JP3158358B2 - Gas-liquid winding pump device - Google Patents

Gas-liquid winding pump device

Info

Publication number
JP3158358B2
JP3158358B2 JP10301299A JP10301299A JP3158358B2 JP 3158358 B2 JP3158358 B2 JP 3158358B2 JP 10301299 A JP10301299 A JP 10301299A JP 10301299 A JP10301299 A JP 10301299A JP 3158358 B2 JP3158358 B2 JP 3158358B2
Authority
JP
Japan
Prior art keywords
liquid
gas
pipe
winding
pipe winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10301299A
Other languages
Japanese (ja)
Other versions
JP2000170649A (en
Inventor
健 吉岡
Original Assignee
健 吉岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健 吉岡 filed Critical 健 吉岡
Priority to JP10301299A priority Critical patent/JP3158358B2/en
Publication of JP2000170649A publication Critical patent/JP2000170649A/en
Application granted granted Critical
Publication of JP3158358B2 publication Critical patent/JP3158358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気体と液体(以下「気
液』と言う)を共に圧送する原理を利用して、気液の体
積比を調整して、同一圧力でも従来の倍以上の揚程、又
は水中深部への送気、大粒の固体を含む混相流(大粒の
物質の圧送)、圧気シールドや圧気ケーソン工事でのロ
ックなしで圧気内外へ物資の出し入れ、水流力のみで高
所へ自然揚水、風力で湖沼での自然曝気、低速回転でも
圧送量100%の原理を利用してほぼ無騒音、無振動の
真空化作業、等その他各種の用途に利用し、低速回転の
特徴を利用して、電力、モーターのみでなく風力、水流
力、潮流等の、世界中に無数に存在する自然エネルギー
の利用分野の開拓に重点をおくものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes the principle of pumping a gas and a liquid (hereinafter referred to as "gas and liquid") together to adjust the volume ratio of the gas and liquid so that the same pressure is more than twice that of the conventional one. Head or air into the deep water, multi-phase flow containing large solids (pumping of large particles), loading / unloading of material inside and outside the pneumatics without lock in pneumatic shields or pneumatic caisson construction, high water flow Natural pumping, natural aeration in lakes and winds by wind power, use of the principle of 100% pumping amount even at low speed, almost no noise, no vibration, vacuuming work, etc. It focuses on exploiting the myriad of natural energy utilization fields around the world, such as power, motors, as well as wind, water hydraulics, and tidal currents.

【0002】[0002]

【従来の技術】従来、パイプを巻いた巻体を回転させて
揚水する所謂、ループ式ポンプ又はスパイラル式ポンプ
(これらのポンプを総称して以下『パイプ巻式ポンプ』
と言う)を利用する技術は、以前から存在したが、スウ
ェーデン国の出願者による特公平7−65589号のよ
うに、接続機器9(回動自在連結具とも言う)はあるが
回転軸4の構成がないため軸受もなく、水面浮上式の揚
水のみの用途で、実用的、汎用的に乏しいものであっ
た。
2. Description of the Related Art Conventionally, a so-called loop pump or spiral pump (hereinafter referred to as a "pipe-wound pump") is generally known as a loop-type pump or a spiral-type pump for pumping water by rotating a roll wound around a pipe.
Although there is a technology utilizing a connecting device 9 (also referred to as a rotatable connecting device), as described in Japanese Patent Publication No. Since there is no structure, there is no bearing, and it is only used for water-floating type water pumping, and it is not practical or versatile.

【0003】また、回転軸がないため、パイプ巻体を水
面に浸漬させる設置方法のみで、固定設置、可動設置、
係留設置、懸垂設置等が困難と共に、稼働、操作も困難
で、用途が限定され、実用的、汎用的に利用されない欠
陥があった。
[0003] Further, since there is no rotating shaft, only fixed installation, movable installation,
Mooring and hanging installation were difficult, and operation and operation were difficult. The applications were limited, and there were defects that were not practically used for general purposes.

【0004】また、従来の『パイプ巻式ポンプ』は、気
体と液体を共に圧送するため気泡効果が起きる特徴をも
っていた。しかし、気体と液体の体積比を調整(操作)
して、適切な気泡効果、圧送力、圧送量を得る技術は未
開発であった。
Further, the conventional "pipe-wound pump" has a feature that a bubble effect occurs because both gas and liquid are pumped together. However, adjust the volume ratio of gas and liquid (operation)
Then, a technique for obtaining an appropriate bubble effect, a pumping force, and a pumping amount has not been developed.

【0005】また、従来から、気体と液体の混入比率を
変化させて気泡効果を利用する技術は『気泡ポンプ』と
して揚水等に利用されていた。しかしこの気泡ポンプに
よる揚水は、ブロワやコンプレッサー等の別途の送気設
備を必要とするため、非効率として汎用化に乏しい欠点
があった。
Conventionally, a technique utilizing the bubble effect by changing the mixing ratio of gas and liquid has been used for pumping water as a "bubble pump". However, pumping water by this bubble pump requires a separate air supply device such as a blower and a compressor, and has a disadvantage that it is inefficient and is not widely used.

【0006】また、前記のスエーデンからの出願の『パ
イプ巻式ポンプ』は、浮揚体20もパイプ巻体3と共に
回転するため、回転体が大きくなり、係留や取付けが不
便であった。回転しない浮揚体へ、回転軸や軸受けで固
定取付けができない欠点があった。また、浮揚体を含む
パイプ巻体が、常時の浸漬方式でるため回転中にパイプ
巻体と水との摩擦抵抗が大きく、老朽化を早め、維持管
理等に手間が掛かる等の欠点があった。
Further, in the "pipe wound pump" of the above-mentioned application from Sweden, the floating body 20 also rotates together with the pipe wound body 3, so that the rotating body becomes large and mooring and mounting are inconvenient. There was a drawback in that it could not be fixedly mounted on a non-rotating floating body with a rotating shaft or bearing. In addition, since the pipe wound body including the floating body is always immersed, the frictional resistance between the pipe wound body and water during rotation is large, and the pipe is rapidly deteriorated, and there is a disadvantage that it takes time and effort for maintenance and management. .

【0007】また、従来の『パイプ巻式ポンプ』は、内
部が空洞状の回転軸がなく、水流力で回転させる水面浮
上式は、回転方向が水流に直角方向、及ぴ水平方向共、
パイプ巻体と浮揚体が一体となって回転するため、浮揚
体に係留できず、係留の取付け場所は接続機器部または
圧送管部となり、接続機器に各種の外力(自重、水流力
による引張り、捻り、曲げ、振動等)が加わり、技術構
成に困難性が大きく実用化、汎用化に至らない原因とな
っていた。このことは、固定設置の場合にも固定取り付
け場所が接続機器または圧送管となり、同様の技術構成
に困難性をもっていた。
[0007] The conventional "pipe-wound pump" has no hollow rotary shaft inside, and the surface-floating type, which rotates by water flow, has a rotation direction perpendicular to the water flow and a horizontal direction.
Since the pipe winding and the floating body rotate as a single body, they cannot be moored to the floating body, and the mooring is installed at the connection equipment section or the pressure feed pipe section, and various external forces (tension by own weight, water flow force, Torsion, bending, vibration, etc.), and the technical configuration is very difficult, which is a cause of not being commercialized or generalized. For this reason, even in the case of the fixed installation, the fixed installation place is the connection device or the pressure feed pipe, and there is a difficulty in the same technical configuration.

【0008】また、『パイプ巻式ポンプ』は、低速回
転、体積効率は常に100%、羽根、歯車、ピストン等
は一切不要で、気液流入口から気液流出口まで空洞で、
気液混合と言う特徴をもつと共に、水流力や風力(風車
の回転力)等の、世界中に無限的に存在する自然エネル
ギーの利用の面からは、従来にない利用し易い機能をも
ちながらも、浮揚体や固定物に安定的に設置ができない
前記の欠点のため、実用化、汎用化に至らなかった。
[0008] The "pipe-wound pump" is a low-speed rotation, the volume efficiency is always 100%, and no blades, gears, pistons, etc. are required.
In addition to having the feature of gas-liquid mixing, it also has functions that are unprecedented in terms of the use of natural energy, such as water flow and wind power (rotational power of windmills), which are infinite in the world. However, because of the above-mentioned drawbacks that it cannot be stably installed on a floating body or a fixed object, it has not been put to practical use or general use.

【0009】更に、従来の『パイプ巻式ポンプ』は、取
扱い物質の状態として気体と液体のみであり、気体、液
体、固体の3相の混相流を本格的に利用する技術は見ら
れなかった。
Furthermore, the conventional "pipe-wound pump" uses only gas and liquid as the substance to be handled, and there has been no technology for fully utilizing the three-phase flow of gas, liquid, and solid. .

【0010】また、従来、大粒(口径の1/2以下程
度)の固体を含む、気体と液体の流れに混入して、機能
的に気体、液体、固体を混入圧送する混相流の技術は見
られず、未開発分野の技術として残されていた。従未
は、サンドポンプ等の、土砂、砂利、汚泥等の小粒固体
を水中に混入して水輸送する方法はあった、また、ごみ
等を輸送する空気輸送等の、気体流に混入する輸送法も
あった、すなわち、水輸送、空気輸送はあったが、気
体、液体、固体の混相流で、大粒(野菜、果物、魚介
類、土石類)の固体を、気体と液体の流れに混入して高
所へ圧送する混相流は、未開発の技術であった。
Conventionally, there is no known technique of a mixed phase flow in which a gas, a liquid, and a solid containing large particles (about 1/2 or less in diameter) are mixed into a flow of a gas and a liquid, and the gas, the liquid, and the solid are mixed and pumped. It was left undeveloped technology. Until now, there was a method of mixing small solids such as earth and sand, gravel, sludge, etc. into water and transporting it by water, such as a sand pump, and transporting mixed gas streams, such as pneumatic transport for transporting refuse. There was also a method, that is, there were water transport and pneumatic transport, but gas, liquid, and solid multi-phase flows, and large solids (vegetables, fruits, fish, shellfish, and stones) were mixed into gas and liquid streams. Multi-phase flow pumping to high places was an undeveloped technology.

【0011】更に、従来の『パイプ巻式ポンプ』は大気
下で使用されており、圧気下での使用や、大気下と圧気
下を出入りする技術は未開発であった。
Further, the conventional "pipe-wound pump" is used in the atmosphere, and the use under pressure and the technology for entering and exiting between the atmosphere and the pressure have not been developed.

【0012】[0012]

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、前述
した従来の『パイプ巻式ポンプ』のもっとも大きい欠陥
とされた設置方法の困難さを解消させるもので、係留浮
上設置だけでなく、固定設置、稼働設置、水面浮上設
置、懸垂設置の、いずれの場合にも安定かつ安全的で、
実用化、汎用化に役立つ技術の開発にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the difficulty of the above-mentioned conventional "pipe-wound pump" installation method, which is regarded as the biggest defect, and not only mooring floating installation but also In any case of fixed installation, operation installation, surface floating installation, suspension installation, it is stable and safe,
We are in the development of technologies that are useful for practical use and generalization.

【0014】本発明の更なる目的は、前述した従未の
『パイプ巻式ポンプ』では開発できなかった、圧送パイ
プ、接統機器、回転軸の3者を共に取付けても機能に不
都合の起きない技術の用発にあり、従来のように接続機
器や圧送部に無理な役割を課すことなく、回転軸の役
割、接続機器の機能、パイプの接続の各役割に、現在の
技術で無理のない技術構成で、一般に普及できるポンプ
へ開発することにある。
A further object of the present invention is to provide an inconvenient function even if the three members of the pumping pipe, the connecting device, and the rotating shaft, which cannot be developed with the above-mentioned conventional "pipe-wound pump", are attached. There is no use of technology, and the role of the rotating shaft, the function of the connection device, and the role of the pipe connection cannot be The aim is to develop a pump that can be widely used with no technical configuration.

【0015】本発明の更なる目的は、従来の『パイプ巻
式ポンプ』では見られなかった、気液混合のポンプとし
ての特徴を発揮させるため、気液流入口6からの気液の
流入する体積比(気体体積比)を調整して、揚水、曝
気、水中送気、陸上、水中両方等の仕事で、適切な気泡
効果、圧送力、圧送量を得る技術の開発にある。
A further object of the present invention is to allow gas-liquid to flow in from the gas-liquid inlet 6 in order to exhibit the characteristics of a gas-liquid mixing pump, which was not found in the conventional "pipe-wound pump". It is in the development of technology to adjust the volume ratio (gas volume ratio) to obtain the appropriate bubble effect, pumping force, and pumping amount for both pumping, aeration, underwater air supply, land, and underwater work.

【0016】本発明の更なる目的は、駆動源として、電
力、内燃機関や水流力によるものだけでなく、低速回転
の特徴を利用して風力又は水流力を利用して、パイプ巻
体を容易に回転させ、揚水、曝気、水中送気等に利用す
る技術の開発にある。
A further object of the present invention is not only to use a power source, an internal combustion engine, or a hydraulic force as a driving source, but also to use a wind or a hydraulic force by utilizing a characteristic of a low-speed rotation, thereby facilitating a pipe winding. The development of technology for rotating, pumping, aeration, underwater air supply, etc.

【0017】本発明の更なる目的は、風力や水流力でパ
イプ巻体を回転させる場合にも、回転しない浮揚体に安
定的に設置して、風カや水流力をパイプ巻体の回転に利
用でき、回転軸が水流に直角、平行のいずれにも対応で
きる技術の開発にある。
A further object of the present invention is to stably install a floating body which does not rotate even when the pipe winding is rotated by wind power or water flow, and to apply wind power or water flow to the rotation of the pipe winding. It is in the development of a technology that can be used and has a rotating shaft that can handle both perpendicular and parallel to the water flow.

【0018】本発明の更なる目的は、前述した従来の
『パイプ巻式ポンプ』の、取扱う物質の状態は気体と液
体の2態の混相流であったが、気液巻体ポンプ装置は、
固体を加えた3態の混相流の物質を圧送できる混相流技
術の開発にある。
A further object of the present invention is that, in the above-mentioned conventional "pipe-wound pump", the state of the substance to be handled is a two-phase flow of gas and liquid.
It is in the development of a multi-phase flow technique capable of pumping a three-phase multi-phase flow material to which solids are added.

【0019】本発明の更なる目的は、従来の『パイプ巻
式ポンプ』では見られなかった大粒の固体(パイプ口径
の1/2以下程度)であっても圧送を可能にする技術の
開発にある。本発明の更なる目的は、従来の大気下での
利用だけでなく、圧気下での利用や大気側と圧気側との
出し入れにも利用できる技術の開発にある。
A further object of the present invention is to develop a technique which enables the pumping of large solids (about 1/2 or less of the pipe diameter) which were not found in the conventional "pipe-wound pump". is there. A further object of the present invention is to develop a technique that can be used not only for conventional use under the atmosphere but also for use under pressure or between the atmosphere side and the pressure side.

【0020】[0020]

【0021】[0021]

【課題を解決するための手段】本発明は、従来の『パイ
プ巻式ポンプ』の欠点を解決するため、内部が空洞状の
回転軸4をほぽ水平に設け、周りにパイプ1を巻いて連
通したリング状流路2を形成したパイプ巻体3を、回転
軸4と一体に回転可能に構成し、水面近くに設け軸受1
8に回転軸4を取付け、パイプ巻体3のパイプの一端の
開口を気液流入口6としてパイプ巻体3を経て最終リン
グから流出管7を経て、回転軸4の空洞部内に入り、回
転軸4と一体に回転する回転圧送管8として通過し、気
密水密性があり回転自在で連通する接続機器9の一端
に、回転軸4と共に接続し、接続機器9の他端は回転し
ない圧送管10に接続し必要な箇所に延伸して気液流出
口11とする、パイプ巻体3を駆動源15により回転さ
せ、気液流入口6を回転毎に水没させて気体と液体を交
互に、パイプ巻体3の気液流入口6より連通したリング
状流路2に流入させ、各リング状流路2内の気体と液体
を重力の作用で上下に分離し前後に水位を形成した封水
状態を、維持する回転速度の0.01〜3.0回/秒の
範囲でパイプ巻体3を回転させ、各リング状流路2内を
順次移動させて最終リングを通過後、封水状態を解消し
て流出管7から回転軸内の回転圧送管8に入り接続機器
9を経て圧送パイプ10に至り、圧送パイプ10以降で
気液の流れに抵抗を与えることで、パイプ巻体3のリン
グ状流路2内の封水状態の前後の水位に自期的に水位差
を起こさせ、パイプ巻体3に圧送力を生み、気体と液体
を共に目的場所へ圧送する装置で、気液流入口6から流
入する気体と液体の体積比を調整して、気泡効果、圧送
力、圧送量を適切にすることに特徴がある。
According to the present invention, in order to solve the drawbacks of the conventional "pipe-wound pump", a rotary shaft 4 having a hollow inside is provided substantially horizontally, and a pipe 1 is wound around the rotary shaft. A pipe winding body 3 formed with a communicating ring-shaped flow path 2 is configured to be rotatable integrally with a rotating shaft 4, provided near a water surface, and provided with a bearing 1.
The rotating shaft 4 is attached to the pipe 8, and the opening of one end of the pipe of the pipe winding 3 is used as the gas-liquid inlet 6, passes through the pipe winding 3, passes through the outflow pipe 7 from the final ring, enters the hollow portion of the rotating shaft 4, and rotates. One end of a connection device 9 which passes as a rotary pressure feed tube 8 which rotates integrally with the shaft 4 and is connected to one end of a connection device 9 which is airtight and watertight and rotatably communicates with the rotation shaft 4, and the other end of the connection device 9 does not rotate. The pipe winding body 3 is rotated by a drive source 15 and connected to 10 to extend to a required location to form a gas-liquid outlet 11, and the gas-liquid inlet 6 is submerged for each rotation to alternate gas and liquid, Water sealing in which the gas and the liquid in each of the ring-shaped flow paths 2 are vertically separated by the action of gravity by flowing into the ring-shaped flow paths 2 communicating from the gas-liquid inlet 6 of the pipe winding body 3 to form water levels before and after. In the range of 0.01 to 3.0 rotations / second of the rotating speed to maintain the state, the pipe winding 3 After passing through the final ring by sequentially rotating in each of the ring-shaped flow paths 2, the water-tight state is eliminated, the liquid flows into the rotary pressure-feeding pipe 8 in the rotary shaft from the outflow pipe 7, and passes through the connection device 9 via the connecting device 9. , The resistance of the gas-liquid flow after the pressure feed pipe 10 causes the water level before and after the sealed state in the ring-shaped flow path 2 of the pipe winding body 3 to cause a water level difference spontaneously, A device that generates a pumping force to the winding body 3 and pumps both gas and liquid to a target location. By adjusting the volume ratio of gas and liquid flowing from the gas-liquid inlet 6, the bubble effect, the pumping force, and the pumping amount are reduced. There is a feature in making it appropriate.

【0022】さらに、本発明は、内部が空洞状の回転軸
に軸受けを付設して、パイプ巻体3に羽根又はスクリュ
ー又はプロペラ等を付設して、パイプ巻体3の回転軸を
水流に、直角方向又は平行方向に設置して、パイプ巻体
3を水流力で回転させることに特徴がある。
Further, according to the present invention, a bearing is attached to a rotating shaft having a hollow inside, and a blade, a screw, a propeller, or the like is attached to the pipe winding 3, so that the rotating shaft of the pipe winding 3 is used for water flow. It is characterized in that it is installed in a right angle direction or a parallel direction, and the pipe winding body 3 is rotated by a hydraulic force.

【0023】さらに、本発明は、水面浮揚体20にパイ
プ巻体3を設置して、浮揚体20を回転させないで、パ
イプ巻体3を回転させることに特徴がある。
Further, the present invention is characterized in that the pipe winding body 3 is installed on the water surface floating body 20, and the pipe winding body 3 is rotated without rotating the floating body 20.

【0024】さらに、本発明は、内部が空洞状の図転軸
に軸受けを付設して、パイプ巻体3の回転に、風力を利
用して風車の回転力を使用することに特徴がある。
Further, the present invention is characterized in that a bearing is attached to a drawing shaft having a hollow inside, and the rotating force of a windmill is used to rotate the pipe winding body 3 using wind power.

【0025】さらに、本発明は、気液巻体ポンプ装置の
圧送パイプ10によって圧送する物質を、気体と液体、
または気体と液体と固体とし、大粒の固形物(野菜、果
物、魚介類、土石等)でも圧送できることに特徴があ
る。
Further, according to the present invention, the substance to be pumped by the pumping pipe 10 of the gas-liquid scroll pump device is a gas and a liquid.
Alternatively, a gas, a liquid, and a solid are used, and a large solid (eg, vegetables, fruits, seafood, earth and stone, etc.) can be pumped.

【0026】さらに、本発明は、パイプ巻体3を、大気
界に設置して、パイプ巻体3の圧送パイプ10を隔壁先
の圧気界に貫通させて、大気界から圧気界へ気体と液体
または、気体と液体に固形物を混入して、出し入れする
ことに特徴がある。
Further, according to the present invention, the pipe winding 3 is placed in the atmosphere, and the pressure-feeding pipe 10 of the pipe winding 3 is made to penetrate through the pressure field at the end of the partition wall, so that the gas and liquid are transferred from the atmosphere to the pressure field. Alternatively, it is characterized in that a solid substance is mixed into a gas and a liquid and then is taken in and out.

【0027】さらに、本発明は、パイプ巻体3を、圧気
界に設置して、パイプ巻体3の圧送パイプ1を隔壁先の
大気界に貫通させて、圧気界から大気界へ気体と液体ま
たは、気体と液体に固形物を混入して、出し入れするこ
とに特徴がある。
Further, according to the present invention, the pipe winding 3 is placed in a compressed air field, and the pressure-feeding pipe 1 of the pipe winding 3 is made to penetrate into the atmosphere at the tip of the partition wall. Alternatively, it is characterized in that a solid substance is mixed into a gas and a liquid and then is taken in and out.

【0028】[0028]

【0029】[0029]

【実施の態様】本発明は、従来の『パイプ巻式ポンプ』
の欠陥を解決するため、[請求項1]に記載し、図1〜
図5に示すように、内部が空洞状の回転軸4をほぽ水平
に設け、廻りにパイプ1を巻いて連通したリング状流路
2を形成したパイプ巻体3を、回転軸4と一体に回転可
能に構成し、水面近くに設けた軸受18に回転軸4を取
付け、パイプ巻体3のパイプの一端の開口を気液流入口
6としてパイプ巻体3を経て最終リングから流出管7を
経て、回転軸4の空洞部内に入り、回転軸4と一体に回
転する回転圧送管8として通過し、気密水密性があり回
転自在で連通する接続機器9の一端に、回転軸4と共に
接続し、接続機器9の他端は回転しない圧送管10に接
続し必要な箇所に延伸して気液流出口11とする、パイ
プ巻体3を駆動源15により回転させ、気液流入口6を
回転毎に水没させて気体と液体を交互に、パイプ巻体3
の気液流入口6より速通したリング状流路2に流入さ
せ、各リング状流路2内の気体と液体を重力の作用で上
下に分離し前後に水位を形成した封水状態を、維持する
回転速度の0.01〜3.0回/秒の範囲でパイプ巻体
3を回転させ、各リング状流路2内を順次移動させて最
終リングを通過後、封水状想を態解消て流出管7から回
転軸内の回転圧送管8に入り接統機器9を経て圧送パイ
プ10に至り、圧送パイプ10以降で気液の流れに抵抗
を与えることで、パイプ巻体3のリング状流路2内の封
水状態の前後の水位に自動的に水位差を起こさせ、パイ
プ巻体3に圧送力を生み、気体と液体を共に目的場所へ
圧送する装置で、気液流入口6から流入する気体と液体
の体積比を調整して、気泡効果、圧送力、圧送量を適切
に確保して、圧力、様程、水中送気深度等を効果的にす
るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a conventional "pipe-wound pump".
In order to solve the defect of [1], it is described in [Claim 1], and FIGS.
As shown in FIG. 5, a pipe winding body 3 having a hollow rotating shaft 4 provided substantially horizontally and a ring-shaped flow passage 2 formed by winding a pipe 1 around the rotating shaft 4 is integrally formed with the rotating shaft 4. The rotary shaft 4 is mounted on a bearing 18 provided near the water surface, and the opening of one end of the pipe of the pipe winding 3 is used as the gas-liquid inlet 6 through the pipe winding 3 to the outlet ring 7 from the final ring. Through the rotary shaft 4, passes through the rotary pressure feed pipe 8 that rotates integrally with the rotary shaft 4, and is connected together with the rotary shaft 4 to one end of a connection device 9 that is airtight, watertight, and rotatably communicates. Then, the other end of the connecting device 9 is connected to a non-rotating pressure feed pipe 10 and is extended to a necessary portion to be a gas-liquid outlet 11. The pipe winding body 3 is rotated by a driving source 15 so that the gas-liquid inlet 6 is Submerged every rotation to alternate between gas and liquid, pipe winding 3
Into a ring-shaped flow path 2 that has flowed through the gas-liquid inlet 6 of the gas-liquid inlet 6, the gas and liquid in each ring-shaped flow path 2 are separated vertically by the action of gravity to form a water level before and after, The pipe winding body 3 is rotated at a rotation speed of 0.01 to 3.0 times / second to be maintained, sequentially moved in each ring-shaped flow path 2 and passed through the final ring. The fluid flows into the rotary pressure feed pipe 8 in the rotary shaft from the outflow pipe 7 to the pressure feed pipe 10 through the connecting device 9, and provides resistance to the gas-liquid flow after the pressure feed pipe 10, thereby providing the ring of the pipe winding body 3. A device that automatically causes a water level difference between before and after the sealed state in the flow path 2 to generate a pumping force in the pipe winding body 3 and to pump gas and liquid together to a target place. 6. Adjust the volume ratio of gas and liquid flowing from 6, to ensure the bubble effect, pumping force and pumping amount appropriately, Degree, is intended to be effective water air depth and the like.

【0030】さらに、本発明は、内部が空洞状の回転軸
に軸受けを付設して、[請求項2]に記載し、図7〜図
11示す通り、パイプ巻体3に羽根又はスクリュー又は
プロペラ等を付設して、パイプ巻体3の回転軸を水流
に、直角方向又は平行方向に設置して、パイプ巻体3を
水流力で回転させるものである。
Further, according to the present invention, a bearing is attached to a rotating shaft having a hollow interior, as described in [Claim 2]. As shown in FIGS. 7 to 11, the pipe winding body 3 has a blade or a screw or a propeller. And the like, the rotation axis of the pipe winding 3 is installed in the water flow in a direction perpendicular or parallel to the water flow, and the pipe winding 3 is rotated by the water flow force.

【0031】また、本発明は、水面浮揚体20にパイプ
巻体3を設置して、浮揚体20を回転させないで、パイ
プ巻体3を回転させるものである。
In the present invention, the pipe winding 3 is installed on the water surface floating body 20, and the pipe winding 3 is rotated without rotating the floating body 20.

【0032】また、本発明は、内部が空洞状の回転軸に
軸受けを付設して、[請求項4]に記載し、図12〜図
13に示す通り、パイプ巻体3の回転に、風力を利用し
て風車の回転力を使用するものである。
According to the present invention, a bearing is attached to a rotating shaft having a hollow interior, as described in [Claim 4]. As shown in FIGS. The rotational force of the windmill is used by utilizing the above.

【0033】また、本発明は、気液巻体ポンプ装置の圧
送パイプ10によって圧送する物質を、[請求項5]に
記載し、図14〜図16に示す通り、気体と液体、また
は気体と液体と固体とし、大粒の固形物(野菜、果物、
魚貝額、土石等)の圧送に利用するものである。
According to the present invention, the substance to be pumped by the pumping pipe 10 of the gas-liquid winding pump device is described in [Claim 5], and as shown in FIGS. Liquid and solid, large solids (vegetables, fruits,
It is used for pumping of fish and shellfish, earth and stone, etc.).

【0034】また、本発明は[請求項6]に記載し、図
15に示す通り、パイプ巻体3を、大気界に設置して、
パイプ巻体3の圧送パイプ10を隔壁先の圧気界に貫通
させて、大気界から圧気界へ気体と液体または、気体と
液体に固形物を混入して、出し入れするものである。
The present invention is described in [Claim 6]. As shown in FIG. 15, the pipe winding body 3 is installed in the atmosphere,
The pressure feed pipe 10 of the pipe winding body 3 is made to penetrate into the pressurized air field at the tip of the partition wall, and a gas and a liquid or a solid substance is mixed into the gas and the liquid to be taken in and out of the air field.

【0035】また、本発明は[請求項7]に記載し、図
16に示す通り、パイプ巻体3を、圧気界に設置して、
パイプ巻体3の圧送パイプ10を隔壁先の大気界に貫通
させて、圧気界から大気界へ気体と液体または、気体と
液体に固形物を混入して、出し入れするものである。
The present invention is described in [Claim 7], and as shown in FIG. 16, the pipe winding body 3 is installed in a pressure field,
The pressure feed pipe 10 of the pipe winding body 3 is made to penetrate into the atmosphere at the tip of the partition wall, and a gas and a liquid or a solid material is mixed into and out of the gas and a liquid from the compressed air to the atmosphere.

【0036】[0036]

【0037】本発明は[請求項1]に記載し、図1〜図
6に示す通り、内部が空洞の回転軸4を採用し、空洞部
を回転圧送管8(パイプ)を通過させる理由は、前述の
難問を解決するためにあり、パイプ、すなわち回転圧送
管8を回転軸4の空洞の内部に配置することで、回転に
よるパイプの障害を完全に排除でき、回転軸に軸受を取
り付けても何等支障が起きず、従来の一般の回転体のよ
うに回転体の固定や取り付けが可能となるためである。
この構成によって、従来の最大の欠点であった、役目を
果たせる回転軸の取り付けが可能となり、実用化の出発
点となる。
The present invention is described in [Claim 1]. As shown in FIGS. 1 to 6, the reason for adopting the rotating shaft 4 having a hollow inside and passing the hollow portion through the rotary pumping pipe 8 (pipe) is as follows. In order to solve the above-mentioned difficult problem, the pipe, that is, the rotary pumping pipe 8 is arranged inside the cavity of the rotary shaft 4, so that the obstacle of the pipe due to the rotation can be completely eliminated, and the bearing is mounted on the rotary shaft. This is because no trouble occurs, and the rotating body can be fixed or attached like a conventional general rotating body.
With this configuration, it is possible to mount a rotating shaft, which is the biggest drawback of the related art, and it becomes a starting point for practical use.

【0038】さらに、『水面近くに設けた軸受18に・
・・』とは、パイプ巻体を浸漬、または非浸漬のいずれ
の場合にも対応できる水面に近い場所を意味し、パイプ
巻体が回転でき軸受が支承の役目もできるように準備さ
れた状態で、固定設置だけでなく浮揚体に取り付けられ
た支承をも含む。
Further, "the bearing 18 provided near the water surface.
・ ・ ”Means a place close to the water surface where the pipe winding can be immersed or not immersed, in a state where the pipe winding is prepared to rotate and the bearing can also serve as a bearing This includes not only fixed installation but also bearings attached to the floating body.

【0039】さらに、回転圧送管8は接続機器に接続す
るが、この場合、回転軸も一体に接続機器に接続するの
が機能的安定的によい、回転圧送管8と接続機器9のみ
を接続する方法もあるが、特殊な場合を除いて有利な方
法ではない。さらに、『封水状態』とは、図1図2図6
に示す通り、気液液巻体ポンプ装置の圧送力を生む原理
の根元的要素である。封水状態の形成する水位の水位差
の合計はポンプの圧送力として作用するものである。封
水状態は、凹曲部を形成するパイプ等に注水して前後の
通気を遮断する施設の名称であり、本発明ではリング状
流路に気体と液体を流入させ、液体がリング状流路内の
前後に水位を形成した状態を言う。回転を速めると粘性
抵抗、摩擦抵抗、遠心カが大きくなり、リング内の水位
形成の確保ができなくなる。本発明の気液ポンプを含む
『パイプ巻式ポンプ』には、遠心力は百害あって1利な
しである、回転が速すぎると遠心力が大きくなり、封水
状態の形成ができず封水崩れが起きる原因にもなる。こ
のため、本発明の気液巻体ポンプを含む『パイプ巻式ポ
ンプ』は封水状態の維持する速度(従来ポンプの羽根等
の1/100程度の低速度)で回転させる必要がある。
Further, the rotary pumping pipe 8 is connected to the connecting device. In this case, it is preferable that the rotary shaft is also connected to the connecting device in a functionally stable manner. Only the rotary pumping pipe 8 and the connecting device 9 are connected. Although there is a method, it is not an advantageous method except in special cases. Further, the “sealed state” refers to the state shown in FIGS.
Is a fundamental element of the principle of generating the pumping force of the gas-liquid winding pump. The sum of the water level differences formed in the sealed state acts as the pumping force of the pump. The water-sealed state is the name of a facility that blocks water before and after by injecting water into a pipe or the like that forms a concave portion, and in the present invention, gas and liquid flow into the ring-shaped flow path, and the liquid flows into the ring-shaped flow path. The state where the water level is formed before and after the inside. If the rotation is accelerated, viscous resistance, frictional resistance, and centrifugal force increase, and it becomes impossible to secure the formation of a water level in the ring. In the "pipe-wound pump" including the gas-liquid pump of the present invention, the centrifugal force is harmful and there is no benefit. If the rotation is too fast, the centrifugal force increases, and the sealed state cannot be formed. It also causes collapse. For this reason, it is necessary to rotate the "pipe-wound pump" including the gas-liquid winding pump of the present invention at a speed at which the sealed state is maintained (a speed as low as about 1/100 of a conventional pump blade or the like).

【0040】さらに、『圧送パイプ10・・に抵抗を与
え・・自動的に水位差をおこさせ・・』とは、圧送パイ
プ10を高所に配置して揚程を与えること、または水中
に配置して水圧を与えること、または圧送管内の流れに
なんらかの阻止力を与えることによって、模型実験によ
ると、抵抗を与えると、封水状態の前後の水位に自動的
に水位差が起きることを確認し、圧送力が起きたことが
解る。すなわち、何等抵抗を与えない場合、封水状態の
前後の水位差には何等水位差は発生しないことも確認し
た。圧送カは抵抗を与えることで起きる。
Further, "providing resistance to the pumping pipe 10... Automatically causing a water level difference" means that the pumping pipe 10 is arranged at a high place to give a lift, or is arranged underwater. According to a model experiment, by applying water pressure or by providing some stopping force to the flow in the pumping pipe, it was confirmed that when resistance was applied, the water level before and after the sealed state automatically changed. It turns out that pumping force has occurred. That is, it was also confirmed that when no resistance was given, no difference in water level occurred before and after the sealed state. Pumping occurs by providing resistance.

【0041】さらに[請求項1]に関して、パイプ巻体
の役目は、封水状態を形成し、回転毎に封水状態を次の
リングに前進(圧送)させ、最終リングの封水状態を消
滅させることにある。すなわち、パイプ巻体の回転で、
気体と液体を交互にリング状流路2内に汲み込んで、自
動的に前後にほぽ同一水位の封水状態を形成させる。ま
た、パイプ巻体の回転で、回転毎に封水状態を1リング
づつ前進させ、最終リング以降は封水状態を消滅して気
液として圧送される。
Further, with respect to [Claim 1], the role of the pipe winding is to form a sealed state, advance (pump) the sealed state to the next ring every rotation, and eliminate the sealed state of the final ring. To make it happen. That is, by the rotation of the pipe winding,
Gas and liquid are alternately pumped into the ring-shaped flow path 2 to automatically form a sealed state at substantially the same water level before and after. Further, with the rotation of the pipe winding, the water-sealed state is advanced one ring at a time for each rotation, and after the last ring, the water-sealed state is extinguished and the liquid is pumped as gas-liquid.

【0042】さらに、回転が速すぎたり、圧送途上から
大きい圧力(水圧等)を受けると、封水状態を維持でき
ず前進もできず押し戻されて、パイプ巻体と共廻りを始
める、この現象が『封水崩れ』である。実験の結果、
『封水崩れ』は最終のリング状流路から始まり、一旦、
封水崩れが始まると次々と順次の最初のリングまで連続
的に波及し、圧送力(揚程等)は急激かつ極端に低下す
る。
Further, if the rotation speed is too high or a large pressure (water pressure or the like) is applied during the pressure feeding, the sealed state cannot be maintained, the water cannot be moved forward, and the water is pushed back, and starts rotating together with the pipe winding. Is "Seal landslide". results of the experiment,
"Seal collapse" starts from the last ring-shaped channel,
When the sealing collapse starts, it continuously spreads to the first ring one after another, and the pumping force (head and the like) drops sharply and extremely.

【0043】さらに、パイプ巻体は圧力に応じた巻数と
直径が十分にあることと、封水状態を維持できる回転数
で回転操作する必要がある。封水状態の水位に水位差が
起きると大きい回転力が必要になる、これは、水位差に
よって左右対称でなくなり全ての封水状態が片方に偏
り、回転力には常にこの状態を保つための力として加わ
るためである。すなわち、揚程や水量に比例して大きい
回転力が必要となる。また、パイプ巻体の構成要素の決
定には、揚程や水量に余裕をもって対応できる水位差、
巻数、巻体の直径、パイプの口径、液体の体積比、回転
速度を決める必要がある。
Further, it is necessary that the pipe winding body has a sufficient number of turns and a diameter corresponding to the pressure, and is operated to rotate at a number of rotations capable of maintaining a sealed state. When a water level difference occurs in the sealed water level, a large rotational force is required.This is because the water level difference is not symmetrical and all the sealed states are biased to one side, and the rotational force always keeps this state. It is to join as power. That is, a large rotational force is required in proportion to the head and the amount of water. In addition, when determining the components of the pipe winding, the water level difference that can respond to the head and water volume with a margin,
It is necessary to determine the number of turns, the diameter of the winding, the diameter of the pipe, the volume ratio of the liquid, and the rotation speed.

【0044】さらに、封水崩れは、封水状態の水位差の
合計Σhiが、圧力Hに届かず、H>Σhiの時や、回
転数が早すぎて遠心力が作用したり、粘性度が大きいた
め封水状態がパイプ巻体の回転に追従できず、共廻りす
る場合に起きる現象である。 ・圧送可能の条件は H<Σhi=h1+h2+・・・
+hnであり、 ・封水崩れの場合 H>Σhi=h1+h2+・・・
+hnである。 上述のように、パイプ巻体は回転毎に1つの新しい封水
状怨を形成し、各々の封水状態を1リングづつ前進さ
せ、最終の封水状態を1リングづつ消減させ、このパタ
ーンを回転毎に繰り返えす。
Furthermore, the sealing failure is caused by the fact that the sum of water level differences Σhi in the sealed state does not reach the pressure H, and when H> Σhi, or when the rotation speed is too fast, centrifugal force acts or the viscosity decreases. This is a phenomenon that occurs when the water sealing state cannot follow the rotation of the pipe winding body due to its large size and rotates together.・ Conditions for enabling pressure feeding are as follows: H <Σhi = h1 + h2 +.
+ Hn, ・ In the case of seal collapse H> Σhi = h1 + h2 + ...
+ Hn. As described above, the pipe wrap creates one new water seal per revolution, advances each water seal by one ring, reduces the final water seal by one ring, and changes this pattern. Repeat every rotation.

【0045】さらに、この状態で、圧送途上に圧力H
(揚程等)が起きると、全ての封水状態は自動的に水位
差Σhiを形成し圧力Hを吸収して均衡した状態を保
つ。回転によって新しい封水状態が発生、前進、消滅を
繰り返しても全体の均衡した状態の水位差Σhiの形成
状況に変化はない。すなわち、常に水位差Σhiを形成
し圧力Hを吸収して均衡しながら、気液はパイプ内を前
進(圧送)する。圧送途上に圧力(揚程等)が起きる
と、封水状態が自動的に水位差hiを形成するのは、水
力学的、空気力学的に気体と液体が交互に1本のリング
状のパイプで連通しているためで、気液巻体ポンプ装置
の最も特徴とする現象である。
Further, in this state, the pressure H
When a head (such as a lift) occurs, all the sealed states automatically form a water level difference Δhi, absorb the pressure H, and maintain a balanced state. Even if a new water sealing state is repeatedly generated, advanced, and disappeared by the rotation, there is no change in the formation state of the water level difference Δhi in the whole balanced state. That is, while constantly forming a water level difference Δhi and absorbing and balancing the pressure H, the gas-liquid advances (pumps) in the pipe. When a pressure (head, etc.) occurs during the pressure feeding, the sealed state automatically forms the water level difference hi, because the gas and the liquid are alternately hydraulically and aerodynamically formed by one ring-shaped pipe. This is the most characteristic phenomenon of the gas-liquid winding pump device due to the communication.

【0046】[0046]

【0047】[0047]

【0048】[0048]

【0049】[0049]

【0050】[0050]

【0051】[0051]

【0052】[0052]

【0053】[0053]

【0054】[0054]

【0055】[0055]

【0056】[請求項2]は、図7〜図9のように内部
が空洞状の回転軸に軸受けを付設して、パイプ巻体3又
は回転軸に、羽根又はスクリュー又はプロペラを付設し
て、パイプ巻体の回転軸を水流に直角方向に設置して、
パイプ巻体を水流力で回転させるもので、パイプ巻体を
浸漬させてもよいし、羽根等のみ浸漬させてもよい。
[Claim 2] is that, as shown in FIGS. 7 to 9, a bearing is attached to a rotating shaft having a hollow inside, and a blade or a screw or a propeller is attached to the pipe winding body 3 or the rotating shaft. , Set the axis of rotation of the pipe winding at right angles to the water flow,
The pipe winding is rotated by a hydraulic force, and the pipe winding may be immersed, or only the blades or the like may be immersed.

【0057】また、[請求項2]は、図10、図11の
ように内部が空洞状の回転軸に軸受けを付設して、パイ
プ巻体3又は回転軸に、羽根又はスクリュー又はプロペ
ラを付設して、パイプ巻体の回転軸を水流に平行方向に
設置して、パイプ巻体を水流力で回転させるもので、パ
イプ巻体を浸漬させてもよいし、羽根等のみを浸漬させ
てもよい。
A second aspect of the present invention is that, as shown in FIGS. 10 and 11, a bearing is attached to a rotating shaft having a hollow inside, and a blade or a screw or a propeller is attached to the pipe winding body 3 or the rotating shaft. Then, the rotation axis of the pipe winding is installed in a direction parallel to the water flow, and the pipe winding is rotated by the water flow force.The pipe winding may be immersed, or only the blades or the like may be immersed. Good.

【0058】さらに、[請求項2]のパイプ巻体の設置
方法は、固定式、可動式、水面浮揚式、懸垂式(吊下
式)のいずれでもよいが、回転軸に軸受けを取付けて固
定体または浮揚体または懸垂物に取付けるものである。
また、浮揚体はパイプ巻体の内部に設けず、図7〜図1
1の例のように外側に設け、浮揚はするが、従来のパイ
プ巻式ポンプのようにパイプ巻体と共に回転させるもの
ではない。
Further, the method of installing the pipe winding body of claim 2 may be any of a fixed type, a movable type, a floating surface type, and a suspended type (suspended type), but is fixed by attaching a bearing to a rotating shaft. It is to be attached to a body or a floating body or a suspended object.
In addition, the floating body is not provided inside the pipe winding body, and FIGS.
It is provided on the outside and floats as in Example 1, but is not rotated with the pipe winding like a conventional pipe winding pump.

【0059】[請求項3]について、本発明の気液巻体
ポンプ装置の、パイプ巻体3の回転軸と軸受けを介し
て、パイプ巻体を水面の浮揚体20に設置し、浮揚体2
0を回転させないで、パイプ巻体3を回転させるもの
で、水流に直角方向、水平方向(図示していない)のい
ずれでもよい、図7、8、9に例図を示す、また、図1
2のように、モーターやエンジンだけでなく、水面浮揚
体又は水中に固定設置して風力による自然曝気の利用方
法もある。
Regarding [Claim 3], in the gas-liquid scroll pump device of the present invention, the pipe winding is set on the floating body 20 on the water surface via the rotating shaft and the bearing of the pipe winding 3, and the floating body 2 is mounted.
0, the pipe winding body 3 is rotated, and may be in a direction perpendicular to the water flow or in a horizontal direction (not shown). FIGS. 7, 8, and 9 show example diagrams.
As described in 2, there is also a method of utilizing natural aeration by wind power by fixedly installing a water levitation body or water in addition to a motor or an engine.

【0060】[請求項4]にっいて、パイプ巻体3の回
転に、風車の回転力を利用するもので、風車の回転力か
らパイプ巻体3の回転へ動力の伝達方法は、周知技術の
方法でよく限定する構成はなく効果的に回転させる構成
であればよい。風力で回転させる用途として、池、堀、
湖沼等の、風力による、揚水、曝気、加圧気体の貯留等
がある。図12はパイプ巻体を回転しない浮揚体に設置
して水面に浮揚させて、風車の回転力をパイプ巻体の回
転力を曝気に利用する概念説明例図である。
According to a fourth aspect of the present invention, the rotating force of the windmill is used for the rotation of the pipe winding 3, and the method of transmitting power from the rotating force of the windmill to the rotation of the pipe winding 3 is a known technique. There is no configuration that is limited by the method described above, and any configuration may be used as long as the configuration allows effective rotation. Ponds, moats,
Pumping, aeration, and storage of pressurized gas by wind power in lakes and marshes. FIG. 12 is a conceptual explanatory diagram in which a pipe winding is installed on a non-rotating floating body and floats on the water surface, and the rotational force of a windmill is used for aeration using the rotational force of the pipe winding.

【0061】[請求項4]は、風力によりパイプ巻体を
回転させるもので、本発明の気液巻体ポンプ装置は、遠
心力や高速回転が不要であるため、低密度の自然エネル
ギーの利用が容易である、このことから、パイプ巻体の
駆動力を風力により回転させるもので、この場合、風力
単独でもよいし、風力と太陽光発電システムを組合わせ
て、直接または間接的方法で、回転させて低密度の自然
エネルギーの利用を促進させる方法もある。風車の回転
力をパイプ巻体の回転に伝える構成は、周知技術でよく
詳説は省略する。図13は、水面上に固定設置してパイ
プ巻体の回転に、風車の回転力を利用して水中溶存酸素
の増強に使用した概念構成例図である。
The fourth aspect of the present invention is to rotate the pipe winding by wind force. The gas-liquid winding pump of the present invention does not require a centrifugal force or high-speed rotation, and therefore uses low-density natural energy. Therefore, the driving force of the pipe winding is rotated by wind power. In this case, the wind power alone may be used, or the wind power and the photovoltaic power generation system may be combined, in a direct or indirect manner, There is also a method of rotating to promote the use of low-density natural energy. The configuration for transmitting the rotational force of the windmill to the rotation of the pipe winding body is well known in the art, and a detailed description is omitted. FIG. 13 is a conceptual configuration example diagram that is used to increase the dissolved oxygen in water using the rotational force of a windmill and the rotation of a pipe winding by being fixedly installed on the water surface.

【0062】[請求項5]は、回転軸を構成したパイプ
巻体の回転によって気体、液体、固体の本格的な3相の
混相流を対象とするもので、従来のサンドポンプ等の砂
利、土砂等の小粒の固形物や汚泥等の水輸送のみでな
く、圧送パイプの口径の1/2以下程度の大粒の固形物
(野菜、果物、熟貝類、土石等)の輸送、圧送をも可能
にするものである。また、アルキメデスやレオナルド・
ダ・ビンチ式でのように、単にポンプの高さ程度の揚程
ではなく、ポンプよりもはるかに高所へ圧送ができる機
能を持ったものである。図14〜図16は、3相の混相
流の説明図である。
[Claim 5] is directed to a full-scale three-phase flow of gas, liquid, and solid by rotation of a pipe winding constituting a rotary shaft. Not only water transport of small solids such as earth and sand or sludge, but also transport and pumping of large solids (vegetables, fruits, mature shells, mud, etc.) less than 1/2 the diameter of the pumping pipe is possible. It is to be. Also, Archimedes and Leonardo
Unlike the Da Vinci type, it has the function of pumping not only to the height of the pump but also to a place much higher than the pump. 14 to 16 are explanatory diagrams of a three-phase multiphase flow.

【0063】[請求項6]は、図15に示すロックを使
用しないで、大気下から圧気下への気液だけでなく、固
形物も含めて輸送に利用するもので、大気側から圧気側
への輸送状況の概念説明図である。圧気シールド、圧気
ケーソン等の工事で大気下から圧気下への気液や物資の
気液圧送に利用する。パイプ巻体を圧気内に設ける場合
もある。
[Claim 6] uses not only the lock shown in FIG. 15 but also gas and liquid from the atmosphere to the compressed air, as well as transporting solids. It is a conceptual explanatory view of the situation of transportation to. It is used for gas-liquid pumping of gas-liquid and materials from under air to under pressure in the construction of pneumatic shields and pneumatic caisson. The pipe winding may be provided in the compressed air.

【0064】[請求項7]は、図16に示すロックを使
用しないで、圧気下から大気下への気液だけでなく、固
形物も含めて輪送に利用するもので、大気側から圧気側
への輸送状況の概念説明図で、圧気シールド、圧気ケー
ソン等の工事で大気下から圧気下への気液や物資の気液
圧送に利用する。パイプ巻体を大気内に設ける場合もあ
る。
A seventh aspect of the present invention uses not only the lock shown in FIG. 16 but also gas and liquid from a compressed air to the atmosphere, and also uses a solid matter to transport the solid. This is a conceptual illustration of the transport situation to the side, and is used for gas-liquid pumping of gas-liquid and materials from under the atmosphere to under the pressure in the construction of a pneumatic shield, pneumatic caisson, etc. In some cases, the pipe winding is provided in the atmosphere.

【0065】[0065]

【0066】[請求項1]を、さらに説明すると、図
3、図4の例図の通り、気液の流入方式には4方式があ
る、パイプ巻体3の下部を浸漬する方法を『浸漬式』、
パイプ巻体の外周側に伸展する方法を『伸展流入式』、
伸展流入部17を回転軸の内部に潜らせる方法を『軸内
伸展式』、伸展流入部17を回転軸の内部から再度回転
軸外へ伸展させて流入させる方法を前述の通り『軸外伸
展式』と呼ぶ。この場合、軸内伸展式はパイプ巻体の両
側の2箇所に接続機器を設けてもよい。気液流入口6か
らの気液流入(汲込み)の方式は以下の通り、 (イ)は、浸漬式で、パイプ巻式ポンプの一般的な場合
を示し、気液パイプ巻体3の回転軸の下部を浸漬させ
て、パイプ巻体に敷設された気液流入口から回転毎に気
液を流入させる方式で、人カ回転や小揚程の気液巻体パ
イプ3に適しているが、一方、気液巻体パイプ3と液路
の液体との摩擦面積が大きく、抵抗が大きく動力や騒音
が大きくなるのが欠点である。 (ロ)は、伸展流入式で、気液パイプ巻体3の一端を気
液パイプ巻体3よりも外側へ伸展させて流入口を設ける
もので、気液流入口6のみを回転ごとに水没させて吸気
汲水させる方式で、気液パイプ巻体3と液体との摩擦損
失を低減させることが主目的である.この場合、外側へ
伸展させて設けた気液流入口6は、添板や枠等を付設し
て安定を図ってよい。この方法は、小規模から大規模、
小揚程から大揚程まで巾広く適している。 (ハ)は、軸内伸展式で気液パイプ巻体3の一端を伸展
流入部17から回転軸内を潜らせて、側方の水源から回
転軸内のパイプに流入させる方式で、この場合、接続機
器を設ける場合もある。流入水位を適切に保つ必要があ
る。気液パイプ巻体3を浸漬させずに側方の水源が設置
できる場合に適しており、液体との摩擦抵抗が小さく、
メンテナンスが容易な方式である。 (ニ)は、軸外伸展式で気液パイプ巻体3の一端を伸展
流入部17から回転軸内を潜らせて、再度回転軸4内か
ら外部に伸展させて、気液流入口6を設けて側方の水源
から気液を流入させる方式。目的は(ハ)と同様であ
り、水位が低い場合等に採用される構成で気液流入口6
は、添板や枠等を付設して安定を図ってよい。
[Claim 1] To further explain, as shown in FIGS. 3 and 4, there are four gas-liquid inflow methods, and the method of dipping the lower part of the pipe winding 3 is referred to as "dipping". formula",
"Extension inflow type"
The method of making the extension inflow portion 17 dive inside the rotary shaft is referred to as “in-axis extension type”, and the method of extending the extension inflow portion 17 from the inside of the rotation shaft to the outside of the rotation axis and inflowing the same as described above is “off-axis extension”. Expression ”. In this case, in the axial extension type, connecting devices may be provided at two places on both sides of the pipe winding body. The method of gas-liquid inflow (pumping) from the gas-liquid inflow port 6 is as follows: (a) shows a general case of a pipe-wound pump, which is an immersion type, and the rotation of the gas-liquid pipe winding 3 A method in which the lower part of the shaft is immersed and gas-liquid flows in at every rotation from a gas-liquid inlet laid on the pipe winding body, which is suitable for the gas-liquid winding pipe 3 of rotation of a person or a small head. On the other hand, the drawback is that the friction area between the gas-liquid winding pipe 3 and the liquid in the liquid passage is large, the resistance is large, and the power and noise are increased. (B) is an extension-inflow type in which one end of the gas-liquid pipe winding 3 is extended outside the gas-liquid pipe winding 3 to provide an inlet, and only the gas-liquid inlet 6 is submerged every rotation. The main purpose is to reduce the friction loss between the gas-liquid pipe winding 3 and the liquid. In this case, the gas-liquid inlet 6 extended outward may be provided with an attachment plate, a frame, or the like for stability. This method can be small to large,
Suitable for a wide range from small head to large head. (C) is a method in which one end of the gas-liquid pipe winding body 3 is sunk in the rotating shaft from the extension and inflow portion 17 by an in-shaft extension type, and flows into a pipe in the rotating shaft from a lateral water source. In some cases, a connection device is provided. It is necessary to maintain the inflow water level appropriately. It is suitable when the water source on the side can be installed without immersing the gas-liquid pipe winding 3, and the frictional resistance with the liquid is small.
It is easy to maintain. (D) In the off-axis extension type, one end of the gas-liquid pipe winding 3 is sunk in the rotation shaft from the extension inflow portion 17 and is extended again from the inside of the rotation shaft 4 to the gas-liquid inlet 6. A system that allows gas and liquid to flow in from a side water source. The purpose is the same as in (c), and the gas-liquid inlet 6 has a configuration adopted when the water level is low.
May be provided with an attachment plate, a frame or the like for stability.

【0067】さらに、本発明の気液巻体ポンプ装置の気
液パイプ巻体の巻形式は、三角形、四角形、五角形でも
一応の機能は発揮する、これらを円形に含めるものとし
て以下説明する。 (イ)は円筒形(螺旋形)方式で、故障の発見や維持管
理が容易である。巻数が多い場合で高様程に適してお
り、摩擦抵抗が大きくなるため浸漬させない流入方式が
よい。単層巻では場所を広く必要とするため不経済的な
構成となる。 (ロ)は円錐台形で、気体部分の体積の圧縮に対応でき
る形式で、故障の発見や維持管理が容易である。(イ)
と同様に高揚程に適しており、単層巻では不経済的であ
る。 (ハ)はドーナツ形(タイヤ形)で、ドーナツ形の断面
は丸形の場合は機能的である。大小いずれの場合にも採
用でき適用性が高い。小型は浸漬式に遺適ている。 (ニ)はドーナツ形の変形で(ハ)に属し、断面が角形
になっているもので、機能的には(ハ)と同様で、製作
方法も比較的簡単で、汎用的に利用されると予想され
る、これらに似た形を使用してもよい。 (ホ)はタイコ形で(中太り形)で、円筒形の変形でも
あり、機能的には(イ)(ロ)と同様であり、揚程を増
強する場合(巻数を増やす等)に採用する巻方である。 (ヘ)は鼓形(中細り形)で、特殊な場合に利用する
形。 (ト)は円盤形(蚊取り線香巻)で、浸漬式として使用
する場合が多く、小規模から大規模まで利用範囲は広
い、人力や自然力で回転させる場合に便利な方法であ
る。浸漬する巾が小さくても利用できる利点がある。 (チ)は、以上いずれにも属しない形で、タコ糸巻、ど
くろ巻、乱巻等の不規則の巻き方で、緊急や仮設の場合
に使用される。
Further, the winding form of the gas-liquid pipe winding of the gas-liquid winding pump device of the present invention can be arbitrarily performed even if the winding form of the gas-liquid pipe is triangular, quadrangular or pentagonal. (A) is a cylindrical (spiral) type, which makes it easy to find and maintain a fault. It is more suitable for a higher number of windings and has a higher frictional resistance. Single-layer winding requires a large space, which is uneconomical. (B) is a truncated cone, which can cope with the compression of the volume of the gaseous part, making it easy to find and maintain failures. (I)
It is suitable for high lift as well as, and it is uneconomical for single layer winding. (C) is a donut shape (tire shape), and if the cross section of the donut shape is round, it is functional. It can be used in both large and small cases and has high applicability. Small size is suitable for immersion type. (D) is a donut-shaped deformation that belongs to (C) and has a square cross section. The function is the same as (C), the manufacturing method is relatively simple, and it is widely used. Similar shapes may be used as would be expected. (E) is a Tyco type (medium thick type), which is also a cylindrical deformation, and is functionally the same as (A) and (B), and is adopted when the head is to be increased (increase the number of turns, etc.). It is winding. (F) is a drum shape (medium-thin shape), which is used in special cases. (G) is a disk type (mosquito coil), which is often used as an immersion type, has a wide range of use from small to large scale, and is a convenient method when rotating with human power or natural power. There is an advantage that it can be used even if the immersion width is small. (H), which does not belong to any of the above, is an irregular winding method such as octopus winding, skull winding, turbulent winding, etc., and is used in emergency or temporary installation.

【0068】さらに、図示はしていないが、パイプ巻体
3または回転軸には、通常はドラム、カバー、枠体、フ
レーム、を一体に付設するものとし、状況に応じて適宣
決める。パイプ巻体3は、図1に示すように、必ずしも
ドラム等の収納体に納めなくてもよい。
Further, although not shown, a drum, a cover, a frame, and a frame are usually provided integrally with the pipe winding body 3 or the rotating shaft, and are appropriately determined according to the situation. As shown in FIG. 1, the pipe winding body 3 does not necessarily need to be contained in a storage body such as a drum.

【0069】さらに、パイプ巻体3の回転軸4は、必ず
しもパイプ巻体内の回転軸4全体を空洞に貫通している
必要はなく、回転圧送管8や伸展流入口6のパイプが回
転軸内部の空洞部を潜る部分だけで他の部分は閉塞して
もよい。また、パイプ巻体の回転軸4はほぽ水平に設け
るが、封水状態が十分に維持できる場合は、必要に応じ
て多少傾斜して設置してもかまわないし、回転作業中に
前後左右上下に多少揺れても構わない。
Further, the rotating shaft 4 of the pipe winding 3 does not necessarily have to penetrate the entire rotating shaft 4 in the pipe winding into the cavity. The other part may be closed only by the part that dives into the hollow part of. In addition, the rotating shaft 4 of the pipe winding is provided almost horizontally, but if the sealed state can be sufficiently maintained, the rotating shaft 4 may be installed at a slight inclination as necessary. It may be slightly shaking.

【0070】さらに、パイプ巻体3には、図示していな
いが、固定や移動や水面浮上とし、スムーズに稼働させ
るため、回転軸、回転枠、巻体カバー、回転ドラム等に
プーリー等を付設して、歯車、ペルト、ローラー、チェ
ーン等を取り付けてよく、これらを回転の媒体として回
転力を確保して回転させてもよく、その他周知の付属機
器は必要に応じて適宣付設してよい。パイプ巻体3を回
転させるためのハンドル19又は、プーリーの取り付け
箇所は、回転軸4だけでなくパイプ巻体3のどの位置で
もよく、巻体の外側をプーリーとして利用してもよい
し、または横側等に付設してもよく、図示した例だけで
なく、必要に応じて適宣選定して設けてよい。
Further, although not shown, pulleys and the like are attached to the rotating shaft, the rotating frame, the winding body cover, the rotating drum, and the like to fix, move, float on the water surface, and operate smoothly, although not shown. Then, a gear, a pelt, a roller, a chain, or the like may be attached, these may be used as a medium for rotation to secure the rotating force, and the other known accessories may be appropriately provided as necessary. . The handle 19 for rotating the pipe winding 3 or the attachment point of the pulley may be at any position of the pipe winding 3 as well as the rotating shaft 4, and the outside of the winding may be used as a pulley, or It may be provided on the lateral side or the like, and may be provided not only in the illustrated example but also appropriately selected as needed.

【0071】[0071]

【発明の効果】本発明によると、従来、パイプ巻式ポン
プに実現できなかった『回転軸』と『接続機器』と『回
転圧送するパイプ』の3者の機能が共存できる構成が実
現したため、回転軸の固定設置、可動設置、係留浮上設
置、懸垂設置のいずれも安定的、機能的で、実用化が容
易となった。
According to the present invention, a configuration has been realized in which the functions of the three members "rotary shaft", "connection equipment", and "pipe for rotary pressure feeding" can be coexistent, which could not be realized by the conventional pipe wound pump. The fixed installation, movable installation, mooring floating installation, and suspension installation of the rotating shaft are all stable, functional, and easy to put to practical use.

【0072】本発明によると、パイプ巻体を浸漬させな
いで気液の流入ができ、ループ式ポンプにない回転軸の
構成ができたことにより、設置、係留、稼働、操作が安
全的で容易となった。
According to the present invention, gas and liquid can be introduced without immersing the wound pipe, and a rotary shaft not included in the loop pump can be constructed, so that installation, mooring, operation and operation are safe and easy. became.

【0073】さらに、本発明によると、従来のパイプ巻
体の胴体浸漬式だけでなく、浸漬させない方式の開発に
より、摩擦抵抗、汚染を少なくし、操作、維持管理を容
易にし、早期老朽化を防止することが可能となった。
Further, according to the present invention, not only the conventional body immersion method of the pipe winding body but also the method of not immersing it, the frictional resistance and the contamination are reduced, the operation and the maintenance and management are facilitated, and the early aging is performed. It became possible to prevent.

【0074】さらに、本発明は、従来未開発の、気体体
積比の調節で、揚程や水中送気深度を操作することが可
能となった。すなわち、 気体体積率e=気体/(気体
+液体) e値を適切に調整して、従来と同一の圧カで
も高揚程が確保でき、また、同様に水中送気深度も大き
くなる利点がある。2
Further, according to the present invention, it is possible to control the head and the water supply depth by adjusting the gas volume ratio, which has not been developed before. That is, the gas volume ratio e = gas / (gas + liquid) The e value is appropriately adjusted, and a high head can be secured even with the same pressure as before, and there is an advantage that the underwater air supply depth is also increased. . 2

【0075】さらに、本発明において、全世界に無数に
存在する河川、水路等の水流力や風力を利用して揚水や
曝気等を簡単に活用でき省カ化とNO、SO、CO
発生の低減化でき、環境破壊防止の要請に適応できる
長所がある。
Further, in the present invention, pumping and aeration can be easily utilized by utilizing the hydrodynamic power and wind power of countless rivers and waterways which exist in the whole world, thereby saving energy and achieving NO X , SO X , CO 2
(2) There is an advantage that the generation can be reduced and the requirement for prevention of environmental destruction can be met.

【0076】さらに、本発明において、回転軸の軸受け
を安定的に固定設置、可動設置、浮揚設置、懸垂設置し
て、水流に直角方向だけでなく、又は水平方向にも設置
して、水流力を利用してパイプ巻体を回転させることが
可能となった。この中で、回転軸の軸受けによってパイ
プ巻体を回転しない浮揚体への取付けが可能となった。
Further, in the present invention, the bearing of the rotating shaft is stably fixedly installed, movablely installed, levitatedly installed, and suspended, and installed not only in a direction perpendicular to the water flow but also in a horizontal direction, so that the hydrodynamic force is obtained. It is now possible to rotate the pipe winding by utilizing. Among them, the bearing of the rotating shaft has made it possible to attach the pipe winding to a floating body that does not rotate.

【0077】さらに、本発明は、風カを回転に利用し
て、気液を水中に圧送して自然力による水質浄化、高所
への送気、送水、高圧気体の貯留等を容易にする利点が
ある。
Further, the present invention is advantageous in that the wind power is used for rotation, and gas and liquid are pumped into water to facilitate water purification by natural force, air supply to high places, water supply, storage of high-pressure gas, and the like. There is.

【0078】さらに、本発明は、従来大気下のみで使用
してきたが、圧気内での使用、大気界と圧気界との相互
の気液の圧送だけでなく、固体を含めた3相流の圧送も
可能にし、圧気ケーソン工事、圧気シールド工事で、大
気界と圧気界とのロックを使用しないで物資や気液の出
し入れが可能となった。
Further, the present invention has conventionally been used only in the atmosphere. However, the present invention can be applied not only to the use in a pressurized air, the mutual gas-liquid pumping between the atmospheric field and the pneumatic field, but also to the three-phase flow including solids. The pumping is also possible, and in the pneumatic caisson construction and the pneumatic shielding construction, it is possible to take in and out of materials and gas-liquid without using the lock between the atmosphere and the pneumatic world.

【0079】さらに、本発明は、大粒(パイプ口径の1
/2以下程度)の固体でも本格的に輸送ができる装置、
すなわち、砂利や汚泥に留まらず、気体、液体、固体の
混相流の輸送を可能とした。
Further, the present invention relates to a large grain (one pipe diameter).
/ 2 or less) solid equipment that can be transported in earnest,
That is, it is possible to transport not only gravel and sludge but also gas, liquid, and solid multiphase flows.

【0080】さらに、本発明によると、従来回転軸の固
定に障害となった圧送パイプを、回転軸の空洞内に配置
したため、回転軸の固定ができるようになった。
Further, according to the present invention, the pumping pipe, which has conventionally been an obstacle for fixing the rotating shaft, is arranged in the cavity of the rotating shaft, so that the rotating shaft can be fixed.

【0081】さ らに、本発明によると、アルキメデス
式やレオナルド・ダ・ビンチ式のように、ポンプの高さ
程度の揚程機能ではなく、はるかに離れた高所への圧送
が可能となった。さらに、本発明によると、パイプ巻式
ポンプを固定する場合に、接続機器以遠の部分で取り付
ける必要があったが、回転軸に軸受で固定てきるため接
続機器に過大な機能を負担させる構成が改善できた。
Further, according to the present invention, unlike the Archimedes type and the Leonardo da Vinci type, the pumping function can be performed not at the height of the height of the pump but at a high place far away. . Furthermore, according to the present invention, when the pipe-wound pump is fixed, it is necessary to attach the pump at a portion other than the connecting device. I could improve it.

【0082】さらに、本発明において、回転軸の採用に
より容易に設置できるため、エンジンやモーターの使用
を少なくできる機会が多くなる、特に全世界に無数に存
在する河川、水路等の水流力や風力を利用して揚水や曝
気等を簡単に活用できる利点を生み、省力化とNO
SO、COの発生の低減化でき、環境破壊防止の要
請に適応できる長所がある。
Further, in the present invention, since the installation can be easily performed by employing the rotating shaft, the use of the engine and the motor can be reduced, so that there are many opportunities. birth the advantage of easily leverage by utilizing pumping and aeration etc., labor saving and NO X,
There is an advantage that the generation of SO X and CO 2 can be reduced, and the requirement for prevention of environmental destruction can be met.

【0083】さらに、本発明において、低速回転で、ほ
ぼ、無騒音、無振動の状態で真空化、減圧化の作業がで
き、従来必要とした騒音振動防止の施設をしなくても作
業ができ、また、電力や内燃機関の動力のみでなく、人
力や風力や水流力でも容易に真空化の作業が可能となっ
た。
Further, in the present invention, the work of vacuuming and depressurizing can be performed at a low speed rotation almost in a state of no noise and no vibration, and the work can be performed without the noise and vibration prevention facilities required conventionally. In addition, the vacuuming operation can be easily performed not only with electric power or the power of the internal combustion engine but also with human power, wind power or water flow power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、パイプ巻体の回転軸を水面上に固定
設置して、パイプ巻体を多層巻とし、角ドーナツ型、モ
ーター駆動で揚水または水中送気に使用して、パイプ巻
体の下部を水中に浸漬させずに、気液流入口のみを水没
させて流入させて圧送する『伸展流入式』の側面例図を
示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing the present invention, in which a rotating shaft of a pipe winding is fixedly installed on the water surface, and the pipe winding is formed into a multi-layer winding; a square donut type; FIG. 3 is a side view showing an example of an “extension inflow type” in which only a gas-liquid inflow port is submerged to flow in without submerging the lower part of the body in water.

【図2】本発明の、パイプ巻体のリング内に形成する封
水状態について、圧送の源動力となる気体と液体の体積
の角e値(気体体積率)による最大水位差h(max)
形成の説明図。
FIG. 2 shows the maximum water level difference h (max) based on the angle e (volume ratio) of the volume of gas and liquid, which is the source power of pumping, in the sealed state formed in the ring of the pipe winding body of the present invention.
FIG.

【図3】本発明の、パイプ巻体のタイヤ型の、気液流入
口の代表形式の3例を示したもの、(イ)は浸漬式、
(ロ)は伸展流入式、(ハ)は軸外伸展式とした例図。
FIG. 3 shows three typical examples of a gas-liquid inlet of a pipe-winding tire type of the present invention, wherein (a) is an immersion type;
(B) is an example of an extension inflow type, and (c) is an example of an off-axis extension type.

【図4】本発明の、パイプ巻体の回転軸を液路の横側に
設置して、角ドーナツ型、多層巻、パイプ巻体の外周を
プーリーとして動力伝達に使用し、気液流入口を回転軸
内に潜らせて側方の水源から汲水し、モーター駆動、揚
水または水中送気等に使用する『軸内伸展式』の説明例
図。
FIG. 4 is a view showing the gas-liquid inlet of the present invention, in which the rotating shaft of the pipe winding is installed on the lateral side of the liquid path, and the outer periphery of the square donut type, multi-layer winding, and the pipe winding is used as a pulley for power transmission. FIG. 4 is an explanatory view of an example of an “in-axis extension type” in which is drawn into a rotary shaft to draw water from a lateral water source and is used for motor drive, pumping, or underwater air supply.

【図5】本発明の、パイプ巻体を浸漬させないで、気液
流入口6を回転軸内へ潜らせて、再度外側に伸展させて
側方水源から汲水させる『軸外伸展式』の1例で、角ド
ーナツ型、多層巻の例図。
FIG. 5 is an “off-axis extension type” of the present invention in which the gas-liquid inlet 6 is immersed in the rotating shaft without being immersed in the pipe winding, and is extended outward again to pump water from the lateral water source. FIG. 1 is an example of a square donut type multilayer winding in one example.

【図6】本発明の、回転軸と軸受の設置例と、パイプ巻
体の巻形式を示したもので、(イ)は円盤形、吊下式、
(ロ)(ハ)はタイヤ形(またはドーナツ形)支承式
(ニ)は円盤形、ドラム・ローラ支承式、(ホ)は円錐
台形、吊下式、(ヘ)は太鼓形、懸垂式、(ト)は鼓
形、回転軸・ローラー支承式。
FIG. 6 shows an example of installation of a rotating shaft and a bearing and a winding type of a pipe winding body according to the present invention.
(B) (c) is a tire type (or donut type) support type (d) is a disk type, drum roller support type, (e) is a truncated cone, suspension type, (f) is a drum type, suspension type, (G) is drum-shaped, rotating shaft and roller bearing type.

【図7】本発明の、回転しない浮揚体に設置したパイプ
巻体を、回転軸を水流に直角にして、水流力で回転させ
て『伸展流入式』の使用した遠景斜視図。
FIG. 7 is a perspective view of a distant view of the present invention, in which a pipe winding body installed on a non-rotating floating body is rotated by a hydraulic force with a rotation axis perpendicular to a water flow, and is used in an “extension inflow type”.

【図8】本発明の、回転しない浮揚体に設置したパイプ
巻体を、回転軸を水流に直角にして、水流力で回転させ
て『伸展流入式』で汲水し、係留浮揚させた場合を示す
説明例図。
FIG. 8 shows a case where a pipe winding body installed on a non-rotating flotation body according to the present invention is rotated at a right angle to a water flow, rotated by water flow force, pumped by an “extension inflow type”, and moored and levitated. FIG.

【図9】本発明の、回転しない浮揚体に設置したパイプ
巻体を、回転軸を水流に直角にして、水流力で回転させ
て『伸展流入式』ノ構成概念図。
FIG. 9 is a conceptual diagram of a “stretch-inflow type” configuration in which a pipe winding body installed on a non-rotating floating body according to the present invention is rotated by a water flow force with a rotation axis perpendicular to a water flow.

【図10】本発明の、パイプ巻体を水面上側に吊下式
で、回転軸を水流に平行にしてスクリューを設置し、
(イ)は、『浸漬式』で汲水して水流力で回転させ、
(ロ)は、『伸展流入式』で汲水して水流力で回転させ
る構成概念図。
FIG. 10 is a view showing a hanging type of the present invention in which a pipe winding body is suspended above a water surface, and a screw is installed with a rotation axis parallel to a water flow;
(A) is pumping water by "immersion type" and rotating by water flow,
(B) is a conceptual drawing of a configuration in which water is pumped by the “extension inflow type” and rotated by hydraulic power.

【図11】本発明の、パイプ巻体を回転軸を水流に閉口
に設置した例図で、(イ)はプロペラの例、(ロ)は、
スクリュー式の例、(ハ)は、パイプ巻体の回転軸を水
流直角方向に設置し、水面浮上した例図。
FIG. 11 is a view showing an example of the present invention in which a pipe winding body is installed with a rotation axis closed in a water flow, wherein (a) is an example of a propeller, and (b) is
(C) is an example diagram in which the rotation axis of the pipe winding is set in the direction perpendicular to the water flow and the water surface rises.

【図12】本発明の、[請求項3]、[請求項4]の場
合を示し、パイプ巻体の回転軸を水面の浮揚体に固定設
置して、池、湖沼等の風力自然曝気作業への利用図。
FIG. 12 shows the case of [Claim 3] or [Claim 4] of the present invention, in which the rotating shaft of a pipe winding is fixedly mounted on a floating body on the water surface, and natural wind aeration work for ponds, lakes and marshes is performed. Usage diagram to.

【図13】本発明の、[請求項4]の場合を示し、パイ
プ巻体の回転軸を水面の上部に固定設置した伸展流入式
の曝気作業への利用例図。
FIG. 13 is a view showing an example of use of the present invention in an extension-inflow type aeration work in which the rotating shaft of a pipe winding body is fixedly installed above a water surface, showing the case of [Claim 4].

【図14】本発明の、[請求項5]の『気体と液体と固
体』の3相流の場合を示し、パイプ巻体を浸漬させずに
稼働させて、軸外伸展流入式で圧送する1例図。
FIG. 14 shows a case of a three-phase flow of “gas, liquid and solid” according to claim 5 of the present invention, in which the pipe winding is operated without being immersed, and is fed by an off-axis extension inflow type. FIG.

【図15】本発明の、[請求項6]の場合を示し、大気
側から隔壁先の圧気側へ、気体、液体、固体等を混相流
の、軸外伸展流入式で圧送する説明例図。
FIG. 15 is a view illustrating the case of claim 6 of the present invention, and is an explanatory diagram of pumping a gas, a liquid, a solid, and the like from the atmosphere side to the compressed air side of the partition wall by a multiphase flow, off-axis extension inflow type. .

【図16】本発明の、[請求項7]の場合を示し、圧気
側から隔壁先の大気側へ、気体、液体、固体等を混相流
の、軸外伸展流入式で圧送する説明例図。
FIG. 16 is a diagram illustrating the case of claim 7 of the present invention, in which a gas, a liquid, a solid, and the like are pressure-fed from a compressed air side to an atmosphere side of a partition wall by an off-axis extension / inflow type of multiphase flow. .

【図17】本発明の、水槽内へ送気して活性汚泥等の曝
気等の水中溶存酸素の増強に利用した例図。
FIG. 17 is an example diagram of the present invention in which air is supplied into a water tank to enhance dissolved oxygen in water such as aeration of activated sludge.

【図18】本発明の、池、堀、湖沼等の水質浄化に使用
した、浸漬式の気液同時圧送の例図。
FIG. 18 is an example diagram of immersion type gas-liquid simultaneous pumping used for water purification of ponds, moats, lakes and the like according to the present invention.

【図19】本発明の、気液巻体ポンプ装置を、水耕栽培
の水中に溶存酸素増強や施肥に利用した例図。
FIG. 19 is a diagram showing an example in which the gas-liquid scroll pump device of the present invention is used for enhancing dissolved oxygen and fertilizing water in hydroponics.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部が空洞状の回転軸4をほぼ水平に設
け、周りにパイプ1を巻いて連通したリング状流路2を
形成したパイプ巻体3を、回転軸4と一体に回転可能に
構成し、水面近くに設け軸受18に回転軸4を取付け、
パイプ巻体3のパイプの一端の開口を気液流入口6とし
てパイプ巻体3を経て最終リングから流出管7を経て、
回転軸4の空洞部内に入り、回転軸4と一体に回転する
回転圧送管8として通過し、気密水密性があり回転自在
で連通する接続機器9の一端に、回転軸4と共に接続
し、接続機器の他端は回転しない圧送管10に接続し必
要な箇所に延伸して気液流出口11とする、パイプ巻体
3を駆動源15により回転させ、気液流入口6を回転毎
に水没させて気体と液体を交互に、パイプ巻体3の気液
流入口6より連通したリング状流路2に流入させ、各リ
ング状流路2内の気体と液体を重力の作用で上下に分離
し前後に水位を形成した封水状態を、維持する回転速度
の0.01〜3.0回/秒の範囲でパイプ巻体3を回転
させ、各リング状流路2内を順次移動させて最終リング
を通過後、封水状態を解消して流出管7から回転軸内の
回転圧送管8に入り接続機器9を経て圧送パイプ10に
至り、圧送パイプ10以降で気液の流れに抵抗を与える
ことで、パイプ巻体3のリング状流路2内の封水状態の
前後の水位に自動的に水位差を起こさせ、パイプ巻体3
に圧送力を生み、気体と液体を共に目的場所へ圧送する
装置で、 気液流入口6から流入する気体と液体の体積比を調節し
て、気泡効果、圧送力、圧送量を適切にする気液巻体ポ
ンプ装置。
1. A pipe winding body 3 in which a hollow rotating shaft 4 is provided substantially horizontally, and a pipe 1 is wound therearound to form a ring-shaped flow path 2 which can communicate with the rotating shaft 4. The rotation shaft 4 is attached to the bearing 18 provided near the water surface,
The opening of one end of the pipe of the pipe winding 3 is used as the gas-liquid inlet 6, through the pipe winding 3, from the final ring through the outflow pipe 7,
It is connected with one end of a connection device 9 that enters the hollow portion of the rotating shaft 4 and passes as a rotary pressure feed pipe 8 that rotates integrally with the rotating shaft 4, that is airtight, watertight, rotatably communicates with the rotating shaft 4, and is connected. The other end of the device is connected to a non-rotating pressure feed pipe 10 and extends to a required location to form a gas-liquid outlet 11. The pipe winding 3 is rotated by a driving source 15, and the gas-liquid inlet 6 is submerged with each rotation. Then, the gas and the liquid alternately flow into the ring-shaped flow paths 2 communicating from the gas-liquid inflow port 6 of the pipe winding body 3, and the gas and the liquid in each ring-shaped flow path 2 are vertically separated by the action of gravity. Then, the pipe winding body 3 is rotated within the range of 0.01 to 3.0 times / second of the rotation speed to maintain the sealed state in which the water level is formed before and after, and sequentially moved in each ring-shaped flow path 2. After passing through the final ring, the sealed state is released, and the liquid enters the rotary pressure feed pipe 8 in the rotary shaft from the outflow pipe 7. It reaches the pressure feed pipe 10 via the continuation equipment 9 and gives resistance to the flow of gas and liquid after the pressure feed pipe 10, so that the water level before and after the sealed state in the ring-shaped flow path 2 of the pipe winding body 3 is automatically set. A water level difference is caused, and the pipe winding 3
A device that generates a pumping force and feeds both gas and liquid to the destination by adjusting the volume ratio of gas and liquid flowing from the gas-liquid inlet 6 to optimize the bubble effect, pumping force, and pumping amount. Gas-liquid winding pump device.
【請求項2】パイプ巻体3又は回転軸に、羽根又はスク
リュー又はプロペラ等を付設して、パイプ巻体3の回転
軸を水流に、直角方向又は平行方向に設置して、パイプ
巻体3を水流力で回転させる請求項1記載の気液巻体ポ
ンプ装置。
2. A pipe winding 3 or a rotating shaft is provided with a blade, a screw, a propeller, or the like, and a rotating shaft of the pipe winding 3 is installed in a water flow in a right angle direction or a parallel direction. The gas-liquid winding pump device according to claim 1, wherein the gas-liquid winding pump device is rotated by water flow.
【請求項3】水面浮揚体20にパイプ巻体3を設置し
て、浮揚体20を回転させないで、パイプ巻体3を回転
させる請求項1又は請求項2記載の気液巻体ポンプ装
置。
3. The gas-liquid winding pump device according to claim 1, wherein the pipe winding 3 is installed on the water surface floating body 20, and the pipe winding 3 is rotated without rotating the floating body 20.
【請求項4】パイプ巻体3又は回転の動力源に、風車の
回転力を利用する請求項1又は請求項3記載の気液巻体
ポンプ装置。
4. The gas-liquid winding pump device according to claim 1, wherein the rotating force of the windmill is used as the power source for rotating the winding pipe.
【請求項5】気体と液体と共に、固体を混入して圧送す
る請求項1または請求項2または請求項3または請求項
4記載の気液巻体ポンプ装置。
5. The gas-liquid winding pump device according to claim 1, wherein the gas and the liquid are mixed together with a solid and are fed under pressure.
【請求項6】パイプ巻体3を、大気界に設置して、パイ
プ巻体3の圧送パイプ10を隔壁21等を貫通して、隔
壁21等の先の圧気界へ、気体と液体または気体と液体
に固形物を混入して、出し入れする請求項1または請求
項2または請求項3または請求項4または請求項5記載
の気液巻体ポンプ装置。
6. The pipe winding 3 is placed in the atmosphere, and the pressure-feeding pipe 10 of the pipe winding 3 penetrates the partition 21 or the like, and flows into the compressed air field beyond the partition 21 or the like. 6. The gas-liquid winding pump device according to claim 1, wherein a solid substance is mixed with the liquid and the liquid is taken in and out.
【請求項7】パイプ巻体3を、圧気界に設置して、パイ
プ巻体3の圧送パイプ10を隔壁21等を貫通して隔壁
21等の先の大気界へ、気体と液体または、気体と液体
に固形物を混入して、出し入れする請求項1または請求
項2または請求項3または請求項4または請求項5記載
の気液巻体ポンプ装置。
7. The pipe winding 3 is placed in a pressurized air field, and the pressure-feeding pipe 10 of the pipe winding 3 passes through the partition 21 or the like to the atmosphere before the partition 21 or the like, and gas and liquid or gas 6. The gas-liquid winding pump device according to claim 1, wherein a solid substance is mixed with the liquid and the liquid is taken in and out.
JP10301299A 1998-09-28 1999-03-08 Gas-liquid winding pump device Expired - Fee Related JP3158358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10301299A JP3158358B2 (en) 1998-09-28 1999-03-08 Gas-liquid winding pump device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30933898 1998-09-28
JP10-309338 1998-09-28
JP10301299A JP3158358B2 (en) 1998-09-28 1999-03-08 Gas-liquid winding pump device

Publications (2)

Publication Number Publication Date
JP2000170649A JP2000170649A (en) 2000-06-20
JP3158358B2 true JP3158358B2 (en) 2001-04-23

Family

ID=26443681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10301299A Expired - Fee Related JP3158358B2 (en) 1998-09-28 1999-03-08 Gas-liquid winding pump device

Country Status (1)

Country Link
JP (1) JP3158358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525335B2 (en) 1998-12-14 2004-05-10 健 吉岡 Sealed gas-liquid vacuum pump device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014140834A (en) * 2013-01-24 2014-08-07 Takeshi Yoshioka Water purifier for supplying, via a gas-liquid pump, and contact-filtering water
JP6132408B2 (en) * 2015-01-27 2017-05-24 株式会社アイワテクノ Free-supporting spiral pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525335B2 (en) 1998-12-14 2004-05-10 健 吉岡 Sealed gas-liquid vacuum pump device

Also Published As

Publication number Publication date
JP2000170649A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
US4748808A (en) Fluid powered motor-generator apparatus
US8152441B2 (en) Submersible waterwheel with hinged rotor blades and spring-loaded water seals
US20070241566A1 (en) Submersible turbine apparatus
WO2014065282A1 (en) Bottomless cup type water power conversion device using flowing water energy
TWI548810B (en) Methods and means of installing and maintaining a water current power generation system
US10151294B2 (en) Buoyant housing device enabling large-scale power extraction from fluid current
GB2119449A (en) Abstracting energy from water subject to wave motion
JP3158358B2 (en) Gas-liquid winding pump device
GB2445284A (en) A hydro-electric generator arrangement for underwater placement
AU2003208968B2 (en) Disposal of waste fluids
JP3184960B2 (en) Gas-liquid pump device
JP2002370690A (en) Seawater pumping-up device and ocean enrichment device using this pumping-up device
JP3176336B2 (en) Gas-liquid pumping device
US20030173784A1 (en) Disposal of waste fluids
KR101371263B1 (en) Double spin water circulation system for water puryfication and preventing green algae and red tide occurrence
JPH11287194A (en) Pumping device
JP3063835U (en) Liquid and gas pumping equipment
JP2005098233A (en) Wave activated power generation system
JP2001221143A (en) Gas-liquid stream force power generating set
JP2004052646A (en) Submerged power generator
RU2617369C1 (en) Hydro-electric power-plant
CN118327858A (en) Rail-mounted rotary blade caisson energy storage power generation system and control method
JPS59110871A (en) Power generation device which utilizes water-pressure as power source
JP2020122475A (en) Pumped hydraulic power generation structural body and multi-purpose utilization of pumping
KR20240103138A (en) Wafer purification apparatus using a wind force

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees