JP3161310B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110213A (en) 2013-08-06 2018-10-08 어플라이드 머티어리얼스, 인코포레이티드 Locally heated multi-zone substrate support

Also Published As

Publication number Publication date
JPH09161742A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
JP3708183B2 (en) Organic electrolyte battery
US9991493B2 (en) High energy density non-aqueous electrochemical cell with extended operating temperature window
JPH0831429A (en) Non-aqueous electrolyte battery
Hernández et al. Going beyond sweep voltammetry: alternative approaches in search of the elusive electrochemical stability of polymer electrolytes
JP3143674B2 (en) Polycarbonate electrolyte and polymer lithium battery containing the same
EP3356580B1 (en) Electrochemical devices, with current collector having an increased resistance to corrosion
JP4273545B2 (en) Board mounting battery mounting device
JP3161310B2 (en) Battery
JP3058031B2 (en) Non-aqueous electrolyte battery
JP4561404B2 (en) Non-aqueous electrolyte battery
JP2007172986A (en) Aqueous solution based lithium secondary cell
KR101242261B1 (en) Electric double layer capacitor
JP2008010613A (en) Electric double layer capacitor
JP4945074B2 (en) Nonaqueous electrolyte secondary battery
JP5050346B2 (en) Water-based lithium secondary battery
JP2000138042A (en) Organic electrolyte battery
JP4687021B2 (en) Non-aqueous electrolyte primary battery
Sharma et al. A lightweight and metal-free current collector for battery anode applications
JP2008258205A (en) Manufacturing method of electrode for electric double-layer capacitor
US10727486B2 (en) Lithium oxyhalide electrochemical cell with carbon monofluoride
JP7133749B1 (en) solid electrolytes and batteries
JP2946825B2 (en) Lithium battery
WO2022210774A1 (en) Solid electrolyte and battery
JP2871467B2 (en) Holding member for power generating element for secondary battery and alkaline secondary battery using the same
Arnaiz Deliverable 5.1. Component selection

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees