JP2001221143A - Gas-liquid stream force power generating set - Google Patents

Gas-liquid stream force power generating set

Info

Publication number
JP2001221143A
JP2001221143A JP2000067692A JP2000067692A JP2001221143A JP 2001221143 A JP2001221143 A JP 2001221143A JP 2000067692 A JP2000067692 A JP 2000067692A JP 2000067692 A JP2000067692 A JP 2000067692A JP 2001221143 A JP2001221143 A JP 2001221143A
Authority
JP
Japan
Prior art keywords
gas
liquid
water
pipe
pipe winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000067692A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshioka
健 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000067692A priority Critical patent/JP2001221143A/en
Publication of JP2001221143A publication Critical patent/JP2001221143A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid stream force power generating set utilizing water flow force of small had and rich water amount in a river, tidal flow, etc., existing almost innumerably in the world to create high pressure water utilized for hydraulic power generation. SOLUTION: This gas-liquid stream force power generating set, by providing a rotary shaft or a fixed shaft with the inside in cavity shape almost horizontally near the water surface, constituting a pipe winding unit with a continued pipe wound to make one of the pipe serve as an inflow port and the other connect from the pipe winding unit via the rotary shaft or the fixed shaft from a forced feed equipment to a water storage equipment or a gas liquid separating chamber, rotating the pipe winding unit to allow gas liquid to alternately flow in the pipe at each rotation, additionally providing a vane or a propeller or a screw in a pump (gas liquid pump or the like) forcedly feeding gas-liquid together, and receiving stream power to rotate the pump with the gas liquid, generating a high pressure, forcedly fed to the water storage equipment via the forced feed equipment of the pump or separates gas-liquid in the gas-liquid separating chamber, and creates high pressure water to forcedly feed it to a power plant for power generation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水流力で気体と液体を
高圧化して発電する、気液水流力発電装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid hydroelectric power generator for generating electric power by increasing the pressure of gas and liquid by hydrodynamic power.

【0002】[0002]

【従来の技術】世界中に無数に存在する河川、水路、潮
流等の水流力は、エネルギーが低密度のため、発電への
利用は技術上、採算上困難で、その殆どが放置されてい
た。
2. Description of the Related Art Due to the low energy density of water, such as rivers, waterways, and tidal currents, which are innumerable around the world, their use for power generation is technically and economically difficult, and most of them are neglected. .

【0003】従来の水力発電は、ダム、導水路等によ
る高落差を必要とし河川等の長流域のせせらぎを奪
い、水棲動物のダム上下通過を遮断し、自然生態を変
え、導水路等の別ルートへの導水で河川流量を減少さ
せ、ダム建設で自然へ損傷を与え、ダム、導水路等
の設置で多大の投資を必要とする等の、多くの問題点を
残していた。
[0003] Conventional hydroelectric power generation requires a high head due to dams, headraces and the like, robbing long streams such as rivers, interrupting the passage of aquatic animals up and down the dam, changing natural ecology, and differentiating waterways. Many problems remain, such as reducing the river flow by introducing water to the route, damaging nature by dam construction, and installing large amounts of dams and headraces.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前述
の従来からの水力発電の欠陥を解決することにあって、
世界中に無数に存在する河川、水路、潮流等の低密度の
水流エネルギーをも利用し得る技術の開発にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned deficiencies of conventional hydroelectric power generation.
The present invention is directed to the development of technology that can also utilize low-density water flow energy such as rivers, waterways, and tidal currents that exist innumerably throughout the world.

【0005】更に本発明の目的は、前述の従来からの水
力発電の欠陥を解決することにあって、高落差を必要
とせず、高圧力を生み、河川等の長流域のせせらぎを
残し、水棲動物のダム上下側の棲域の遮断をしないで
自然生態を残し、別ルートのトンネル、水路等への導
水で河川流水量の減少させない、自然への損傷の少な
いダム、トンネル、管路等の高価な施設を設置しないで
発電できる装置の開発にある。
Another object of the present invention is to solve the above-mentioned deficiencies of the conventional hydroelectric power generation, which does not require a high head, generates a high pressure, and leaves a babble in a long basin such as a river. Do not block the habitats on the upper and lower sides of animal dams, preserve natural ecology, and do not reduce the flow of rivers by conducting water to tunnels, waterways, etc. on other routes, such as dams, tunnels, pipelines, etc. with little damage to nature. The aim is to develop a device that can generate electricity without installing expensive facilities.

【0006】更に本発明の目的は、河川、水路、潮流等
の低密度の水流エネルギーを効果的に発電に利用する技
術の開発にある。
A further object of the present invention is to develop a technique for effectively utilizing low-density water flow energy such as rivers, waterways, and tidal currents for power generation.

【0007】[0007]

【課題を解決するための手段】本発明は、前述した従来
の問題点を解決するため、内部が空洞状で、ほぼ水平の
回転軸1の周りに連続したパイプを巻いたパイプ巻体2
を作り、パイプの一端を流入口3とし、他端を、パイプ
巻体2のパイプリングを経て回転軸1の空洞状内の回転
圧送管4の端として接続機器5に接続し、接続機器5か
ら回転しない圧送設備6を延伸して噴出装置7に接続
し、噴出装置7の噴出する先には発電用の水車8を設け
る、パイプ巻体2を水面近くに回転可能に設けて、パイ
プ巻体2に、羽根11またはプロペラまたはスクリュー
等を付設し、水流を受けて回転する状態に設置し、流入
口3をパイプ巻体2の回転毎に水没する状態にする、パ
イプ巻体2に付設した羽根11またはプロペラまたはス
クリュー等に水流を受けて回転させ、パイプ巻体2の流
入口3を回転毎に水没させて気体と液体を交互に流入さ
せ、各パイプリング内で水位を形成する封水状態を保ち
ながらリングを移動した後、回転軸1内の回転圧送管4
に入り接続機器5を通過して回転しない圧送設備6か
ら、噴出装置7に至り噴出装置7から加圧気体と加圧液
体を噴出とて水車8を回転させて発電することに特徴が
ある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention is directed to a pipe winding body 2 having a hollow inside and a continuous pipe wound around a substantially horizontal rotating shaft 1.
And one end of the pipe is used as the inflow port 3, and the other end is connected to the connection device 5 via the pipe winding of the pipe winding 2 as the end of the rotary pumping pipe 4 in the hollow shape of the rotary shaft 1. The non-rotating pumping equipment 6 is extended and connected to the jetting device 7, and a water turbine 8 for power generation is provided at a point where the jetting device 7 jets out. The pipe winding 2 is rotatably provided near the water surface, and the pipe winding is performed. The body 2 is provided with a blade 11 or a propeller, a screw, or the like, is installed in a state of receiving a water flow and is rotated, and the inlet 3 is attached to the pipe winding 2 so as to be submerged every time the pipe winding 2 rotates. The blade 11 or the propeller or the screw receives the water flow and rotates it, and the inlet 3 of the pipe winding 2 is submerged for each rotation to allow gas and liquid to flow alternately, thereby forming a water level in each pipe ring. Move the ring while maintaining the water condition After rotation pumping tube 4 in the rotary shaft 1
It is characterized in that it generates power by rotating a water wheel 8 by ejecting pressurized gas and pressurized liquid from the ejection device 7 to the ejection device 7 from the pressure feeding equipment 6 that does not rotate through the connecting device 5 and enters.

【0008】更に、本発明は、内部が空洞状の非回転軸
19を両側の固定端から内側に延伸し、非回転軸19の
軸心線をほぼ水平に設け、軸心線の周りに連続したパイ
プ1を巻いて連通したリング状流路を形成したパイプ巻
体2を、回転取付部20を付設して非回転軸19の周り
を回転可能に構成し、水面近くに設け、パイプ巻体2の
パイプの一端の開口を流入口3とし、他端をパイプ巻体
2のパイプリングを経て非回転軸19の一端に接続した
接続機器5の一端に接続し、接続機器5の他端から回転
しない圧送設備6を、非回転軸19の空洞内を潜って
後、延伸して噴出装置7に接続し、噴出装置7の噴出す
る先には発電用の水車8を設ける、パイプ巻体2に、羽
根11またはプロペラまたはスクリュー等を付設し、水
流を受けて回転する状態に設置し、流入口3をパイプ巻
体2の回転毎に水没する状態にする、パイプ巻体2に付
設した羽根11またはプロペラまたはスクリュー等に水
流を受けて回転させ、パイプ巻体2の流入口3を回転毎
に水没させて気体と液体を交互に流入させ、各パイプリ
ング内で水位を形成する封水状態を保ちながらリングを
移動した後、接続機器5を通過して回転しない非回転軸
19の空洞内を潜った後に圧送設備6から、噴出装置7
に至り噴出装置7から加圧気体と加圧液体を噴出とて水
車8を回転させて発電することに特徴がある。
Further, according to the present invention, the hollow non-rotating shaft 19 extends inward from the fixed ends on both sides, the axis of the non-rotating shaft 19 is provided substantially horizontally, and the non-rotating shaft 19 is continuous around the axis. A pipe winding 2 having a ring-shaped flow path formed by winding a pipe 1 formed in communication with a rotatable mounting portion 20 so as to be rotatable around a non-rotating shaft 19, provided near a water surface, and provided with a pipe winding. 2 is connected to one end of the connection device 5 connected to one end of the non-rotating shaft 19 via the pipe of the pipe winding body 2 from the other end of the connection device 5. The non-rotating pumping equipment 6 extends under the cavity of the non-rotating shaft 19, extends and connects to the jetting device 7, and a water turbine 8 for power generation is provided at the jetting destination of the jetting device 7. Is provided with a blade 11 or a propeller or a screw, and rotates by receiving a water flow. In the state where the inflow port 3 is submerged with every rotation of the pipe winding 2, the blade 11 attached to the pipe winding 2, a propeller, a screw, or the like receives a water flow and rotates the same. The inflow port 3 is submerged with each rotation to allow gas and liquid to flow alternately. The ring is moved while maintaining a sealed state that forms a water level in each pipe ring. After diving in the cavity of the rotating shaft 19, the jetting device 7
Then, the pressurized gas and the pressurized liquid are ejected from the ejection device 7 and the water wheel 8 is rotated to generate power.

【0009】また、本発明は、圧送設備6に気液分離機
器10を付設して加圧気体と加圧液体に分離して、加圧
気体又は加圧液体を別々にしていずれか一方または両方
を噴出装置7から噴出させて、水車8を回転させて発電
することに特徴がある。
In the present invention, a gas-liquid separation device 10 is attached to the pressure-feeding equipment 6 to separate the gas into a pressurized gas and a pressurized liquid. Is spouted from the spouting device 7 to rotate the water wheel 8 to generate power.

【0010】更に、本発明は、高圧気液分離機器10で
加圧気体と加圧液体に分離し、加圧気体は給気設備21
を経て貯水タンクAへ接続し給気可能に設置し、給水設
備22から貯水タンクAへ接続して給水可能に設置し、
貯水タンクAから圧送設備31で噴出装置7に接続す
る、高圧気液分離機器10から加圧気体のみを給気設備
21を経て、ほぼ満水の貯水タンクAへ給気し、加圧気
体で貯水タンクA内の液体を加圧して、加圧された液体
は圧送設備31を経て、気液分離機器10からの加圧液
体と共に噴出装置7から噴出させて、水車8を回転させ
て発電することに特徴がある。
Further, according to the present invention, the high-pressure gas-liquid separator 10 separates the gas into a pressurized gas and a pressurized liquid.
And connected to the water storage tank A via the water supply equipment 22 and installed so that air can be supplied.
Only the pressurized gas from the high-pressure gas-liquid separator 10 is connected to the jetting device 7 by the pumping equipment 31 from the water storage tank A, and is supplied to the almost full water storage tank A via the air supply equipment 21 to store the water with the pressurized gas. The liquid in the tank A is pressurized, and the pressurized liquid is jetted out of the jetting device 7 together with the pressurized liquid from the gas-liquid separation device 10 through the pumping equipment 31 to rotate the water wheel 8 to generate power. There is a feature.

【0011】更に本発明の目的は、河川、水路、潮流等
の低密度の水流エネルギーを効果的に発電に利用するた
め、パイプ巻体2の回転軸1(又は非回転軸19)に3
箇所以上の軸受1(又は回転取付部20)を取付けるこ
とに特徴がある。
Further, an object of the present invention is to provide a rotating shaft 1 (or a non-rotating shaft 19) of a pipe winding 2 with a rotating shaft 1 (or a non-rotating shaft 19) in order to effectively utilize low-density water flow energy such as rivers, water courses, and tidal currents for power generation.
It is characterized in that the bearing 1 (or the rotary mounting part 20) at more than two places is mounted.

【0012】[0012]

【実施の態様】本発明の気液水流力発電装置を図1で説
明すると、内部が空洞状で、ほぼ水平の回転軸1の周り
に連続したパイプを巻いたパイプ巻体2を作り、パイプ
の一端を流入口3とし、他端を、パイプ巻体2のパイプ
リングを経て回転軸1の空洞状内の回転圧送管4の端と
して接続機器5に接続し、接続機器5から回転しない圧
送設備6を延伸して噴出装置7に接続し、噴出装置7の
噴出する先には発電用の水車8を設ける、パイプ巻体2
を水面近くに回転可能に設けて、パイプ巻体2に、羽根
11またはプロペラまたはスクリュー等を付設し、水流
を受けて回転する状態に設置し、流入口3をパイプ巻体
2の回転毎に水没する状態にする、パイプ巻体2に付設
した羽根11またはプロペラまたはスクリュー等に水流
を受けて回転させ、パイプ巻体2の流入口3を回転毎に
水没させて気体と液体を交互に流入させ、各パイプリン
グ内で水位を形成する封水状態を保ちながらリングを移
動した後、回転軸1内の回転圧送管4に入り接続機器5
を通過して回転しない圧送設備6から、噴出装置7に至
り噴出装置7から加圧気体と加圧液体を噴出とて水車8
を回転させて発電するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a gas-liquid hydroelectric power generator according to the present invention will be described. A pipe winding body 2 is formed by winding a pipe having a hollow inside and a continuous pipe around a substantially horizontal rotating shaft 1. Is connected to the connection device 5 as an end of the rotary pressure feeding pipe 4 in the hollow shape of the rotating shaft 1 via the pipe winding of the pipe winding 2, and the other end is connected to the connection device 5. The equipment 6 is extended and connected to the jetting device 7, and a water turbine 8 for power generation is provided at the jetting destination of the jetting device 7.
Is provided near the water surface so as to be rotatable, and the pipe winding 2 is provided with a blade 11 or a propeller or a screw or the like, and is installed in a state of receiving a water flow and is rotated. The blade 11 attached to the pipe winding 2 or a propeller or a screw, etc., which is brought into a state of being submerged, is rotated by receiving a water flow, and the inlet 3 of the pipe winding 2 is submerged with each rotation so that gas and liquid alternately flow. After moving the rings while maintaining a sealed state in which water levels are formed in each of the pipe rings, the rings enter the rotary pressure-feeding pipe 4 in the rotary shaft 1 and connect to the connection equipment 5.
From the non-rotating pumping equipment 6 to the jetting device 7 to jet the pressurized gas and pressurized liquid from the jetting device 7
Is rotated to generate electricity.

【0013】本発明の気液水流力発電装置を図2で説明
すると、内部が空洞状の非回転軸19を両側の固定端か
ら内側に延伸し、非回転軸19の軸心線をほぼ水平に設
け、軸心線の周りに連続したパイプ1を巻いて連通した
リング状流路を形成したパイプ巻体2を、回転取付部2
0を付設して非回転軸19の周りを回転可能に構成し、
水面近くに設け、パイプ巻体2のパイプの一端の開口を
流入口3とし、他端をパイプ巻体2のパイプリングを経
て非回転軸19の一端に接続した接続機器5の一端に接
続し、接続機器5の他端から回転しない圧送設備6を、
非回転軸19の空洞内を潜って後、延伸して噴出装置7
に接続し、噴出装置7の噴出する先には発電用の水車8
を設ける、パイプ巻体2に、羽根11またはプロペラま
たはスクリュー等を付設し、水流を受けて回転する状態
に設置し、流入口3をパイプ巻体2の回転毎に水没する
状態にする、パイプ巻体2に付設した羽根11またはプ
ロペラまたはスクリュー等に水流を受けて回転させ、パ
イプ巻体2の流入口3を回転毎に水没させて気体と液体
を交互に流入させ、各パイプリング内で水位を形成する
封水状態を保ちながらリングを移動した後、接続機器5
を通過して回転しない非回転軸19の空洞内を潜った後
に圧送設備6から、噴出装置7に至り噴出装置7から加
圧気体と加圧液体を噴出とて水車8を回転させて発電す
るものである。
Referring to FIG. 2, the gas-liquid hydroelectric power generator of the present invention will be described. The hollow non-rotating shaft 19 extends inward from the fixed ends on both sides, and the axis of the non-rotating shaft 19 is substantially horizontal. And a pipe winding body 2 having a ring-shaped flow path formed by winding a continuous pipe 1 around an axis and forming a continuous flow path.
0 is attached so as to be rotatable around the non-rotating shaft 19,
It is provided near the water surface, the opening of one end of the pipe of the pipe winding 2 is used as the inflow port 3, and the other end is connected to one end of the connection device 5 connected to one end of the non-rotating shaft 19 via the pipe of the pipe winding 2. , A pumping equipment 6 that does not rotate from the other end of the connection device 5,
After dipping in the cavity of the non-rotating shaft 19, it is extended and ejected.
And a water turbine 8 for power generation
A pipe 11 is provided with a blade 11 or a propeller or a screw or the like attached to a pipe winding 2 and is installed in a state of receiving a water flow and rotating, so that an inlet 3 is submerged every time the pipe winding 2 rotates. The blade 11 or the propeller or the screw attached to the winding body 2 is rotated by receiving a water flow, and the inflow port 3 of the pipe winding body 2 is submerged at every rotation so that gas and liquid alternately flow into each pipe ring. After moving the ring while maintaining the sealed state that forms the water level, the connection device 5
After passing through the cavity of the non-rotating shaft 19 that does not rotate after passing through, the pressurizing equipment 6 reaches the ejection device 7, ejects pressurized gas and pressurized liquid from the ejection device 7, and rotates the water wheel 8 to generate power. Things.

【0014】更に、本発明は、前述の気液水流力発電装
置において、圧送設備6に気液分離機器10を付設して
加圧気体と加圧液体に分離して、加圧気体又は加圧液体
を別々にしていずれか一方または両方を噴出装置7から
噴出させて、水車8を回転させて発電するものである。
Further, the present invention provides a gas-liquid hydraulic power generator as described above, wherein a gas-liquid separation device 10 is attached to the pumping equipment 6 to separate the gas into a pressurized gas and a pressurized liquid. One or both of the liquids are jetted out from the jetting device 7, and the water wheel 8 is rotated to generate power.

【0015】本発明の、請求項1は加圧気体と加圧液体
を共に圧送して発電する場合を述べており、請求項2は
加圧液体のみを圧送する場合であり、請求項3は、加圧
液体だけでなく、加圧気体を加圧液体に置換えて圧送
し、各々発電のエネルギーとして利用する場合を述べて
いる。この場合、本発明のいずれの図示も説明のための
1例を示すもので限定するものではなく、他の多くの例
のあることは言うまでもない。
[0015] Claim 1 of the present invention describes a case in which pressurized gas and pressurized liquid are both pumped to generate power, and claim 2 is a case in which only pressurized liquid is pumped. In addition, it is described that not only the pressurized liquid but also the pressurized gas is replaced with the pressurized liquid and pressure-fed to be used as energy for power generation. In this case, any illustration of the present invention is only one example for explanation and is not limited, and it goes without saying that there are many other examples.

【0016】本発明の、請求項1は、パイプ巻体と一体
の軸(回転軸)が回転させて、軸受18を回転させない
構成であり、請求項2は、
A first aspect of the present invention is a configuration in which a shaft (rotating axis) integral with a pipe winding body is rotated and a bearing 18 is not rotated.

【図7】(ロ)、FIG. 7 (b),

【図8】に構成主旨を示す通り、軸(非回転軸19)を
回転させないで、パイプ巻体と一体の軸受(非回転軸1
9)が回転させる構成である。
FIG. 8 shows a bearing (non-rotating shaft 1) integral with the pipe winding without rotating the shaft (non-rotating shaft 19) as shown in FIG.
9) is a configuration for rotating.

【0017】請求項1と請求項2では、In claims 1 and 2,

【0016】に記載の通り、「軸」側を回転させるか
「軸受」側を回転させるかの、軸の構成上の差異はある
が、その他の構成や気液の圧送機能上には同一と考えて
支障はない。そのため、以下の説明内容は、請求項1
(回転軸の構成)を主体に説明するが、重複の説明を省
略するもので、特に断りがない限り、請求項2も含めた
両者共通の説明とする。
As described in the above, although there is a difference in the configuration of the shaft between the rotation of the "shaft" side and the rotation of the "bearing" side, the other configurations and the gas-liquid pumping function are the same. No problem. Therefore, the following description is based on Claim 1.
(Configuration of the rotating shaft) will be mainly described, but overlapping description will be omitted, and unless otherwise specified, the description will be common to both, including claim 2.

【0018】請求項1〜2に記載の「内部が空洞状・
・」とは、回転軸(又は非回転軸)の内部が空洞、すな
わち、パイプ的形状を意味し、空洞の内部を気液の通路
として利用できる必要があり、圧送管10や気液流入管
等の気液の通路となる箇所のみで、他の部分は特に空洞
の必要はない。
According to the first or second aspect, "the interior is hollow.
“” Means that the inside of the rotating shaft (or non-rotating shaft) is hollow, that is, a pipe-like shape, and it is necessary that the inside of the hollow can be used as a gas-liquid passage, and the pressure feeding pipe 10 and the gas-liquid inflow pipe The other portions do not need to be hollow especially, only in the portion that becomes a gas-liquid passage.

【0019】請求項1を解説すると、「内部が空洞状
で、ほぼ水平の回転軸1の周りに連続したパイプを巻い
たパイプ巻体2を作り、パイプの一端を流入口3と
し、他端を、パイプ巻体2のパイプリングを経て回転軸
1の空洞状内の回転圧送管4の端として接続機器5に接
続し、接続機器5から回転しない圧送設備6を延伸し
て噴出装置7に接続し、噴出装置7の噴出する先には
発電用の水車8を設け、パイプ巻体2を水面近くに回
転可能に設けて、パイプ巻体2に、羽根11またはプ
ロペラまたはスクリュー等を付設し、水流を受けて回
転する状態に設置し、流入口3をパイプ巻体2の回転毎
に水没する状態にする、パイプ巻体2に付設した羽根
11またはプロペラまたはスクリュー等に水流を受けて
回転させ、パイプ巻体2の流入口3を回転毎に水没さ
せて気体と液体を交互に流入させ、▲10▼各パイプリ
ング内で水位を形成する封水状態を保ちながらリングを
移動した後、▲11▼回転軸1内の回転圧送管4に入り
接続機器5を通過して▲12▼回転しない圧送設備6か
ら、▲13▼噴出装置7に至り噴出装置7から加圧気体
と加圧液体を噴出とて水車8を回転させて発電する」
と、なっており、〜はポンプ9の構成と設置を述べ
ており、〜▲13▼は操作と行程を述べている。
According to the first aspect of the present invention, a pipe winding body 2 having a hollow interior and a continuous pipe wound around a substantially horizontal rotation axis 1 is formed, and one end of the pipe is used as an inlet 3 and the other end is formed. Is connected to the connecting device 5 through the pipe winding of the pipe winding 2 as the end of the rotary pumping tube 4 in the hollow shape of the rotating shaft 1, and the non-rotating pumping equipment 6 is extended from the connecting device 5 to the jetting device 7. A water turbine 8 for power generation is provided at the end where the jetting device 7 blows out, and the pipe winding 2 is rotatably provided near the water surface, and the pipe winding 2 is provided with a blade 11 or a propeller or a screw. It is installed in a state where it is rotated by receiving a water flow, so that the inlet 3 is submerged every time the pipe winding 2 rotates. The blade 11 attached to the pipe winding 2 or a propeller or a screw receives the water flow and rotates. And the inlet 3 of the pipe winding 2 is Submerge each time to let the gas and liquid flow in alternately. (10) After moving the ring while maintaining the sealed state of forming a water level in each pipe ring, (11) The rotary pressure feed pipe in the rotary shaft 1 4 enters the connection device 5 and passes through the connecting device 5 from the non-rotating pumping equipment 6 to the ejection device 7 and ejects pressurized gas and liquid from the ejection device 7 to rotate the water wheel 8 to generate electricity. To do
Indicates the configuration and installation of the pump 9, and {circle around (13)} indicates the operation and stroke.

【0020】請求項2を解説すると、「内部が空洞状
の非回転軸19を両側の固定端から内側に延伸し、非回
転軸19の軸心線をほぼ水平に設け、軸心線の周りに
連続したパイプ1を巻いて連通したリング状流路を形成
したパイプ巻体2を、回転取付部20を付設して非回
転軸19の周りを回転可能に構成し、水面近くに設け、
パイプ巻体2のパイプの一端の開口を流入口3とし、
他端をパイプ巻体2のパイプリングを経て非回転軸19
の一端に接続した接続機器5の一端に接続し、接続機
器5の他端から回転しない圧送設備6を、非回転軸19
の空洞内を潜って後、延伸して噴出装置7に接続し、
噴出装置7の噴出する先には発電用の水車8を設ける、
パイプ巻体2に羽根11またはプロペラまたはスクリ
ュー等を付設し、水流を受けて回転する状態に設置し、
流入口3をパイプ巻体2の回転毎に水没する状態にす
る、パイプ巻体2に付設した羽根11またはプロペラ
またはスクリュー等に水流を受けて回転させ、▲10▼
パイプ巻体2の流入口3を回転毎に水没させて気体と液
体を交互に流入させ、▲11▼各パイプリング内で水位
を形成する封水状態を保ちながらリングを移動した後、
▲12▼接続機器5を通過して回転しない非回転軸19
の空洞内を潜った後に圧送設備6から、▲13▼噴出装
置7に至り噴出装置7から加圧気体と加圧液体を噴出と
て水車8を回転させて発電する」と、なっており、〜
はポンプ9の構成と設置を述べており、〜▲13▼
は操作と行程を述べている。
According to a second aspect of the present invention, the non-rotating shaft 19 having a hollow interior extends inward from the fixed ends on both sides, and the axis of the non-rotating shaft 19 is provided substantially horizontally. A pipe winding body 2 having a ring-shaped flow path formed by winding a continuous pipe 1 to form a rotatable rotation around a non-rotating shaft 19 with a rotation mounting portion 20 provided near a water surface,
An opening at one end of the pipe of the pipe winding 2 is defined as an inflow port 3,
The other end of the non-rotating shaft 19
The pumping equipment 6 connected to one end of the connection device 5 connected to one end of the connection device 5 and not rotating from the other end of the connection device 5 is connected to the non-rotating shaft 19.
After diving inside the cavity, it is extended and connected to the jetting device 7,
A water turbine 8 for power generation is provided at the point where the jetting device 7 jets out.
A blade 11 or a propeller or a screw or the like is attached to the pipe winding body 2 and installed in a state of receiving a water flow and rotating.
The inflow port 3 is submerged every time the pipe winding 2 rotates. The blade 11 attached to the pipe winding 2 or a propeller, a screw, or the like receives a water flow and rotates it.
The inflow port 3 of the pipe winding 2 is submerged at every rotation to allow gas and liquid to flow alternately. {11} After moving the ring while maintaining a sealed state of forming a water level in each pipe ring,
{Circle around (12)} Non-rotating shaft 19 that does not rotate through connection device 5
After diving in the cavity of the above, from the pressure feeding equipment 6 to (13) the ejection device 7 and eject the pressurized gas and the pressurized liquid from the ejection device 7 to rotate the water wheel 8 to generate power ". ~
Describes the configuration and installation of the pump 9;
Describes the operation and process.

【0021】請求項1の回転軸1は、本来の回転軸の役
目と、内部を気液を通過させるためと、軸受15を取り
付けて荷重や外力から安定を保つための機能をもってい
る。そのため、回転軸1は1本の貫通したものでもよ
く、内部を気液の通路となる箇所のみの回転軸でもよ
い。必要とする部分以外は省いてもよい、例えばパイプ
巻体2の中間部分は回転軸1のない状態にしてもよい。
The rotating shaft 1 according to the first aspect has a function of the original rotating shaft, a function of allowing gas and liquid to pass through the inside, and a function of attaching a bearing 15 to maintain stability from a load or an external force. For this reason, the rotating shaft 1 may be a single penetrating shaft, or may be a rotating shaft in which only the inside serves as a gas-liquid passage. Parts other than the necessary parts may be omitted. For example, the middle part of the pipe winding body 2 may be in a state without the rotating shaft 1.

【0022】請求項2の非回転軸19は、固定された非
回転軸19を両側から軸心を同一にしてパイプ巻体2の
内部に向かって設け、接続機器5を付設するが、パイプ
巻体2の内部を貫通した軸構成では本発明の圧送機能は
発揮できない。
In the non-rotating shaft 19, the fixed non-rotating shaft 19 is provided from both sides to the inside of the pipe winding body 2 with the same axis, and the connecting device 5 is attached. The pumping function of the present invention cannot be exhibited with a shaft configuration penetrating the inside of the body 2.

【0023】水流力で回転させるため、パイプ巻体2の
一部を水中に浸漬させて回転させてもよく、パイプ巻体
2を水中に浸漬させないで、流入口を伸展させて、羽根
又はプロペラ、スクリューと流入口のみを浸漬してパイ
プ巻体2を回転させ、回転毎に流入口3を水中に水没さ
せて気液を流入させる方法でもよい。また、流入口のパ
イプを回転軸内に潜らせた後再度外部に伸展させて回転
し、側方の水源から気液を流入させる方法でもよい。
In order to rotate the pipe by the water flow force, a part of the pipe winding 2 may be immersed in water and rotated. Without immersing the pipe winding 2 in water, the inflow port is extended and the blade or the propeller is extended. Alternatively, a method may be used in which only the screw and the inlet are immersed to rotate the pipe winding body 2, and the inlet 3 is submerged in water for each rotation to allow gas-liquid to flow. Alternatively, a method may be adopted in which the pipe at the inflow port is sunk into the rotating shaft, then extended outside again and rotated, and gas-liquid flows in from the lateral water source.

【0024】請求項1の「水流」とは、河川の水流、潮
流、または人工的な水流のいずれでもよい、また滝のよ
うな流れを含めてもよい。
The "water flow" in claim 1 may be any of a river water flow, a tidal current, and an artificial water flow, and may include a flow such as a waterfall.

【0025】流入口3、パイプ巻体2、回転圧送管4、
及び圧送設備6のパイプの内径は、同一でなくてもよ
く、圧力の増加で気体の体積減少や流速に対応させるた
め、パイプの径を、必要に応じて必要な部分を変更して
よい。
The inlet 3, the pipe winding 2, the rotary feed pipe 4,
In addition, the inner diameter of the pipe of the pumping equipment 6 may not be the same, and the diameter of the pipe may be changed to a necessary part as needed in order to cope with a decrease in the volume of the gas or a flow velocity by increasing the pressure.

【0026】請求項1の「水流を受けて回転させ・・」
とは、水流が2〜10m/sec程度の流速で特に3〜
8m/secが効果的で、これらの水流で設置したポン
プ9を1.0〜100rpmの範囲で回転させることを
言う、特に回転数は10〜60rpmが効果的である
が、回転速度を限定するものではない。
[0026] Claim 1, "Rotating and receiving water flow ..."
Means that the water flow is about 2 to 10 m / sec at a flow rate of about 3 to 10 m / sec.
8 m / sec is effective, and means that the pump 9 installed with these water flows is rotated in the range of 1.0 to 100 rpm. In particular, the rotation speed is effective at 10 to 60 rpm, but the rotation speed is limited. Not something.

【0027】図1は、パイプ巻体2の回転軸1を水流に
直角に設置した場合の1例図である。羽根11またはプ
ロペラまたはスクリュー等の付設には、図示はないが、
これらの回転軸を水流に直角、平行のどちらの方向でも
よく制限はない、パイプ巻体を効果的に回転させられれ
ばどの様な方法でもよい。この場合パイプ巻体は、水流
浮揚式でもよいし、水面に上下の上げ下げ可能に設置し
てもよい。ただし水面浮上式の場合は、浮揚体を回転さ
せないように設置するものである。
FIG. 1 is an example of a case where the rotating shaft 1 of the pipe winding body 2 is installed at a right angle to the water flow. Although not shown, the blade 11 or the attachment of the propeller or the screw is not shown.
The axis of rotation may be either perpendicular or parallel to the water flow, and there is no limitation. Any method can be used as long as the pipe winding can be effectively rotated. In this case, the pipe winding body may be of a floating type or may be installed on the water surface so as to be able to move up and down. However, in the case of the floating type, the floating body is installed so as not to rotate.

【0028】気液ポンプ等は、パイプ巻体2の回転で自
動的に圧力が発生する特徴があり、このパイプ巻体2を
水流力で回転させて気液を高圧化させるもので、パイプ
巻体2の直径Dが大きく、巻数nが多いとより高圧化す
る。すなわち、気液ポンプ等の揚程Hは、H=K(D−
d)n(Kは定数)となり、効果的には2〜8atm
で、これ以上の高圧化も可能であるが、気体が圧縮し気
液の体積割合が不均衡となるため、K値が小さくなり効
果的ではない。
A gas-liquid pump or the like is characterized in that pressure is automatically generated by rotation of the pipe winding 2, and the pipe winding 2 is rotated by water flow to increase gas and liquid pressure. When the diameter D of the body 2 is large and the number of turns n is large, the pressure becomes higher. That is, the head H of the gas-liquid pump or the like is H = K (D−
d) n (K is a constant), effectively 2 to 8 atm
Although it is possible to further increase the pressure, the gas is compressed and the volume ratio of gas-liquid becomes unbalanced, so that the K value becomes small, which is not effective.

【0029】パイプ巻体2の回転で気液を共に圧送する
ポンプとして、現在世界的に知られているポンプとし
て、ループ式ポンプ、螺旋式ポンプ等があり、国内で
は、スエーデンからの出願で公表済みの、水流で使用し
浮揚体を内蔵して水面浮上式で、係留式でループ式ポン
プ(特公平7−65589)がある、しかし、殆ど汎用
化は見られない、これは、接続機器(回動自在の連結
具)はあるが回転軸がなかったり、回転軸があっても内
部が空洞状の回転軸となっていないため、回転軸の内部
を気液の通路として利用できず、回転軸に軸受けの取り
付けができず、ポンプの固定設置が困難で、また、水面
浮上式であるが、浮揚体が回転するため係留取り付けに
制限があり、これらの多くの不便性のため本発明の気液
水流力発電装置用には適切ではない。一方、本発明の気
液水流力発電装置のポンプ9は、パイプ巻体2の回転で
気液を共に圧送するポンプで、回転軸1の内部を気液の
通路として使用する構成となっている。本発明に使用で
きるポンプは、最近国内で公開された気液圧送装置(特
開平11−201071)及び気液ポンプ装置(特開平
11−336687)があり、また、まだ公開されては
いないが、気液巻体ポンプ装置(特願平11−1030
12)があり、いずれも回転軸の内部を気液の通路とし
て使用する構成となっており、本発明の気液水流力発電
装置のポンプ9としても使用可能である。以下、回転軸
の内部を気液の通路として使用する構成のポンプと本発
明のポンプ9とを含めて、以後「気液ポンプ等」と表現
する。
As pumps for pumping gas and liquid together by rotation of the pipe winding 2, there are currently known pumps worldwide, such as loop pumps and spiral pumps. There is a water-floating type, floating type, mooring type, loop type pump (Japanese Patent Publication No. 7-65589) which is used in the water flow and has a built-in floating body. (There is a rotatable connector), but there is no rotating shaft, or even if there is a rotating shaft, the inside is not a hollow rotating shaft, so the inside of the rotating shaft cannot be used as a gas-liquid passage, The bearing cannot be mounted on the shaft, it is difficult to fix and install the pump, and the surface is floating.However, since the floating body rotates, the mooring installation is limited. Suitable for gas-liquid hydroelectric generator Not. On the other hand, the pump 9 of the gas-liquid hydraulic power generation device of the present invention is a pump for pumping gas and liquid together by rotating the pipe winding 2, and is configured to use the inside of the rotating shaft 1 as a gas-liquid passage. . Pumps that can be used in the present invention include a gas-liquid pumping device (JP-A-11-201071) and a gas-liquid pump device (JP-A-11-336687) that have been recently disclosed in Japan. Gas-liquid winding pump (Japanese Patent Application No. 11-1030)
12), each of which has a configuration in which the inside of the rotating shaft is used as a gas-liquid passage, and can also be used as the pump 9 of the gas-liquid hydraulic power generation device of the present invention. Hereinafter, the term "gas-liquid pump or the like" will be used hereinafter, including the pump having the configuration in which the inside of the rotating shaft is used as a gas-liquid passage and the pump 9 of the present invention.

【0030】[0030]

【0029】の説明に記載の「接続機器5」とは、気
密、水密性を保ち回転部分と非回転部分を、回転自在に
連通接続するもので、気液を共に圧送するポンプ9の必
須の構成部分であると共に、「ループ式ポンプ」や「気
液ポンプ等」のポンプの必須機器でもある。
The "connection device 5" described in the description of the present invention is a device for connecting a rotating part and a non-rotating part in a rotatable manner while maintaining airtightness and watertightness, and is an essential part of the pump 9 for pumping gas and liquid together. In addition to being a component, it is also an essential device for pumps such as "loop pumps" and "gas-liquid pumps."

【0031】「接続機器5」は、現存する使用可能な機
器として、スイベルジョイントがあり、国内では数社が
生産している模様である、このスイベルジョイントを本
発明のポンプに使用は可能であるが、方向変更や首振り
が主体で常時回転用でないため、本発明の気液水流力発
電装置には適切とまでは言えない。気液ポンプ等のた
め、より効果的な接続機器(回動自在の連結具)を開発
する必要がある。
As the "connecting device 5", there is a swivel joint as an existing usable device, and it seems that several companies are producing it in Japan. This swivel joint can be used for the pump of the present invention. However, it is not suitable for the gas-liquid hydraulic power generation device of the present invention because the direction change and the swing are mainly performed and are not always used for rotation. For gas-liquid pumps and the like, it is necessary to develop more effective connecting devices (pivotable connecting devices).

【0032】パイプ巻体2の型式は、図示に限定するも
のでなく、円盤型、タイヤ型、横円錐台型、横円筒型等
の多数あるが、どの型式を採用してもよい。また、図示
にある多重巻、多層巻だけでなく、単層巻でもよい。
The type of the pipe winding body 2 is not limited to the one shown in the drawings, and there are many types such as a disk type, a tire type, a horizontal truncated cone type, and a horizontal cylindrical type, but any type may be adopted. Further, a single-layer winding may be used instead of the multiple winding and the multilayer winding shown in the drawing.

【0033】請求項1に記載のある「封水状態」とは図
2(ホ)に示すように、パイプ巻体2のパイプリング内
に入った気液が上下に分離して、各パイプリング内の前
後に水位を形成し、前後の気体を遮断した状態を言うも
ので、従来の管工事等で言う「封水」(トラップ)と同
じ意味である。封水状態を保つ速度とは、1〜60rp
mで、パイプ巻体2の径が大きい場合は回転数は小さく
する必要がある、この回転数より以下でも、以上でもよ
いが効果的範囲ではない。すなわち、これ以上の回転速
度では封水状態が崩れる危険性があり、実験の結果では
封水状態が崩れるとポンプ9の圧送力は殆どなくなる。
また、これ以下の回転速度では遅すぎて効果的とは言え
ない。
As shown in FIG. 2 (e), the "water-sealed state" described in claim 1 means that the gas-liquid that has entered the pipe winding of the pipe winding 2 is separated into upper and lower parts, and This is a state in which water levels are formed before and after the inside and the gas before and after is shut off, and has the same meaning as "water sealing" (trap) in conventional pipe construction and the like. The speed at which the sealed state is maintained is 1 to 60 rpm
m, if the diameter of the pipe winding 2 is large, the number of rotations must be reduced. The number of rotations may be less than or greater than this number, but this is not an effective range. That is, if the rotation speed is higher than this, there is a risk that the sealed state may be broken, and as a result of the experiment, when the sealed state is broken, the pumping force of the pump 9 is almost eliminated.
At a rotational speed lower than this, it is too slow to be effective.

【0034】図2(ホ)に示すように、各パイプリング
内の前後に形成する封水状態の水位は、実験の結果、圧
送設備6以降に抵抗(揚程等)が起きると自動的に水位
差hiが形成される、この水位差hiの合計Σhiがポ
ンプ9の圧送力(揚程H)となる。ただし、気液ポンプ
に特有の気泡効果による高所揚程分を含む場合は、この
揚程の倍以上も可能となる。
As shown in FIG. 2 (e), the water level in the sealed state formed before and after in each of the pipe rings automatically becomes the water level when resistance (head and the like) occurs after the pumping equipment 6 as a result of the experiment. The difference hi is formed. The sum Σhi of the water level difference hi is the pumping force (head H) of the pump 9. However, in the case of including a head at a high place due to a bubble effect peculiar to the gas-liquid pump, it is possible to at least double this head.

【0035】ポンプ9の圧送力(揚程H)の主体は、パ
イプ巻体の径Dと、パイプの口径をd、パイプのリング
数nによって決まる、その他、液体や気体の粘性度、気
体と液体の体積比、パイプ内壁の粗度係数、装置の動力
損失等も関係するが、全体を定数Kとすると、揚程は
H=K・(D−d)・n となる。
The pumping force (head H) of the pump 9 is mainly determined by the diameter D of the pipe winding, the diameter d of the pipe, and the number n of rings of the pipe. The volume ratio of the pipe, the roughness coefficient of the pipe inner wall, the power loss of the device, etc. are also involved.
H = K · (D−d) · n.

【0036】気液ポンプ等には特有の特徴として、気泡
効果(エアリフト効果)がある、これは、気体と液体の
体積比を調整して、揚水や水中送気に利用するもので、
従来と同一の圧送力でも、従来以上の高揚程や、深い水
中送気が可能となる。
A gas-liquid pump or the like has a unique feature of a bubble effect (air lift effect), which is used for pumping or underwater air supply by adjusting the volume ratio of gas to liquid.
Even with the same pumping force as before, a higher head and deeper underwater air supply than before can be achieved.

【0037】「流入口から気液を回転毎に交互に流入さ
せ」とは、気液を或る割合で流入させる事を意味し、通
常、体積割合で半々が効果的であるが、高圧を得るため
には、パイプ巻体で高圧化で、気体の圧縮を予測して気
体の流入体積を多くしておくことが効果的である。例え
ば、8気圧(8atm)の気液を生むためには、パイプ
リング内の気液の体積割合を74%と26%程度で流入
させることで、8気圧になった状態では気体が圧縮され
るため逆に26%と74%近くになり効果的となる。
The expression "gas and liquid are alternately introduced from the inflow port at every rotation" means that gas and liquid are introduced at a certain ratio. Usually, half and half are effective in volume ratio. To achieve this, it is effective to increase the gas inflow volume by predicting gas compression by increasing the pressure in the pipe winding. For example, in order to generate 8 atm (8 atm) of gas-liquid, the volume ratio of gas-liquid in the pipe is made to flow at about 74% and 26%, so that the gas is compressed at 8 atm. Conversely, it is 26% and nearly 74%, which is effective.

【0038】本発明の、気液水流力発電装置のポンプ9
の設置方法は、下部からの支承方式(図1、図3、図
4、図5、図8)、水面係留浮上式(図示していな
い)、上部からの吊下式(図2、図6、図7)等がある
がいずれも限定したものではなく、状況を見て選定して
よい。
The pump 9 of the gas-liquid hydroelectric power generator of the present invention
There are two types of installation methods: a support system from below (Figs. 1, 3, 4, 5, and 8), a surface mooring floating system (not shown), and a suspension system from above (Figs. 2 and 6). , FIG. 7), etc., but none of them are limited, and may be selected depending on the situation.

【0039】パイプ巻体2及び圧送設備6のパイプの内
径は、全て同一の必要はなく気体が圧縮されるに従っ
て、気体の体積が縮小し、気液の比率が変化するため、
パイプを内側に配置するか、または、図3(イ)、図4
(イ)、図6(ロ)のようにパイプ巻体の途中からパイ
プ内径を小さく変えて配置する方法も効果的である。圧
送設備6のパイプは気液の流速等を考慮して内径を決め
る必要がある。
The inner diameters of the pipe winding body 2 and the pipes of the pumping equipment 6 need not be all the same, and as the gas is compressed, the gas volume decreases and the gas-liquid ratio changes.
Either place the pipe inside, or
(A), a method of arranging the pipe by changing the inner diameter of the pipe from the middle of the pipe winding body as shown in FIG. 6 (B) is also effective. It is necessary to determine the inner diameter of the pipe of the pumping equipment 6 in consideration of the gas-liquid flow rate and the like.

【0040】河川等の水流量の小さい場所では水流を効
果的に利用するため、図1(イ)(ロ)のように河床に
水底凹部13をつけて、パイプ巻体2の羽根11を浸漬
させて水流を受け易くして回転させると漏流する無駄を
少なくする効果がある。また、ポンプ9の設置は、水量
が多い場合や洪水時を考慮して上下、水平等に移動でき
る移動調整する設備を備えておくことが安全的である。
この図1(イ)(ロ)は、水流量の小さい場合の効果的
な河床の方法の1例を示し、限定するものではない。水
深が大きい場合は自然河床をそのままにしてよい。
In a place where the flow rate of water is small, such as a river, in order to effectively use the flow of water, a recess 13 is formed in the bottom of the river as shown in FIGS. When the rotation is made easy to receive the water flow, there is an effect of reducing the waste that leaks. In addition, it is safe to install the pump 9 with a movement adjusting device capable of moving vertically, horizontally, etc. in consideration of a large amount of water or a flood.
FIGS. 1 (a) and 1 (b) show one example of an effective riverbed method when the water flow rate is small, and are not limiting. If the water depth is large, the natural riverbed may be left as it is.

【0041】ポンプ9の上流側は、ゴミ等の流入を除去
するためスクリーン14を設けることは言うまでもな
い、また、パイプ巻体を保護するためのカバー、パイプ
巻体が崩れないための内部外部の支保工等の通常備える
べき付属設備は記入していないが必要なことは言うまで
もない。
It is needless to say that a screen 14 is provided on the upstream side of the pump 9 for removing the inflow of dust and the like, and a cover for protecting the pipe winding, and an internal and external portion for preventing the pipe winding from collapsing. Ancillary facilities that should normally be provided, such as shoring, are not listed, but needless to say.

【0042】本発明の気液水流力発電装置の設置台数
は、単数でもよいが、図1(イ)に示すように、水流域
を有効に利用するため設置数を多くすることがよく、ま
た、ポンプの設置場所は、多少急流域を選択して水流を
集中させてポンプを複数設置することが、水流の減勢作
用を兼ねると共に、水流域を無駄に放置しないことにつ
ながる。
The number of the gas-liquid hydroelectric power generators of the present invention may be one, but as shown in FIG. 1 (a), the number of the gas-liquid hydroelectric power generators is preferably increased in order to make effective use of the water basin. When a pump is installed at a location where a water flow area is concentrated by selecting a somewhat steep water area and a plurality of pumps are installed, the water flow area is also reduced, and the water flow area is not left unnecessarily.

【0043】「圧送設備6」とは、ポンプ9から圧送す
るパイプ等の圧送する設備の全てを言い「噴出装置7」
へ接続するものである。
The "pumping equipment 6" refers to all the pumping equipment such as a pipe for pumping from the pump 9, and the "spouting device 7".
Connect to.

【0044】「噴出装置7」とは、圧送設備6から圧送
された気液又は気液のどちらか一方を受けて、効果的に
水車の羽根11等に水流を噴出させて水車8を回転させ
る装置を言う。
The "spouting device 7" receives the gas-liquid or the gas-liquid fed from the pumping equipment 6 and effectively jets a water flow to the blades 11 of the water turbine to rotate the water turbine 8. Say the device.

【0045】「気液分離機器10」とは、圧送設備6で
圧送する気液を分離して、気体又は液体のいずれか単独
で、または別々に「噴出装置7」へ供給させる機器を言
う。
The "gas-liquid separation device 10" refers to a device that separates gas and liquid to be pumped by the pumping equipment 6 and supplies the gas or liquid alone or separately to the "spouting device 7".

【0046】「水車8」とは、ペルトン水車、クロスフ
ロー水車、フランシス水車、斜流水車、プロペラ水車等
を言い、水車の種類を特定するものではない、気体や液
体の噴出を受けて効果的に回転して電力に転換させるも
のである。気体や液体の割合、噴出量、圧力、地形等に
よって水車の種類を適宣に選定すればよい。
"Water turbine 8" refers to a Pelton turbine, a cross flow turbine, a Francis turbine, a mixed flow turbine, a propeller turbine, etc., which does not specify the type of the turbine, and is effective upon receiving gas or liquid jets. To convert to electric power. The type of water turbine may be appropriately selected according to the ratio of gas and liquid, the amount of jet, pressure, topography, and the like.

【0047】請求項3は、高圧気液分離機器10で加圧
気体と加圧液体に分離し、加圧気体は給気設備21を経
て貯水タンクAへ接続し給気可能に設置し、給水設備2
2から貯水タンクAへ接続して給水可能に設置し、貯水
タンクAから圧送設備31で噴出装置7に接続する、高
圧気液分離機器10から加圧気体のみを給気設備21を
経て、ほぼ満水の貯水タンクAへ給気し、加圧気体で貯
水タンクA内の液体を加圧して、加圧された液体は圧送
設備31を経て、気液分離機器10からの加圧液体と共
に噴出装置7から噴出させて、水車8を回転させて発電
するものである。
According to a third aspect of the present invention, the pressurized gas and the pressurized liquid are separated by the high-pressure gas-liquid separation device 10, and the pressurized gas is connected to the water storage tank A via the air supply equipment 21 and installed so as to be able to supply air. Equipment 2
2 is connected to the water storage tank A and is installed so as to be able to supply water, and is connected from the water storage tank A to the jetting device 7 by the pumping equipment 31. The tank is filled with water, and the liquid in the tank A is pressurized with pressurized gas. The pressurized liquid passes through the pumping equipment 31 and is ejected together with the pressurized liquid from the gas-liquid separator 10. The water is spouted from the nozzle 7 to rotate the water wheel 8 to generate power.

【0048】水流の低密度のエネルギーを多く吸収させ
ると共に、河川敷等への損傷(自然破壊)のない方法と
して、図6のように、門型や橋梁等からパイプ巻体2を
吊り下げる方式がある、この方式は、河川敷きに杭やコ
ンクリート構造物を一切作らず、水流のエネルギーのみ
を吸収利用し、自然損傷の小さい方法で、場所や事情が
許せる場合は採用できる方法である。
As a method of absorbing a large amount of low-density energy of a water flow and preventing damage (natural destruction) to a riverbed or the like, a method of suspending a pipe winding 2 from a portal or a bridge as shown in FIG. This method is a method that does not make any piles or concrete structures on the riverbed, absorbs and uses only the energy of the water flow, and is a method that can be adopted if the location and circumstances can be tolerated by a method with little natural damage.

【0049】図1及び図5に従って、請求項4を説明す
ると、図1は請求項4までの主旨の全体図であり、図5
は請求項3の詳細説明図出ある。高圧気液分離機器1
0で加圧気体と加圧液体に分離した後、加圧気体は給
気設備21を経て複数の貯水タンクA及びBへ接続し、
給気設備21の途上に切替振向設備23を設けていず
れか一方の貯水タンクへ切替えて給気可能に設置し、
給水設備22から複数の貯水タンクA及びBへ接続して
給水可能に設置する、貯水タンクA及びBから圧送設
備31及び32で噴出装置7に接続する、高圧気液分
離機器10から加圧気体のみを給気設備21を経て、
給気設備21の途上の切替設備23で切替えてほぼ満水
の貯水タンクA(又はB)へ給気し、加圧気体で貯水
タンクA(又はB)の液体を加圧して、加圧された液
体は圧送設備31(又は32)を経て気液分離機器10
からの加圧気体と共に噴出装置7から噴出させて、水車
8を回転させて発電するものである。この中で、〜
は構成を述べており、〜は行程と操作と述べてい
る。
Claim 4 will be described with reference to FIGS. 1 and 5. FIG. 1 is an overall view of the gist up to claim 4, and FIG.
Is a detailed explanatory view of the third aspect. High pressure gas-liquid separation equipment 1
After being separated into a pressurized gas and a pressurized liquid at 0, the pressurized gas is connected to a plurality of water storage tanks A and B via an air supply device 21,
A switching diversion device 23 is provided in the middle of the air supply device 21 and is switched to one of the water storage tanks so that air can be supplied.
Connected to the plurality of water storage tanks A and B from the water supply equipment 22 and installed so as to be able to supply water, connected from the water storage tanks A and B to the jetting device 7 by the pumping equipment 31 and 32, and pressurized gas from the high-pressure gas-liquid separation device 10 Only through the air supply system 21,
It is switched by the switching equipment 23 in the middle of the air supply equipment 21 and supplied to the almost full water storage tank A (or B), and the liquid in the water storage tank A (or B) is pressurized with pressurized gas to be pressurized. The liquid passes through the pumping equipment 31 (or 32) and is supplied to the gas-liquid separation device 10.
The water is spouted from the spouting device 7 together with the pressurized gas from the turbine, and the water wheel 8 is rotated to generate power. In this,~
Describes the configuration, and ~ describes the process and operation.

【0050】請求項4を更に詳しく説明すると、請求項
3は加圧液体だけでなく加圧気体のエネルギーをも放棄
せず加圧液体のエネルギーに変えて、噴出装置7から加
圧液体として噴出させて、水車8を回転させて発電する
もので、加圧気体のエネルギーを無駄に外部へ放気させ
ないことにある。貯水タンクは単数でもよいが、給水、
注気(噴出)、排気の3行程を繰り返す必要があるた
め、連続的に噴出(発電)させるには貯水タンクを3箇
所設けて、常時噴出(発電)できる構成にするのが効果
的である。ただし図示はタンク2箇所設置した例を示
す。すなわち、気液分離機器10から圧送された加圧気
体は、給気設備21を経て切替設備23に至り、切替え
に従って、ほぼ満水の貯水タンクA(またはBのいずれ
か一方)に入る。貯水タンクに入った加圧気体は、満水
の貯水を加圧し、加圧された液体は加圧水圧送口29
(又は30)から圧送設備31(又は32)を経て噴出
装置7から噴出させ、水車8を回転させて発電するもの
である。貯水タンクAへ注気中は、貯水タンクBは給水
中であり、貯水タンクAが給水中の場合は、貯水タンク
Bへは排気又は注気して貯水タンクBの加圧水を噴出装
置7へ圧送するものである、また、図示はしてないが、
前述の通り貯水タンクを3箇所以上設置すると貯水タン
クの交替をスムーズにさせ、常時噴射して発電効果を高
める効果がある。貯水タンクAおよびBへの送水は、モ
ーターやエンジンによる方法でもよく、自然の流れの流
水の注入方式でもよい。
The fourth aspect of the present invention will be described in further detail. In the third aspect, not only the energy of the pressurized liquid but also the energy of the pressurized gas is converted into energy of the pressurized liquid without being abandoned, and is ejected from the ejection device 7 as the pressurized liquid. In this case, the turbine 8 is rotated to generate power, and the energy of the pressurized gas is not exhausted to the outside. Water tank may be single, but water supply,
Since it is necessary to repeat three steps of air injection (spouting) and exhausting, it is effective to provide three water storage tanks to continuously jet (power generation) so that the structure can always jet (power generation). . However, the illustration shows an example in which two tanks are installed. That is, the pressurized gas pressure-fed from the gas-liquid separation device 10 reaches the switching equipment 23 via the air supply equipment 21, and enters the almost full water storage tank A (or one of B) according to the switching. The pressurized gas that has entered the water storage tank pressurizes the filled water, and the pressurized liquid is supplied to the pressurized water pressure outlet 29.
(Or 30) through the pumping equipment 31 (or 32) to blow out from the blow-out device 7 and rotate the water wheel 8 to generate power. During filling of the water storage tank A, the water storage tank B is supplying water. When the water storage tank A is supplying water, the water is discharged or supplied to the water storage tank B and the pressurized water of the water storage tank B is sent to the ejection device 7 by pressure. Although not shown,
As described above, when three or more water storage tanks are installed, the replacement of the water storage tanks is smoothly performed, and there is an effect of constantly injecting the water to enhance the power generation effect. The water supply to the water storage tanks A and B may be performed by a method using a motor or an engine, or may be performed by a flowing water injection method of a natural flow.

【0051】請求項5は、河川、水路、潮流等の低密度
の水流エネルギーを効果的に発電に利用するもので、回
転軸を長くし、パイプ巻体の直径を大きくし、水流の低
密度のエネルギーを多く吸収させるためである。軸受け
は、両端の2箇所に限定するものでなく、パイプ巻体2
の回転軸1に3箇所以上の軸受1を取付けて、回転軸の
安全固定を図るものである。 すなわち、両側の回転軸
への外力や荷重が過大集中して回転軸が中折れ等の危険
性があるため、荷重安定のため中央部にも1箇所以上を
設けるものである。この場合、図4(イ)及び図6のよ
うに、パイプ巻体2のパイプは一旦回転軸1内に潜らせ
た後、再度軸外に出てパイプ巻体のリングとして巻くこ
とになる、この一旦回転軸内に潜らせた部分の回転軸に
軸受を取付けるものである。従ってパイプ巻体は軸受毎
に区切れることになる。
A fifth aspect of the present invention is to effectively utilize low-density water flow energy such as a river, a waterway, and a tidal current for power generation. Is to absorb a lot of energy. The bearing is not limited to the two places at both ends, but the pipe winding 2
At least three bearings 1 are attached to the rotating shaft 1 to secure the rotating shaft safely. That is, since external forces and loads on the rotating shafts on both sides are excessively concentrated and the rotating shafts may be broken, the central portion may be provided at one or more locations to stabilize the load. In this case, as shown in FIGS. 4A and 6, the pipe of the pipe winding 2 is once sunk into the rotating shaft 1, then goes out of the axis again and is wound as a ring of the pipe winding. The bearing is attached to the portion of the rotating shaft once sunk into the rotating shaft. Therefore, the pipe winding is divided for each bearing.

【0052】本発明の図面には詳細の明示はないが、通
常の技術は当然設備として具備するものである。例え
ば、貯水タンクの水位計、気体量や水量の調整機器、自
動切り替え装置、圧力計、各種の自動切替装置、安全装
置等や、パイプ巻体の外側のカバー等は、全て通常の設
備をもってするものである。
Although the drawings of the present invention do not show details, ordinary technologies are naturally provided as equipment. For example, the water level gauge of the water storage tank, gas volume and water volume adjustment devices, automatic switching devices, pressure gauges, various automatic switching devices, safety devices, etc. Things.

【0053】本発明の、気液水流力発電装置に「気液ポ
ンプ等」を使用する理由は、以下に示す通りである、 は、従来必要としたブロワやコンプレッサー等の送気
設備や送水ポンプを必要とせず、これに付属施設として
騒音防止、振動防止を必要としないばかりか、施設費や
動力費が少なくて済むためであり、 は、パイプ内に羽根、歯車、ピストン、スクリュー等
の一切の機器が存在しない簡単な構成のため、機器の故
障はないと言える、維持管費だけでなくトータルコスト
が小さくて済むためであり、 は、流入口3からパイプ巻体2及び圧送設備6の区間
で、パイプ内に羽根、歯車、ピストン、スクリュー等の
一切の機器が存在しないため、多少の固形物が混入して
も、問題なく気液と共に圧送できるためであり、 は、気液を共に圧送するため、気体が高圧化しても高
熱化エネルギーは自動的連続的に液体中に吸収されるた
め、気液全体の温度上昇が起きないため冷却設備が不要
となる、 は、パイプ巻体2等のパイプを通過させる液体は、良
質の液体でなくてもよく、不純物が多少含んでいても特
に悪質でない限り使用可能でどこでも簡単に確保でき、
汎用性が高いためである。 は、低速回転(1〜60rpm)のため、騒音振動が
極めて小さいためであり、従来、ターボ型やピストン型
で起きた、羽根等とケーシング等の隙間からの戻水(漏
水)や戻気(漏気)が一切起きず体積効率が100%で
あるためである。 は、回転軸の内部が空洞状で、空洞内を気液の通過が
できるため、回転軸に軸受の取付けができ、ポンプが確
実に固定設置できるためである。 は、吸込行程がないためキャビテーションは起きな
い、気体が衝撃を吸収するためウオーターハンマーも起
きないためである。
The reasons for using a "gas-liquid pump or the like" in the gas-liquid hydraulic power generator of the present invention are as follows. Not only does not require noise and vibration prevention as an accessory facility, but also because the facility and power costs are low, and there are no blades, gears, pistons, screws, etc. inside the pipe. It can be said that there is no equipment failure due to the simple configuration in which the equipment does not exist. This is because not only the maintenance cost but also the total cost is small. In the section, there is no equipment such as blades, gears, pistons, screws, etc. in the pipe, so even if some solid matter is mixed in, it can be pumped together with gas and liquid without any problem. Pump Therefore, even if the pressure of the gas is increased, the heating energy is automatically and continuously absorbed in the liquid, so that the temperature of the entire gas and liquid does not rise, so that no cooling equipment is required. The liquid passing through the pipe may not be a high quality liquid, and even if it contains some impurities, it can be used as long as it is not particularly bad and can be easily secured anywhere,
This is because versatility is high. The reason is that noise and vibration are extremely small because of low-speed rotation (1 to 60 rpm), and return water (leakage) or return air (water leakage) from a gap between a blade or the like and a casing or the like, which has conventionally occurred in a turbo type or a piston type. This is because no volume leakage occurs and the volumetric efficiency is 100%. The reason is that since the inside of the rotating shaft is hollow and gas-liquid can pass through the inside of the hollow, a bearing can be attached to the rotating shaft and the pump can be securely fixed and installed. This is because cavitation does not occur because there is no suction stroke, and water hammer does not occur because gas absorbs shock.

【0054】気液水流力発電装置の発電する場合の、概
数計算例を以下に示す。 以上の計算2例は、机上概算計算のため実際は多少なら
ず上下巾があると考えられる。
The following is an example of calculating the approximate number when the gas-liquid hydrodynamic power generator generates power. In the above two calculation examples, it is considered that there is a slight difference between the upper and lower limits due to the desktop rough calculation.

【0055】[0055]

【発明の効果】本発明によると、世界中に無数に存在す
る低密度の河川、水路、潮流等の水流のエネルギーを水
流力発電へ利用する技術を開発した。これによって、C
、SO、NOを発生しないクリーンエネルギー
の拡大に大きく前進させた。
According to the present invention, a technology has been developed for utilizing the energy of water flows, such as innumerable low-density rivers, waterways, tidal currents, etc., which exist in countless countries around the world for hydroelectric power generation. This gives C
We have made great strides in expanding clean energy that does not generate O 2 , SO x , and NO x .

【0056】 更に、本発明によると、水流力で、水流
のエネルギーを高圧のエネルギーに変更し、落差の小さ
い場所でも高落差的に転換する発電技術が実現した。
Further, according to the present invention, a power generation technology has been realized in which the energy of the water flow is changed to high-pressure energy by the hydraulic power, and the water is converted to a high head even at a small head.

【0057】従来の水力発電の欠点を改善した効果は、
ダム、導水路等による高落差を必要としない河川等
の長流域のせせらぎを残し動植物のダム上下通過を遮
断しない、自然生態を変えない水路等への導水で河川
流量を減少させることなくダム建設がないため自然へ
損傷は殆ど無くダム、トンネル、管路等を必要とせ
ず、設備費等の投資を小さくしたものである。
The effect of improving the disadvantages of the conventional hydroelectric power generation is as follows.
Dam construction without reducing river flow by conducting water to waterways that do not change the natural ecology, leaving streams in long streams such as rivers that do not require a high head due to dams, headraces, etc. Since there is no damage, there is almost no damage to nature, and there is no need for dams, tunnels, pipelines, etc., and investment such as equipment costs is reduced.

【0058】図6に示すように、自然環境をへの損傷を
小さくでき、場合によっては河川敷を一切損傷させない
で、水流力発電を可能にする技術でもある。
As shown in FIG. 6, this is a technique that can reduce the damage to the natural environment and, in some cases, does not damage the riverbed at all, thereby enabling hydroelectric power generation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、気液水流力発電装置の全体主旨説明
の1例を示し、(イ)は、5台のポンプ9を水流に設置
して、気液を1本の圧送設備6に集中して高圧気液分離
機器10に入り、気液を別々に噴出させて水車8を回転
させて発電する1例図を示す。(ロ)は、ポンプの側断
面図、(ハ)は、正面断面図を示す。
FIG. 1 shows an example of a general description of a gas-liquid hydroelectric power generation device according to the present invention. FIG. 1 (a) shows five pumps 9 installed in a water stream and one gas-liquid pumping equipment 6; FIG. 1 shows an example in which power is concentrated on the high-pressure gas-liquid separation device 10, gas and liquid are separately ejected, and the water wheel 8 is rotated to generate power. (B) is a side sectional view of the pump, and (c) is a front sectional view.

【図2】本発明の、ポンプ9の詳細説明図を示し、
(イ)は、ポンプ9の側断面図、(ロ)は、A部分の側
面断面図、(ハ)は、B部分の側面断面図を、(ニ)
は、C部分の側面断面図を示す。
FIG. 2 shows a detailed explanatory view of a pump 9 of the present invention,
(A) is a side sectional view of the pump 9, (B) is a side sectional view of the part A, (C) is a side sectional view of the part B, (D)
Shows a side sectional view of the C portion.

【図3】本発明の、ポンプ9詳細説明図を示し、パイプ
巻体のパイプの内径を圧力が高まるにつれて細くした1
例図、(イ)は、ポンプ9の正面断面図、(ロ)は、A
部分の側面断面図、(ハ)は、B部分の側面断面図を、
(ニ)は、C部分の側面断面図を示す。
FIG. 3 is a detailed explanatory view of the pump 9 of the present invention, wherein the inner diameter of the pipe of the pipe winding is reduced as the pressure increases.
Example diagram, (a) is a front sectional view of the pump 9, (b) is A
(C) is a side cross-sectional view of part B,
(D) is a side cross-sectional view of the C portion.

【図4】本発明の、ポンプ9詳細説明図を示し、(イ)
は、2箇所以上の回転軸を設けた1例で、中間軸受でパ
イプ巻体の荷重の負担を軽減させた方法である。(ロ)
(ハ)は、パイプ巻体を上下調整する1例を示す。
FIG. 4 is a detailed explanatory view of the pump 9 according to the present invention;
Is an example in which two or more rotary shafts are provided, and is a method in which the load of the load on the pipe winding body is reduced by an intermediate bearing. (B)
(C) shows an example in which the pipe winding is adjusted up and down.

【図5】本発明の、高圧気液分離機器10で分離した高
圧気体を、複数の貯水タンクへ交互に給気して、貯水タ
ンクの液体を圧送して噴出し、発電に利用する例図を示
す。
FIG. 5 is a diagram illustrating an example in which the high-pressure gas separated by the high-pressure gas-liquid separation device 10 according to the present invention is alternately supplied to a plurality of water storage tanks, and the liquid in the water storage tank is pumped out to be ejected and used for power generation. Is shown.

【図6】本発明の、河川の水流の上に、橋梁や門型等で
ポンプ9を吊下げて設置した例図、(イ)は橋梁型吊下
式で5箇所の軸受けを設けた例図、(ロ)は吊下設置で
3箇所の軸受けを設けた正面例図、(ハ)は吊下設置の
側面図で水位の上下により巻体の位置を上下調節できる
例図。
FIG. 6 is a view showing an example in which a pump 9 is suspended and installed by a bridge or a gate over a water flow of a river according to the present invention, and FIG. 6A is an example in which five bearings are provided by a bridge-type suspension. Fig. 2B is a front view showing an example in which three bearings are provided in a suspended installation, and Fig. 3C is a side view of the suspended installation, in which the position of the winding body can be adjusted up and down by raising and lowering the water level.

【図7】本発明の、パイプ巻体の回転軸の構成に関する
説明図で、(イ)は、請求項1の場合を示し、パイプ巻
体と回転軸が一体となって回転する例図、(ロ)は、請
求項2の場合を示し、パイプ巻体と回転取付部(軸受)
が一体となって回転する例図。
FIG. 7 is an explanatory view of the configuration of the rotating shaft of the pipe winding body of the present invention. FIG. 7 (a) shows the case of claim 1, in which the pipe winding body and the rotating shaft rotate integrally. (B) shows the case of claim 2, wherein the pipe winding body and the rotary mounting part (bearing)
FIG.

【図8】本発明の、請求項2の場合を示し、両側からの
非回転軸(固定端)に回転取付部(軸受)を付設して水
流力で回転する説明例図。
FIG. 8 is an explanatory view showing the case of claim 2 of the present invention, in which a non-rotating shaft (fixed end) from both sides is provided with a rotary mounting portion (bearing) to rotate by water flow force.

【符号の説明】[Explanation of symbols]

1 回転軸 2 パイプ巻体 3 流入口 4 回転圧送管 5 接続機器 6 圧送設備 7 噴出装置 8 水車 9 ポンプ 10 高圧気液分離機器 11 羽根(又はスクリュー、又はプロペラ) 12 伸展流入管 13 水底凹部 14 スクリーン 15 軸受 16 封水状態 17 発電所 18 放流水 19 非回転軸 20 回転取付部 21 給気設備 22 給水設備 23 切替設備 24 液体切替設備 25 給気口 26 給気口 27 給水口 28 給水口 29 圧送口 30 圧送口 31 圧送設備 32 圧送設備 33 放気口 34 放気口 A 貯水タンクA B 貯水タンクB DESCRIPTION OF SYMBOLS 1 Rotary shaft 2 Pipe winding body 3 Inflow port 4 Rotating pressure feeding pipe 5 Connecting equipment 6 Pumping equipment 7 Jetting device 8 Water wheel 9 Pump 10 High pressure gas-liquid separation equipment 11 Blade (or screw or propeller) 12 Extension inflow pipe 13 Water bottom recess 14 Screen 15 Bearing 16 Water-sealed state 17 Power plant 18 Discharged water 19 Non-rotating shaft 20 Rotary mounting part 21 Air supply equipment 22 Water supply equipment 23 Switching equipment 24 Liquid switching equipment 25 Inlet 26 Inlet 27 Inlet 28 Inlet 29 Pumping port 30 Pumping port 31 Pumping equipment 32 Pumping equipment 33 Outlet port 34 Outlet port A Water storage tank A B Water storage tank B

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月25日(2000.4.2
5)
[Submission date] April 25, 2000 (200.4.2
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 気液水流力発電装置[Title of the Invention] Gas-liquid hydroelectric power generator

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水流力で空気と水を共
に高圧化して、高圧水をマイクロ水力、ミニ水力、小水
力発電に使用する、気液水流力発電装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid hydroelectric power generation apparatus in which air and water are both pressurized by hydrodynamic power and high-pressure water is used for micro-hydraulic, mini-hydraulic, and small hydroelectric power generation.

【0002】[0002]

【従来の技術】世界中に無数に近くある小落差、豊水量
の河川、水路、潮流等の水流力は、エネルギーが低密度
のため、発電への利用は技術上、採算上、効果的でない
ため、その殆どが放置されていた。
2. Description of the Related Art The hydraulic power of rivers, waterways, tidal currents, and the like, which are innumerable near the end of the world, are innumerable, and their energy density is low, so their use for power generation is technically and profitably ineffective. Therefore, most of them were left alone.

【0003】従来の水力発電は、ダム、導水路等によ
る高落差を必要とし河川等の長流域のせせらぎを奪
い、水棲動物のダム上下通過を遮断し、自然生態を変
え、導水路等の別ルートへの導水で河川流量を減少さ
せ、ダム建設で自然へ損傷を与え、水敷面積による
緑地の減少、ダム、導水路等の設置で多大の投資を必
要とする等の、多くの問題点を残していた。
[0003] Conventional hydroelectric power generation requires a high head due to dams, headraces and the like, robbing long streams such as rivers, interrupting the passage of aquatic animals up and down the dam, changing natural ecology, and differentiating waterways. Many problems, such as reducing the river flow by conducting water to the route, damaging nature by dam construction, reducing green space due to the spread of water, and requiring large investments in installing dams, water conduits, etc. Was leaving.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前述
の従来からの水力発電の欠陥を解決することにあって、
世界中に無数に近くある小落差、豊水量の河川、水路、
潮流等の低密度の水流エネルギーをも利用し得る技術の
開発にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned deficiencies of conventional hydroelectric power generation.
Countless close heads around the world, rivers, waterways,
It is in the development of technology that can also use low-density water current energy such as tidal currents.

【0005】更に本発明の目的は、前述の従来からの水
力発電の欠陥を解決することにあって、小落差、豊水
量の水流力を効果的に発電に使用し、ダムを作らず長
流域のせせらぎを残し、水棲動物のダム上下側の棲域
の遮断をしないで、別ルートのトンネル、水路等への
導水で河川流水量の減少させない、自然への損傷の少
ないダム、トンネル、管路等の高価な施設を設置しない
で発電できる装置の開発にある。
It is another object of the present invention to solve the above-mentioned deficiencies of the conventional hydroelectric power generation. Dams, tunnels, and pipelines that do not reduce the flow of rivers by conducting water to other routes such as tunnels and waterways without blocking the upper and lower areas of the dam for aquatic animals, leaving a stream of water The development of a device that can generate electricity without installing expensive facilities such as

【0006】更に本発明の目的は、河川、水路、潮流等
の、小落差かつ豊水量の水流エネルギーを効果的に発電
に利用する技術の開発にある。
It is a further object of the present invention to develop a technique for effectively utilizing the water flow energy of a small head and an abundant amount of water, such as a river, a waterway, and a tidal current, for power generation.

【0007】[0007]

【課題を解決するための手段】本発明は、前述した従来
の問題点を解決するため、内部が空洞状で、ほぼ水平の
回転軸1の周りに連続したパイプを巻いたパイプ巻体2
を作り、パイプの一端を流入口3とし、他端をパイプ巻
体2の各パイプリングを巻いて回転軸1の空洞状内を潜
らせて回転圧送管4として接続機器5に接続し、接続機
器5から回転しない圧送設備6を延伸して貯水設備7に
圧送可能に設置する、パイプ巻体2を水面近くにに設け
て、パイプ巻体2に、羽根11またはプロペラまたはス
クリュー等を付設し、水流を受けてパイプ巻体2が回転
する状態に設置し、流入口3をパイプ巻体2の回転毎に
水没する状態にする、パイプ巻体2に付設した羽根11
またはプロペラまたはスクリュー等に水流を受けて回転
させ、パイプ巻体2の流入口3を回転毎に水没させて空
気と水(又は『気体と液体』とも言い、以下『気液』と
表現する)を交互に流入させ、各パイプリング内で水位
を形成した封水状態を保ちながら各リングを移動した
後、気液は回転圧送管4に入り接続機器5を通過して回
転しない圧送設備6から貯水設備7に圧送し、貯水設備
7内の水位を発電に必要な高さを保ちながら、貯水設備
7内の高圧水を発電所17へ圧送して水力発電をするこ
とに特徴がある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention is directed to a pipe winding body 2 having a hollow inside and a continuous pipe wound around a substantially horizontal rotating shaft 1.
Then, one end of the pipe is used as the inflow port 3, and the other end is wound around each pipe of the pipe winding body 2, and is sunk in the cavity of the rotating shaft 1, and connected to the connection device 5 as the rotary pumping pipe 4 and connected. The pipe winding 2 is provided near the water surface, and the pumping equipment 6 that is not rotated from the device 5 is installed so as to be able to be pumped to the water storage equipment 7 by extending the blade 11 or a propeller or a screw. The blade 11 attached to the pipe winding 2 is installed so that the pipe winding 2 is rotated in response to the water flow, and the inlet 3 is submerged every time the pipe winding 2 rotates.
Alternatively, a water flow is received and rotated by a propeller or a screw or the like, and the inflow port 3 of the pipe winding body 2 is submerged with each rotation, so that air and water (or also referred to as "gas and liquid", hereinafter referred to as "gas-liquid"). Are alternately introduced, and after moving each ring while maintaining a sealed state in which a water level is formed in each pipe ring, gas-liquid enters the rotary pumping pipe 4, passes through the connecting device 5, and from the pumping equipment 6 which does not rotate. It is characterized in that high pressure water in the water storage facility 7 is pumped to the power plant 17 to perform hydroelectric power generation, while being pumped to the water storage facility 7 and maintaining the water level in the water storage facility 7 at a height required for power generation.

【0008】更に、本発明は、内部が空洞状で、ほぼ水
平の固定軸19を両側の固定端から内側に延伸し、固定
軸19の軸心線の周りに連続したパイプを巻いて連通し
たリング状流路を形成したパイプ巻体2を、回転軸受2
0を付設して固定軸19の周りを回転可能に構成し、水
面近くに設け、パイプ巻体2のパイプの一端の開口を流
入口3とし、他端をパイプ巻体2の各パイプリングを巻
いて固定軸19の一端に接続した接続機器5の一端に接
続し、接続機器5の他端から回転しない圧送設備6を、
固定軸19の空洞内を潜って後、延伸して貯水設備7に
接続し、パイプ巻体2に、羽根11またはプロペラまた
はスクリュー等を付設し、水流を受けて回転する状態に
設置し、流入口3をパイプ巻体2の回転毎に水没する状
態にする、パイプ巻体2に付設した羽根11またはプロ
ペラまたはスクリュー等に水流を受けて回転させ、パイ
プ巻体2の流入口3を回転毎に水没させて気液を交互に
流入させ、各パイプリング内で水位を形成した封水状態
を保ちながら各リングを移動した後、気液は接続機器5
を通過して圧送設備6として回転しない固定軸19の空
洞内を潜った後に、貯水設備7に圧送し、貯水設備7内
の水位を発電に必要な高さを保ちながら、貯水設備7内
の高圧水を発電所17へ圧送して水力発電をすることに
特徴がある。
Further, in the present invention, a substantially horizontal fixed shaft 19 having a hollow inside is extended inward from the fixed ends on both sides, and a continuous pipe is wound around the axis of the fixed shaft 19 to communicate therewith. The pipe winding body 2 having the ring-shaped flow path is connected to the rotary bearing 2
0 is provided so as to be rotatable around the fixed shaft 19, provided near the water surface, the opening of one end of the pipe of the pipe winding 2 is used as the inflow port 3, and the other end is connected to each pipe ring of the pipe winding 2. The pumping equipment 6 that is connected to one end of the connection device 5 that is wound and connected to one end of the fixed shaft 19 and does not rotate from the other end of the connection device 5,
After diving in the cavity of the fixed shaft 19, it is stretched and connected to the water storage facility 7, the blades 11 or the propellers or screws are attached to the pipe winding 2, and the pipes 2 are installed in a state of receiving the water flow and rotating. The inlet 3 is submerged every time the pipe winding 2 rotates. The blade 3 attached to the pipe winding 2 or a propeller, a screw, or the like receives a water flow and rotates the inlet 3. The inlet 3 of the pipe winding 2 is rotated every rotation. After each ring is moved while maintaining the sealed state in which the water level is formed in each pipe ring, the gas and liquid are connected to the connecting device 5.
After passing through the cavity of the fixed shaft 19 which does not rotate as the pumping equipment 6, the water is pumped to the water storage facility 7, and the water level in the water storage facility 7 is maintained while maintaining the height required for power generation. It is characterized in that high-pressure water is pumped to the power plant 17 to generate hydroelectric power.

【0009】また、本発明は、圧送設備6から貯水設備
7に圧送しないで、気液を圧送設備6から高圧気液分離
機器10に接続して、高圧気液分離機器10内の高圧空
気と高圧水に分離して、高圧水を発電所17へ圧送して
水力発電をすることに特徴がある。
Further, according to the present invention, the gas-liquid is connected to the high-pressure gas-liquid separation device 10 from the pressure-feeding device 6 without being pumped from the pressure-feeding device 6 to the water storage device 7, and is connected to the high-pressure air in the high-pressure gas-liquid separation device 10. It is characterized in that it is separated into high-pressure water and the high-pressure water is pumped to the power plant 17 to generate hydroelectric power.

【0010】更に、本発明は、高圧気液分離機器10で
高圧空気と高圧水に分離し、高圧空気は給気設備21か
ら気体切替設備23を経て、貯水タンクA又は貯水タン
クBへ接続し給気可能に設置し、給水設備22から液体
切替設備24を経て、貯水タンクA又は貯水タンクBへ
接続して給水可能に設置し、貯水タンクA又は貯水タン
クBから水圧管8に接続する、高圧気液分離機器10か
ら高圧空気のみを給気設備21を経て、ほぼ満水の貯水
タンクA又は貯水タンクBへ給気し、加圧空気で貯水タ
ンクA又は貯水タンクB内の液体を加圧して、加圧され
た液体は水圧管8を経て、気液分離機器10からの加圧
水と共に水圧管8から発電所17に圧送して水力発電す
ることに特徴がある。
Further, in the present invention, the high-pressure gas-liquid separator 10 separates the high-pressure air and high-pressure water from the high-pressure air and the high-pressure water, and connects the high-pressure air to the water storage tank A or the water storage tank B from the air supply equipment 21 through the gas switching equipment 23. It is installed so as to be able to supply air, connected to the water storage tank A or the water storage tank B via the liquid switching equipment 24 from the water supply equipment 22, installed so as to be able to supply water, and connected to the water pressure pipe 8 from the water storage tank A or the water storage tank B. Only the high-pressure air is supplied from the high-pressure gas-liquid separation device 10 to the almost full water storage tank A or the water storage tank B via the air supply equipment 21, and the liquid in the water storage tank A or the water storage tank B is pressurized by the pressurized air. The pressurized liquid passes through the hydraulic pipe 8 and is pumped together with the pressurized water from the gas-liquid separator 10 from the hydraulic pipe 8 to the power plant 17 to generate hydraulic power.

【0011】更に本発明の目的は、パイプ巻体2の回転
軸1に3箇所以上の固定軸受15を取付けることに特徴
がある。
A further object of the present invention is to mount three or more fixed bearings 15 on the rotating shaft 1 of the pipe winding 2.

【0012】[0012]

【実施の態様】本発明の気液水流力発電装置を図1で説
明すると、内部が空洞状で、ほぼ水平の回転軸1の周り
に連続したパイプを巻いたパイプ巻体2を作り、パイプ
の一端を流入口3とし、他端をパイプ巻体2の各パイプ
リングを巻いて回転軸1の空洞状内を潜らせて回転圧送
管4として接続機器5に接続し、接続機器5から回転し
ない圧送設備6を延伸して貯水設備7に圧送可能に設置
する、パイプ巻体2を水面近くにに設けて、パイプ巻体
2に、羽根11またはプロペラまたはスクリュー等を付
設し、水流を受けてパイプ巻体2が回転する状態に設置
し、流入口3をパイプ巻体2の回転毎に水没する状態に
する、パイプ巻体2に付設した羽根11またはプロペラ
またはスクリュー等に水流を受けて回転させ、パイプ巻
体2の流入口3を回転毎に水没させて気液を交互に流入
させ、各パイプリング内で水位を形成した封水状態を保
ちながら各リングを移動した後、気液は回転圧送管4に
入り接続機器5を通過して回転しない圧送設備6から貯
水設備7に圧送し、貯水設備7内の水位を発電に必要な
高さを保ちながら、貯水設備7内の高圧水を発電所17
へ圧送して水力発電をするものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a gas-liquid hydroelectric power generator according to the present invention will be described. A pipe winding body 2 is formed by winding a pipe having a hollow inside and a continuous pipe around a substantially horizontal rotating shaft 1. Is connected to a connection device 5 as a rotary pumping pipe 4 by wrapping around one of the pipes of a pipe winding 2 at the other end and dipping in the hollow shape of the rotating shaft 1, and rotating from the connection device 5. The pipe winding 2 is provided near the surface of the water, and the blade 11 or a propeller or a screw is attached to the pipe winding 2 to receive the water flow. The pipe winding 2 is installed in a rotating state, and the inlet 3 is submerged every time the pipe winding 2 rotates. The blade 11 attached to the pipe winding 2 or a propeller or a screw receives water flow. And rotate the inlet 3 of the pipe winding 2 After being submerged in each rotation, gas and liquid alternately flow in, and after moving through each ring while maintaining the sealed state where the water level is formed in each pipe ring, the gas and liquid enter the rotary pressure feeding pipe 4 and pass through the connection device 5 From the non-rotating pumping equipment 6 to the water storage equipment 7, and while maintaining the water level in the water storage equipment 7 at the height required for power generation, the high-pressure water in the water storage equipment 7 is
To generate hydraulic power.

【0013】本発明の気液水流力発電装置を図8
(ロ)、図9、図1で説明すると、内部が空洞状で、ほ
ぼ水平の固定軸19を両側の固定端から内側に延伸し、
固定軸19の軸心線の周りに連続したパイプを巻いて連
通したリング状流路を形成したパイプ巻体2を、回転軸
受20を付設して固定軸19の周りを回転可能に構成
し、水面近くに設け、パイプ巻体2のパイプの一端の開
口を流入口3とし、他端をパイプ巻体2の各パイプリン
グを巻いて固定軸19の一端に接続した接続機器5の一
端に接続し、接続機器5の他端から回転しない圧送設備
6を、固定軸19の空洞内を潜って後、延伸して貯水設
備7に接続し、パイプ巻体2に、羽根11またはプロペ
ラまたはスクリュー等を付設し、水流を受けて回転する
状態に設置し、流入口3をパイプ巻体2の回転毎に水没
する状態にする、パイプ巻体2に付設した羽根11また
はプロペラまたはスクリュー等に水流を受けて回転さ
せ、パイプ巻体2の流入口3を回転毎に水没させて気液
を交互に流入させ、各パイプリング内で水位を形成した
封水状態を保ちながら各リングを移動した後、気液は接
続機器5を通過して圧送設備6として回転しない固定軸
19の空洞内を潜った後に、貯水設備7に圧送し、貯水
設備7内の水位を発電に必要な高さを保ちながら、貯水
設備7内の高圧水を発電所17へ圧送して水力発電をす
るものである。
FIG. 8 shows a gas-liquid hydraulic power generator according to the present invention.
(B) Referring to FIGS. 9 and 1, the interior is hollow, and a substantially horizontal fixed shaft 19 extends inward from the fixed ends on both sides.
The pipe winding body 2 in which a continuous pipe is wound around the axis of the fixed shaft 19 to form a ring-shaped flow path that is connected to the fixed shaft 19 is provided with a rotating bearing 20 so as to be rotatable around the fixed shaft 19, Provided near the water surface, the opening of one end of the pipe of the pipe winding 2 is used as the inflow port 3, and the other end is connected to one end of the connection device 5 connected to one end of the fixed shaft 19 by winding each pipe ring of the pipe winding 2. Then, the pressure feeding equipment 6 which does not rotate from the other end of the connecting device 5 is extended under the cavity of the fixed shaft 19, then extended and connected to the water storage equipment 7, and the pipe winding 2 is connected to the blade 11 or the propeller or the screw. A water flow is supplied to the blade 11 or a propeller or screw attached to the pipe winding 2 so that the inlet 3 is submerged every time the pipe winding 2 rotates. Receiving and rotating the pipe winding 2 After the port 3 is submerged for each rotation, gas-liquid flows alternately, and after moving each ring while maintaining a sealed state in which a water level is formed in each pipe ring, the gas-liquid is pumped through the connecting device 5. After diving in the cavity of the fixed shaft 19 that does not rotate as the equipment 6, the water is pumped to the water storage equipment 7, and the high-pressure water in the water storage equipment 7 is supplied to the power plant while maintaining the water level in the water storage equipment 7 at the height required for power generation. 17 to generate hydraulic power.

【0014】更に、本発明は、図2及び図6に示す通
り、前述の気液水流力発電装置において、圧送設備6か
ら貯水設備7に圧送しないで、気液を圧送設備6から高
圧気液分離機器10に接続して、高圧気液分離機器10
内の高圧空気と高圧水に分離して、高圧水を発電所17
へ圧送して水力発電をするものである。
Further, as shown in FIGS. 2 and 6, the present invention provides the above-mentioned gas-liquid hydrodynamic power generator, in which the gas-liquid is supplied from the high-pressure gas-liquid The high pressure gas-liquid separation device 10 is connected to the separation device 10.
The high-pressure water is separated into high-pressure air and high-pressure water in the
To generate hydraulic power.

【0015】更に、本発明は、図2及び図6に示す通
り、気液水流力発電装置において、高圧気液分離機器1
0で高圧空気と高圧水に分離し、高圧空気は給気設備2
1から気体切替設備23を経て、貯水タンクA又は貯水
タンクBへ接続し給気可能に設置し、給水設備22から
液体切替設備24を経て、貯水タンクA又は貯水タンク
Bへ接続して給水可能に設置し、貯水タンクA又は貯水
タンクBから水圧管8に接続する、高圧気液分離機器1
0から高圧空気のみを給気設備21を経て、ほぼ満水の
貯水タンクA又は貯水タンクBへ給気し、加圧空気で貯
水タンクA又は貯水タンクB内の液体を加圧して、加圧
された液体は水圧管8を経て、気液分離機器10からの
加圧水と共に水圧管8から発電所17に圧送して水力発
電するものである。
Further, as shown in FIGS. 2 and 6, the present invention relates to a gas-liquid
0 to separate into high-pressure air and high-pressure water.
1 is connected to the water storage tank A or the water storage tank B via the gas switching equipment 23, and is installed so that air can be supplied. The water supply equipment 22 can be connected to the water storage tank A or the water storage tank B via the liquid switching equipment 24 to supply water. High-pressure gas-liquid separation device 1 that is installed in the water storage tank A or the water storage tank B and connected to the hydraulic pipe 8.
Only the high pressure air from 0 is supplied to the almost full water storage tank A or the water storage tank B through the air supply equipment 21, and the liquid in the water storage tank A or the water storage tank B is pressurized by the pressurized air to be pressurized. The liquid is sent through a hydraulic pipe 8 together with the pressurized water from the gas-liquid separation device 10 to the hydraulic power plant 17 and sent to a power plant 17 for hydraulic power generation.

【0016】更に、本発明は、前述の気液水流力発電装
置において、図5、図7に示す通り、パイプ巻体2の回
転軸1に3箇所以上の固定軸受15を取付けるものであ
る。
Further, the present invention, in the above-described gas-liquid hydraulic power generator, has three or more fixed bearings 15 attached to the rotating shaft 1 of the pipe winding 2 as shown in FIGS.

【0017】本発明の、請求項1及び請求項2は、図
1、図7の通り、加圧空気と加圧水を共に水流力で圧送
し高所へ揚水して、高落差を生み、高圧水を水力発電に
使用する場合を述べており、機能的には同様である。
According to the first and second aspects of the present invention, as shown in FIGS. 1 and 7, both pressurized air and pressurized water are pressure-fed together with water pressure and pumped to a high place to produce a high head, and a high pressure water is produced. Is used for hydroelectric power generation, and is functionally the same.

【0018】この中で請求項1は、In this case, claim 1 is

【図1】〜FIG. 1

【図8】(イ)に示す通り、パイプ巻体2と回転軸1に
固定軸受15を取付ける方法であり、請求項2は、
FIG. 8 shows a method of attaching a fixed bearing 15 to the pipe winding body 2 and the rotating shaft 1 as shown in FIG.

【図8】(ロ)〜FIG. 8 (b)

【図9】(イ)(ロ)に示す通り、パイプ巻体2と固定
軸19に回転軸受20を取付ける方法である。すなわ
ち、請求項1及び請求項2は、パイプ巻体2を固定軸で
回転させるか、回転軸で回転させるかの構成上の差異を
示しており、高水圧を創出の機能的には同様である。
FIGS. 9A and 9B show a method of attaching a rotary bearing 20 to a pipe winding body 2 and a fixed shaft 19, as shown in FIGS. That is, Claims 1 and 2 show the difference in the configuration of rotating the pipe winding body 2 with a fixed shaft or rotating shaft, and the functions of creating high water pressure are the same. is there.

【0019】前述の通り、請求項1と請求項2ではパイ
プ巻体を、「軸」と一体に回転させるか、「軸受」と一
体に回転させるかの、軸とパイプ巻体との構成上の差異
はあるが、その他の構成や気液の圧送機能上は同一と考
えて支障はない。そのため、以下の説明内容は、請求項
1(回転軸の構成)を主体に説明するが、請求項2との
重複の説明を省略するもので、特に断りがない限り、請
求項2も含めた両者共通の説明とする。
As described above, in the first and second aspects, the structure of the shaft and the pipe winding determines whether the pipe winding is rotated integrally with the "shaft" or the "bearing". Although there is a difference, there is no problem in that the other configurations and the gas-liquid pumping function are considered to be the same. Therefore, the following description will be made mainly with claim 1 (the configuration of the rotating shaft), but the description overlapping with claim 2 is omitted, and unless otherwise specified, claim 2 is also included. The explanation is common to both.

【0020】請求項1〜2に記載の「内部が空洞状・
・」とは、回転軸(又は固定軸)の内部が空洞、すなわ
ち、パイプ的形状を意味し、空洞の内部を気液の通路と
して利用できる必要があり、回転圧送管4や気液流入管
12等の気液の通路となる箇所のみで、他の部分は特に
空洞の必要はない。
According to the first or second aspect, "the interior is hollow.
"" Means that the inside of the rotating shaft (or fixed shaft) is hollow, that is, a pipe-like shape, and it is necessary that the inside of the hollow can be used as a gas-liquid passage, and the rotary pumping pipe 4 and the gas-liquid inflow pipe There is no particular need for a cavity in the other portions, such as 12, which will be the gas-liquid passages.

【0021】請求項1を解説すると、「内部が空洞状
で、ほぼ水平の回転軸1の周りに連続したパイプを巻い
たパイプ巻体2を作り、パイプの一端を流入口3と
し、他端をパイプ巻体2の各パイプリングを巻いて回転
軸1の空洞状内を潜らせて回転圧送管4として接続機器
5に接続し、接続機器5から回転しない圧送設備6を
延伸して貯水設備7に圧送可能に設置する、パイプ巻
体2を水面近くにに設けて、パイプ巻体2に、羽根1
1またはプロペラまたはスクリュー等を付設し、水流
を受けてパイプ巻体2が回転する状態に設置し、流入
口3をパイプ巻体2の回転毎に水没する状態にする、
パイプ巻体2に付設した羽根11またはプロペラまたは
スクリュー等に水流を受けて回転させ、パイプ巻体2
の流入口3を回転毎に水没させて気液を交互に流入さ
せ、▲10▼各パイプリング内で水位を形成した封水状
態を保ちながら各リングを移動した後、▲11▼気液は
回転圧送管4に入り接続機器5を通過して回転しない圧
送設備6から貯水設備7に圧送し、▲12▼貯水設備7
内の水位を発電に必要な高さを保ちながら、▲13▼貯
水設備7内の高圧水を発電所17へ圧送して水力発電を
する」と、なっており、〜はポンプ9の構成と設置
を述べており、〜▲13▼は操作と行程を述べてい
る。
According to the first aspect of the present invention, a pipe winding body 2 having a hollow interior and a continuous pipe wound around a substantially horizontal rotating shaft 1 is formed, and one end of the pipe is used as an inflow port 3 and the other end is formed. Is wound around each of the pipe rings of the pipe winding body 2 and sunk into the cavity of the rotating shaft 1 to be connected to the connecting device 5 as the rotary pumping tube 4. 7, the pipe winding 2 is provided near the water surface so as to be capable of being pumped, and the blade 1 is attached to the pipe winding 2.
1 or a propeller or a screw, etc., is installed in a state where the pipe winding 2 is rotated in response to the water flow, and the inflow port 3 is set in a state of being submerged every time the pipe winding 2 rotates.
The blade 11 attached to the pipe winding 2 or a propeller, a screw, or the like receives a water flow and rotates the pipe winding 2 so that the pipe winding 2
The water inlet 3 is submerged at every rotation so that gas and liquid flow alternately. (10) After moving each ring while maintaining the sealed state in which the water level is formed in each pipe ring, (11) (12) The water is supplied from the non-rotating pumping device 6 to the water storage device 7 through the connecting device 5 into the rotary pumping tube 4.
While the water level in the inside is maintained at the height required for power generation, (13) the high-pressure water in the water storage facility 7 is pumped to the power plant 17 to generate hydroelectric power. " Installation is described, and {circle around (13)} describes operations and processes.

【0022】請求項2を解説すると、「内部が空洞状
で、ほぼ水平の固定軸19を両側の固定端から内側に延
伸し、固定軸19の軸心線の周りに連続したパイプを
巻いて連通したリング状流路を形成したパイプ巻体2
を、回転軸受20を付設して固定軸19の周りを回転
可能に構成し、水面近くに設け、パイプ巻体2のパイ
プの一端の開口を流入口3とし、他端をパイプ巻体2
の各パイプリングを巻いて固定軸19の一端に接続した
接続機器5の一端に接続し、接続機器5の他端から回
転しない圧送設備6を、固定軸19の空洞内を潜って
後、延伸して貯水設備7に接続し、パイプ巻体2に、
羽根11またはプロペラまたはスクリュー等を付設し、
水流を受けて回転する状態に設置し、流入口3をパイ
プ巻体2の回転毎に水没する状態にする、パイプ巻体
2に付設した羽根11またはプロペラまたはスクリュー
等に水流を受けて回転させ、▲10▼パイプ巻体2の流
入口3を回転毎に水没させて気液を交互に流入させ、▲
11▼各パイプリング内で水位を形成した封水状態を保
ちながら各リングを移動した後、▲12▼気液は接続機
器5を通過して圧送設備6として回転しない固定軸19
の空洞内を潜った後に、▲13▼貯水設備7に圧送し、
貯水設備7内の水位を発電に必要な高さを保ちながら、
▲14▼貯水設備7内の高圧水を発電所17へ圧送して
水力発電をする」と、なっており、〜はポンプ9の
構成と設置を述べており、〜▲14▼は操作と行程を
述べている。
According to a second aspect of the present invention, "a hollow, substantially horizontal fixed shaft 19 extends inward from the fixed ends on both sides, and a continuous pipe is wound around the axis of the fixed shaft 19. Pipe winding 2 having a communicating ring-shaped flow path
Is provided so as to be rotatable around the fixed shaft 19 with a rotating bearing 20 provided near the water surface, the opening of one end of the pipe of the pipe winding 2 is used as the inflow port 3, and the other end is used as the pipe winding 2
Is connected to one end of the connection device 5 connected to one end of the fixed shaft 19, and the pressure-feeding equipment 6 that does not rotate from the other end of the connection device 5 is drawn through the cavity of the fixed shaft 19 and then extended. And connected to the water storage facility 7, and to the pipe winding 2,
With blades 11 or propellers or screws,
It is installed so as to receive the water flow and rotates, and the inlet 3 is submerged every time the pipe winding 2 rotates. The blade 11 attached to the pipe winding 2 or a propeller or a screw receives the water flow and rotates. (10) The inlet 3 of the pipe winding 2 is submerged every rotation to allow gas and liquid to flow in alternately.
11) After moving each ring while maintaining a sealed state in which a water level is formed in each pipe ring, (12) gas-liquid passes through the connecting device 5 and does not rotate as the pumping equipment 6 as a fixed shaft 19.
After diving in the hollow of (13), (13) pumped to the water storage facility 7,
While maintaining the water level in the water storage facility 7 at the height required for power generation,
(14) The hydraulic power is generated by pumping the high-pressure water in the water storage facility 7 to the power plant 17 ", which describes the configuration and installation of the pump 9; Has been stated.

【0023】請求項1の回転軸1は、本来の回転軸の役
目と、内部を気液を通過させるためと、固定軸受15を
取り付けて荷重や外力から安定を保つための機能をもっ
ている。そのため、回転軸1は1本の貫通したものでも
よく、内部を気液の通路となる箇所のみの回転軸でもよ
い。必要とする部分以外は省いてもよい、例えばパイプ
巻体2の中間部分は回転軸1のない状態にしてもよい。
The rotating shaft 1 according to the first aspect has a function of the original rotating shaft, a function of allowing gas and liquid to pass through the inside, and a function of attaching a fixed bearing 15 to keep stability from a load or an external force. For this reason, the rotating shaft 1 may be a single penetrating shaft, or may be a rotating shaft in which only the inside serves as a gas-liquid passage. Parts other than the necessary parts may be omitted. For example, the middle part of the pipe winding body 2 may be in a state without the rotating shaft 1.

【0024】請求項2の固定軸19は、固定された固定
軸19を両側から軸心を同一にしてパイプ巻体2の内部
に向かって設け、接続機器5を付設するが、パイプ巻体
2の内部を貫通した軸構成では本発明の圧送機能は発揮
できない。
In the fixed shaft 19 according to the second aspect, the fixed fixed shaft 19 is provided from both sides to the inside of the pipe winding 2 with the same axis, and the connecting device 5 is attached. The pumping function of the present invention cannot be exhibited with a shaft configuration that penetrates through the inside.

【0025】水流力で回転させるため、パイプ巻体2の
一部を水中に浸漬させて回転させてもよく、パイプ巻体
2を水中に浸漬させないで、流入口3を気液流入管12
として伸展させて、羽根又はプロペラ、スクリューと共
に流入口3のみを浸漬してパイプ巻体2を回転させ、回
転毎に流入口3を水中に水没させて気液を流入させる方
法でもよい。また、流入口のパイプを回転軸1内に潜ら
せた後再度外部に伸展させて回転し、側方の水源から気
液を流入させてもよい。(図示していない)
In order to rotate by the water flow force, a part of the pipe winding 2 may be immersed in water and rotated, and the inlet 3 is connected to the gas-liquid inlet pipe 12 without immersing the pipe winding 2 in water.
Alternatively, a method may be employed in which only the inflow port 3 is immersed together with the blades, propellers, and screws to rotate the pipe winding body 2, and the inflow port 3 is submerged in water for each rotation to allow gas-liquid to flow. Alternatively, after the pipe at the inflow port is sunk into the rotary shaft 1, the pipe may be extended to the outside again and rotated, and gas-liquid may flow in from a lateral water source. (Not shown)

【0026】請求項1及び請求項2の「水流」とは、河
川の水流、潮流、または人工的な水流のいずれでもよ
い、また滝のような急流を含めてもよい。
The "water flow" in claims 1 and 2 may be any of a river water flow, a tidal current, and an artificial water flow, and may include a rapid flow such as a waterfall.

【0027】流入口3、パイプ巻体2、回転圧送管4、
及び圧送設備6のパイプの内径は、同一でなくてもよ
く、圧力の増加で気体の体積減少や流速に対応させるた
め、パイプの口径を、必要に応じて必要な部分で必要に
応じて変更してよい。
The inlet 3, the pipe winding 2, the rotary pumping pipe 4,
And the inner diameter of the pipe of the pumping equipment 6 does not have to be the same, and the diameter of the pipe is changed as necessary at the necessary part in order to cope with the volume decrease and flow velocity of the gas by increasing the pressure. May do it.

【0028】請求項1の「水流を受けて回転させ・・」
とは、水流が2〜10m/sec程度の流速で特に3〜
8m/secが効果的で、これらの水流で設置したポン
プ9を1.0〜100rpmの範囲で回転させることを
言う、特に回転数は2〜60rpmが効果的であるが、
回転速度を限定するものではない。パイプ巻体2を水流
を受けて回転させる方法は、図示では水流を受ける羽根
等はパイプ巻体2の外側に付設しているが、パイプ巻体
2と別個に設置してもよく限定するものではなく、パイ
プ巻体2を回転させる方法であればどのような方法でも
よい。
[0028] Claim 1 "Rotating and receiving water flow ..."
Means that the water flow is about 2 to 10 m / sec at a flow rate of about 3 to 10 m / sec.
8 m / sec is effective, and means that the pump 9 installed with these water flows is rotated in a range of 1.0 to 100 rpm. In particular, the number of rotations is effectively 2 to 60 rpm,
It does not limit the rotation speed. The method of rotating the pipe winding 2 by receiving the water flow is such that the blades receiving the water flow are attached to the outside of the pipe winding 2 in the figure, but they may be installed separately from the pipe winding 2 and are limited. Instead, any method may be used as long as the pipe winding body 2 is rotated.

【0029】図1は、パイプ巻体2の回転軸1を水流に
直角に設置した場合の1例図である。羽根11またはプ
ロペラまたはスクリュー等の付設には、図示はないが、
これらの回転軸を水流に直角、平行のどちらの方向でも
よく制限はない、パイプ巻体を効果的に回転させられれ
ばどの様な方法でもよい。この場合パイプ巻体は、水流
浮揚させて係留式にしてもよいし、図6(ハ)のよう
に、水面に上下の上げ下げ可能に設置してもよい。ただ
し水面浮上式の場合は、浮揚体を回転させないで、軸
(回転軸または固定軸)を受けるように設置するもので
ある。
FIG. 1 is an example of a case where the rotating shaft 1 of the pipe winding body 2 is installed at right angles to the water flow. Although not shown, the blade 11 or the attachment of the propeller or the screw is not shown.
The axis of rotation may be either perpendicular or parallel to the water flow, and there is no limitation. Any method can be used as long as the pipe winding can be effectively rotated. In this case, the pipe winding body may be moored by floating the water flow, or may be installed up and down on the water surface as shown in FIG. However, in the case of the surface floating type, the floating body is not rotated, and is installed so as to receive a shaft (a rotating shaft or a fixed shaft).

【0030】気液ポンプ等は、パイプ巻体2の回転で自
動的に圧力が発生する特徴があり、このパイプ巻体2を
水流力で回転させて気液を高圧化させるもので、パイプ
巻体2の直径Dが大きく、巻数nが多いとより高圧化す
る。すなわち、気液ポンプ等の揚程Hは、H=K(D−
d)n(Kは定数)となり、効果的な揚水水位は20〜
100mで、2〜10atmに相当し、これ以上の高圧
化も可能であるが、空気が圧縮するが水は圧縮しないた
め、気液の体積割合が不均衡となる、K値が小さくなり
効果的ではない。
A gas-liquid pump or the like is characterized in that pressure is automatically generated by rotation of the pipe winding 2, and the pipe winding 2 is rotated by water flow to increase gas and liquid pressure. When the diameter D of the body 2 is large and the number of turns n is large, the pressure becomes higher. That is, the head H of the gas-liquid pump or the like is H = K (D−
d) n (K is a constant) and the effective pumping water level is 20 ~
At 100 m, it corresponds to 2 to 10 atm, and it is possible to further increase the pressure. However, since air is compressed but water is not compressed, the volume ratio of gas and liquid becomes unbalanced. is not.

【0031】気液ポンプ等の揚程Hは、巻数(リング
数)nと巻体の直系Dの積によるが、これ以外に平均気
液比eと封水位係数fがある。nが同一の場合、平均気
液比e=(e+e)/2は気体と液体の、パイプ巻
体の流入口eと最高圧時点(最終リング)eでの平
均体積比で、気体が多い場合は高所揚水が可能となるが
揚水量は小さくなる、液体が多い場合は小揚程となるが
揚水量は多くなる。これは、気泡効果の大小によってこ
れらの特徴が現れる。通常はe=0.5に近づけるのが
よい。封水位係数fは、各リング内での封水状態の形成
水位の状態を示すもので、流入口の最初リングは封水位
差hiは0に近く、最終リングの封水位差hiは最高差
(D−d)の形成ができる。すなわち、図9(イ)に図
示の通り封水位差hiは順次高さを大きく形成すること
が観察される。従って封水位係数fは、全てが(D−
d)でなく0〜(D−d)として順次形成されものであ
り、平均すると、f=(0+1.0)/2=0.5とな
りその他の要素をj=0.9と仮定して、これらの要素
を考慮した揚程Hの概数式は、 H=K(D−d)n K=f×j=0.9×
0.5=0.45 請求項1及び請求項2は気泡効果を利用する場合の計算
式で H=0.45(D−d)n/e……………(1) 請求項3は、高圧化のみで気泡効果がないため H=0.45(D−d)n ………………(2) すなわち、(2)は、圧縮された空気を外部に捨てるた
め(1)の1/2となる。請求項4は、高圧化された空
気を圧力水に変換するもので(2)×1.3程度に試算
する。H=0.45(D−d)n×1.3……(3) ただし、この揚程Hの計算式は主旨説明の概算式であ
る。
The head H of the gas-liquid pump or the like depends on the product of the number of turns (number of rings) n and the direct line D of the wound body, but there are also an average gas-liquid ratio e and a sealing level coefficient f. When n is the same, the average gas-liquid ratio e = (e 1 + e 2 ) / 2 is the average volume ratio of the gas and the liquid at the inlet e 1 of the pipe winding and at the highest pressure point (final ring) e 2. When there is a lot of gas, water can be pumped at a high place but the amount of pumping becomes small. When there is a lot of liquid, the amount of pumping becomes small but the amount of pumping increases. This is because these features appear depending on the magnitude of the bubble effect. Usually, it is better to approach e = 0.5. The sealing level coefficient f indicates the state of the formed water level in the sealing state in each ring. The sealing level difference hi of the first ring at the inlet is close to 0, and the sealing level difference hi of the final ring is the highest difference ( Dd) can be formed. That is, as shown in FIG. 9A, it is observed that the sealing level difference hi gradually increases in height. Therefore, the sealing level coefficient f is (D-
d) instead of d), it is formed sequentially as 0- (D−d), and on average, f = (0 + 1.0) /2=0.5, and assuming that other elements are j = 0.9, The approximate expression of the head H taking these factors into account is: H = K (D−d) n K = f × j = 0.9 ×
0.5 = 0.45 Claims 1 and 2 are calculation formulas when the bubble effect is used. H = 0.45 (D−d) n / e (1) H = 0.45 (D−d) n (2) That is, since (2) is to discard the compressed air to the outside, It becomes 1/2. Claim 4 converts the high-pressure air into pressurized water, and estimates it as (2) × 1.3. H = 0.45 (D−d) n × 1.3 (3) However, the formula for calculating the head H is an approximate formula for explaining the purpose.

【0032】パイプ巻体2の回転で気液を共に圧送する
ポンプとして、現在世界的に知られているポンプとし
て、ループ式ポンプ、螺旋式ポンプ等があり、国内で
は、スエーデンからの出願で公表済みの、水流で使用し
浮揚体を内蔵して水面浮上式で、係留式でループ式ポン
プ(特公平7−65589)がある、しかし、殆ど汎用
化は見られない、これは、接続機器(回動自在の連結
具)はあるが回転軸がなかったり、回転軸があっても内
部が空洞状の回転軸となっていないため、回転軸の内部
を気液の通路として利用できず、回転軸に軸受けの取り
付けができず、ポンプの固定設置が困難で、また、水面
浮上式であるが、浮揚体が回転するため係留取り付けに
制限があり、これらの多くの不便性のため本発明の気液
水流力発電装置用には適切ではない。一方、本発明の気
液水流力発電装置のポンプ9は、パイプ巻体2の回転で
気液を共に圧送するポンプで、回転軸1の内部を気液の
通路として使用する構成となっている。本発明に使用で
きるポンプは、最近国内で公開された気液圧送装置(特
開平11−201071)及び気液ポンプ装置(特開平
11−336687)があり、また、まだ公開されては
いないが、気液巻体ポンプ装置(特願平11−1030
12)があり、いずれも回転軸の内部を気液の通路とし
て使用する構成となっており、本発明の気液水流力発電
装置のポンプ9としても使用可能である。以下、回転軸
の内部を気液の通路として使用する構成のポンプと本発
明のポンプ9とを含めて、以後「気液ポンプ等」と表現
する。
As pumps for pumping gas and liquid together by rotating the pipe winding 2, there are currently known pumps worldwide, such as loop pumps and spiral pumps. In Japan, applications have been published in Sweden. There is a water-floating type, floating type, mooring type, loop type pump (Japanese Patent Publication No. 7-65589) which is used in the water flow and has a built-in floating body. (There is a rotatable connector), but there is no rotating shaft, or even if there is a rotating shaft, the inside is not a hollow rotating shaft, so the inside of the rotating shaft cannot be used as a gas-liquid passage, The bearing cannot be mounted on the shaft, it is difficult to fix and install the pump, and the surface is floating.However, since the floating body rotates, the mooring installation is limited. Suitable for gas-liquid hydroelectric generator Not. On the other hand, the pump 9 of the gas-liquid hydraulic power generation device of the present invention is a pump for pumping gas and liquid together by rotating the pipe winding 2, and is configured to use the inside of the rotating shaft 1 as a gas-liquid passage. . Pumps that can be used in the present invention include a gas-liquid pumping device (JP-A-11-201071) and a gas-liquid pump device (JP-A-11-336687) that have been recently disclosed in Japan. Gas-liquid winding pump (Japanese Patent Application No. 11-1030)
12), each of which has a configuration in which the inside of the rotating shaft is used as a gas-liquid passage, and can also be used as the pump 9 of the gas-liquid hydraulic power generation device of the present invention. Hereinafter, the term "gas-liquid pump or the like" will be used hereinafter, including the pump having the configuration in which the inside of the rotating shaft is used as a gas-liquid passage and the pump 9 of the present invention.

【0033】[0033]

【0032】の説明に記載の「接続機器5」とは、気
密、水密性を保ち回転部分と非回転部分を、回転自在に
連通接続するもので、気液を共に圧送するポンプ9の必
須の構成部分であると共に、「ループ式ポンプ」や「気
液ポンプ等」のポンプの必須機器でもある。
The "connection device 5" described in the description of the present invention is a device for connecting a rotating part and a non-rotating part in a rotatable manner while maintaining airtightness and watertightness, and is an essential part of a pump 9 for pumping gas and liquid together. In addition to being a component, it is also an essential device for pumps such as "loop pumps" and "gas-liquid pumps."

【0034】「接続機器5」は、現存する使用可能な機
器として、スイベルジョイントがあり、国内では数社が
生産している模様である、このスイベルジョイントを本
発明のポンプに使用は可能であるが、方向変更や首振り
が主体で常時回転用でないため、本発明の気液水流力発
電装置には適切とまでは言えない。気液ポンプ等のた
め、より効果的な接続機器(回動自在の連結具)を開発
する必要がある。
As the “connecting device 5”, there is a swivel joint as an existing usable device, and it seems that several companies are producing it in Japan. This swivel joint can be used for the pump of the present invention. However, it is not suitable for the gas-liquid hydraulic power generation device of the present invention because the direction change and the swing are mainly performed and are not always used for rotation. For gas-liquid pumps and the like, it is necessary to develop more effective connecting devices (pivotable connecting devices).

【0035】パイプ巻体2の型式は、図示に限定するも
のでなく、円盤型、タイヤ型、横円錐台型、横円筒型等
の多数あるが、どの型式を採用してもよい。また、図示
にある多重巻、多層巻だけでなく、単層巻でもよい。
The type of the pipe winding body 2 is not limited to the one shown in the drawings, and there are many types such as a disk type, a tire type, a horizontal truncated cone type, and a horizontal cylindrical type, but any type may be adopted. Further, a single-layer winding may be used instead of the multiple winding and the multilayer winding shown in the drawing.

【0036】請求項1に記載のある「封水状態」とは図
2(ホ)に示すように、パイプ巻体2のパイプリング内
に入った気液が上下に分離して、各パイプリング内の前
後に水位を形成し、前後の気体を遮断した状態を言うも
ので、従来の管工事等で言う「封水」(トラップ)と同
じ意味である。封水状態を保つ速度とは、1〜60rp
mで、パイプ巻体2の径が大きい場合は回転数は小さく
する必要がある、この回転数より以下でも、以上でもよ
いが効果的範囲ではない。すなわち、これ以上の回転速
度では水と管壁面との摩擦力や遠心力が大きくなって封
水状態が崩れる危険性が生じ、実験の結果では封水状態
が崩れるとポンプ9の圧送力は殆どなくなる。また、こ
れ以下の回転速度では遅すぎて効果的とは言えない。
As shown in FIG. 2 (e), the "water-sealed state" described in claim 1 means that the gas-liquid that has entered the pipe of the pipe winding body 2 is separated into upper and lower parts, and This is a state in which water levels are formed before and after the inside and the gas before and after is shut off, and has the same meaning as "water sealing" (trap) in conventional pipe construction and the like. The speed at which the sealed state is maintained is 1 to 60 rpm
m, if the diameter of the pipe winding 2 is large, the number of rotations must be reduced. The number of rotations may be less than or greater than this number, but this is not an effective range. That is, at a rotation speed higher than this, the frictional force and centrifugal force between the water and the pipe wall surface become large, and there is a danger that the sealed state is broken. According to the results of the experiment, when the sealed state is broken, the pumping force of the pump 9 is almost reduced. Disappears. At a rotational speed lower than this, it is too slow to be effective.

【0037】気液ポンプ等には、遠心力は一切必要でな
く、低速回転(1〜60rpm程度)でよいため摩擦抵
抗が小さい利点がある、そのため、水流力による低速回
転で効果的な圧送力を生むものである。
A gas-liquid pump or the like does not require any centrifugal force, and has the advantage of low frictional resistance because of low speed rotation (about 1 to 60 rpm). Therefore, effective pumping force at low speed rotation by water flow force It gives birth.

【0038】気液ポンプ等には特有の特徴として、気泡
効果(エアリフト効果)がある、これは、気液比(液体
/(気体+液体))を調整して、揚水や水中送気に利用
するもので、従来と同一の圧送力でも、従来以上の高揚
程や、深い水中送気が可能となる。
A gas-liquid pump or the like has a bubble effect (air lift effect) as a unique feature. The gas-liquid pump is used for water pumping or underwater air supply by adjusting the gas-liquid ratio (liquid / (gas + liquid)). Therefore, even with the same pumping force as before, a higher head and deeper underwater air feeding than before can be achieved.

【0039】気液の体積比は、高圧化に伴う気体の体積
縮小を考慮して、流入時点で液体を少なく、気体を多く
しておくことが効果的である。この場合、流入口での体
積と最高加圧時での体積との全体の気液の平均体積比が
半々に近付けることが効果的である。例えば、流入口で
の気体と液体の体積比を2/1として、最高加圧時での
体積比を1/2として、全体平均の体積比を半々とし
て、気液比e=0.5とし[e=液体/(気体+液
体)]にすることが効果的である。
As for the volume ratio of gas and liquid, it is effective to reduce the amount of liquid at the time of inflow and increase the amount of gas in consideration of the volume reduction of gas accompanying the increase in pressure. In this case, it is effective that the average volume ratio of the entire gas-liquid of the volume at the inflow port and the volume at the time of maximum pressurization approaches half and half. For example, the volume ratio of gas to liquid at the inlet is 2/1, the volume ratio at the time of maximum pressurization is 1/2, the volume ratio of the entire average is halved, and the gas-liquid ratio e = 0.5. It is effective to set [e = liquid / (gas + liquid)].

【0040】図2(ホ)に示すように、各パイプリング
内の前後に形成する封水状態の水位は、実験の結果、圧
送設備6以降に抵抗(揚程等)が起きると、自動的に水
位差hiが形成される、この水位差hiの合計Σhiが
ポンプ9の圧送力(揚程H)となる。ただし、気液ポン
プに特有の気泡効果による高所揚程分を含む場合は、こ
の揚程の倍以上も可能となる。
As shown in FIG. 2 (e), the water level in the sealed state formed before and after in each of the pipe rings is automatically set when a resistance (head or the like) occurs after the pumping equipment 6 as a result of the experiment. The water level difference hi is formed. The sum Σhi of the water level difference hi is the pumping force (head H) of the pump 9. However, in the case of including a head at a high place due to a bubble effect peculiar to the gas-liquid pump, it is possible to at least double this head.

【0041】パイプリング内の気液の体積比の調整によ
って、揚程の大小を調整することができる、すなわち、
気体を多くすると揚程は大きくなるが揚水量はちいさく
なる、反対に、水量を多くすると揚程は小さくなるが揚
水量は大きくなる。いずれにしても、従来の液体単独の
揚水に比べると、同一圧力でも従来以上の高揚程が可能
である。例えば、4atmの圧力で80mの揚水も可能
であり、発電には8atmで使用できる、ただし揚水量
(発電に使用できる水量)はほぼ半分になる。
By adjusting the volume ratio of gas and liquid in the pipe ring, the magnitude of the head can be adjusted.
Increasing the amount of gas increases the head but decreases the amount of pumped water. Conversely, increasing the amount of water decreases the head but increases the amount of pumped water. In any case, as compared with the conventional pumping of the liquid alone, a higher head than before can be achieved even at the same pressure. For example, pumping up to 80 m at a pressure of 4 atm is also possible and can be used at 8 atm for power generation, but the pumping amount (the amount of water available for power generation) is almost halved.

【0042】「流入口から気液を回転毎に交互に流入さ
せ」とは、前述の通り気液を或る割合で流入させる事を
意味し、通常、体積割合で半々が効果的であるが、高圧
を得るためには、パイプ巻体で高圧化で、気体の圧縮を
予測して気体の流入体積を多くしておくことが効果的で
ある。例えば、6気圧(6atm)の気液を生むために
は、パイプリング内の気液の体積割合を71%と29%
程度で流入させることで、6気圧になった状態では気体
が圧縮されるため逆に29%と71%近くになり平均し
た気液比eは0.5となり効果的となる。この、6気圧
で圧送すると100m以上の揚程確保が可能となり、1
0atmの水圧で水力発電が可能となる。
The expression "gas and liquid are alternately introduced from the inflow port at every rotation" means that gas and liquid are introduced at a certain ratio as described above. In order to obtain a high pressure, it is effective to increase the inflow volume of the gas by predicting the compression of the gas by increasing the pressure with a pipe winding body. For example, in order to generate a gas-liquid of 6 atm (6 atm), the volume ratio of the gas-liquid in the pipeline is 71% and 29%.
The gas is compressed at a pressure of about 6 atm when the pressure is about 6 atm. On the contrary, the gas-liquid ratio e becomes 0.5 at 29% and almost 71%, which is effective. When pumping at 6 atm, it is possible to secure a head of 100 m or more.
Hydraulic power can be generated at a water pressure of 0 atm.

【0043】本発明の、気液水流力発電装置のポンプ9
の設置方法は、下部からの支承方式(図1、図3、図
4、図5、図8)、水面浮上式(図示していない)、上
部からの吊下式(図2、図6、図7)等があるがいずれ
も限定したものではなく、状況を見て選定してよい。
The pump 9 of the gas-liquid hydraulic power generator according to the present invention.
Can be installed from below (Figs. 1, 3, 4, 5, and 8), floating above the water (not shown), and suspended from above (Figs. 2, 6, FIG. 7) and the like are not limited, and selection may be made based on the situation.

【0044】パイプ巻体2及び圧送設備6のパイプの内
径は、全て同一の必要はなく気体が圧縮されるに従っ
て、気体の体積が縮小し、気液の比率が変化するため、
パイプを内側に配置するか、または、図3(イ)、図4
(イ)、図6(ロ)のようにパイプ巻体の途中からパイ
プ内径を小さく変えて配置する方法も効果的である。圧
送設備6のパイプは気液の流速等を考慮して内径を決め
る必要がある。
The inner diameters of the pipe winding 2 and the pipes of the pumping equipment 6 need not be all the same, and as the gas is compressed, the volume of the gas decreases and the gas-liquid ratio changes.
Either place the pipe inside, or
(A), a method of arranging the pipe by changing the inner diameter of the pipe from the middle of the pipe winding body as shown in FIG. 6 (B) is also effective. It is necessary to determine the inner diameter of the pipe of the pumping equipment 6 in consideration of the gas-liquid flow rate and the like.

【0045】貯水設備7は、水流のエネルギーから高さ
のエネルギーに転換する設備で、気液ポンプからの圧送
水を小面積で水量確保、水位調節、水量調節を兼ねるも
ので、発電のための必要水量を供給する設備で、従来の
水力発電のサージタンクの役目に似ており、外観的には
煙突のようなものでもよい。
The water storage facility 7 is a facility for converting the energy of the water flow into the energy of the height. The water storage facility 7 secures the water supply in a small area, controls the water level, and regulates the water flow from the gas-liquid pump. It is a facility that supplies the required amount of water, and is similar to the role of a conventional surge tank for hydroelectric power generation, and may be a chimney in appearance.

【0046】河川等の水流量の小さい場所では水流を効
果的に利用するため、図1(イ)(ロ)のように河床に
水底凹部13をつけて、パイプ巻体2の羽根11を浸漬
させて水流を受け易くして回転させると漏流する無駄を
少なくする効果がある。また、ポンプ9の設置は、水量
が多い場合や洪水時を考慮して上下、水平等に移動でき
る移動調整する設備を備えておくことが安全的である。
この図1(イ)(ロ)は、水流量の小さい場合の効果的
な河床の方法の1例を示し、限定するものではない。水
深が大きい場合は
In places such as rivers where the water flow rate is small, in order to effectively use the water flow, a water bottom recess 13 is formed in the riverbed as shown in FIGS. When the rotation is made easy to receive the water flow, there is an effect of reducing the waste that leaks. In addition, it is safe to install the pump 9 with a movement adjusting device capable of moving vertically, horizontally, etc. in consideration of a large amount of water or a flood.
FIGS. 1 (a) and 1 (b) show one example of an effective riverbed method when the water flow rate is small, and are not limiting. If the water depth is large

【図9】の通り自然河床をそのままにしてよい。FIG. 9 may leave the natural riverbed as it is.

【0047】ポンプ9の上流側は、ゴミ等の流入を除去
するためスクリーン14を設けることは言うまでもな
い、また、パイプ巻体を保護するためのカバー、パイプ
巻体が崩れないための内部外部の支保工等の通常備える
べき付属設備は記入していないが必要なことは言うまで
もない。
Needless to say, a screen 14 is provided on the upstream side of the pump 9 for removing the inflow of dust and the like, and a cover for protecting the pipe winding, and an internal and external portion for preventing the pipe winding from collapsing. Ancillary facilities that should normally be provided, such as shoring, are not listed, but needless to say.

【0048】本発明の気液水流力発電装置の設置台数
は、単数でもよいが、図1(イ)に示すように、水流域
を有効に利用するため設置数を多くすることがよく、ま
た、ポンプの設置場所は、多少急流域を選択して水流を
集中させてポンプを複数設置することが、水流の減勢作
用を兼ねると共に、水流域を無駄に放置せず、水流のエ
ネルギーを効果的に利用することにつながる。
The number of the gas-liquid hydroelectric power generators of the present invention may be one, but as shown in FIG. 1 (a), the number of the gas-liquid hydraulic power generators is preferably increased in order to use the water basin effectively. The location of the pump can be selected by selecting a slightly rapid area and concentrating the water flow and installing multiple pumps, which not only has the effect of reducing the flow of water, but also has the effect of reducing the energy of the water flow without wasting the water flow area. It leads to the use of it.

【0049】水流の低密度のエネルギーを多く吸収させ
ると共に、河川敷等への損傷(自然破壊)のない方法と
して、図6のように、門型や橋梁等からパイプ巻体2を
吊り下げる方式がある、この方式は、河川敷きに杭やコ
ンクリート構造物を一切作らず、水流のエネルギーのみ
を吸収利用し、自然損傷の小さい方法で、場所や事情が
許せる場合は採用できる方法である。
As a method of absorbing a large amount of low-density energy of a water flow and preventing damage (natural destruction) to a riverbed or the like, a method of suspending a pipe winding 2 from a portal or a bridge as shown in FIG. This method is a method that does not make any piles or concrete structures on the riverbed, absorbs and uses only the energy of the water flow, and is a method that can be adopted if the location and circumstances can be tolerated by a method with little natural damage.

【0050】「圧送設備6」とは、ポンプ9から圧送す
るパイプ等の圧送する設備の全てを言い、貯水設備7又
は気液分離機器10等の目的場所へ圧送する設備を言
う。
The "pumping equipment 6" refers to all of the equipment for pumping, such as a pipe for pumping from the pump 9, and refers to equipment for pumping to a destination such as the water storage equipment 7 or the gas-liquid separation equipment 10.

【0051】「気液分離機器10」とは、圧送設備6で
圧送する気液を分離して、気体及び液体を、単独または
別々に発電所17へ圧送させる機器を言う。
The "gas-liquid separation device 10" refers to a device that separates gas-liquid to be pumped by the pumping equipment 6 and sends gas and liquid to the power plant 17 individually or separately.

【0052】請求項3は、高圧気液分離機器10で加圧
空気と加圧水に分離し、加圧水のみを水圧管8から発電
所17へ圧送して発電するものである。請求項1及び請
求項2のように揚程に利用しないため、気泡効果はな
い、加圧空気は外部に放出してもよい。
According to a third aspect of the present invention, the high-pressure gas-liquid separator 10 separates the pressurized air and the pressurized water, and only the pressurized water is pumped from the hydraulic pipe 8 to the power plant 17 to generate power. Since it is not used for lifting as in claims 1 and 2, there is no bubble effect and pressurized air may be discharged to the outside.

【0053】図1及び図5に従って、請求項4を説明す
ると、図1は請求項4までの主旨の全体図であり、図5
は請求項3の詳細説明図出ある。高圧気液分離機器1
0で高圧空気と高圧水に分離し、高圧空気は給気設備
21から気体切替設備23を経て、貯水タンクA及び貯
水タンクBへ接続しどちらか一方へ給気可能に設置し、
給水設備22から液体切替設備24を経て、貯水タン
クA及び貯水タンクBへ接続しどちらか一方へ給水可能
に設置し、貯水タンクA又は貯水タンクBから水圧管
8に接続する、高圧気液分離機器10から高圧空気の
みを給気設備21を経て、ほぼ満水の貯水タンクA又は
貯水タンクBへ給気し、高圧空気で貯水タンクA又は
貯水タンクB内の液体を加圧して、加圧された液体は
水圧管8を経て、気液分離機器10からの加圧水と共に
水圧管8から発電所17に圧送して水力発電する請求項
3記載の気液水流力発電装置。この中で、〜は構成
を述べており、〜は行程と操作と述べている。
Claim 4 will be described with reference to FIGS. 1 and 5. FIG. 1 is an overall view of the gist up to claim 4, and FIG.
Is a detailed explanatory view of the third aspect. High pressure gas-liquid separation equipment 1
0, the high-pressure air and the high-pressure water are separated, and the high-pressure air is connected to the water storage tank A and the water storage tank B via the gas supply equipment 21 through the gas switching equipment 23, and is installed so as to be able to supply air to either one of them.
High-pressure gas-liquid separation, in which the water supply equipment 22 is connected to the water storage tank A and the water storage tank B via the liquid switching equipment 24 and is installed so that water can be supplied to either one of them, and the water storage tank A or the water storage tank B is connected to the hydraulic pipe 8. Only the high-pressure air from the device 10 is supplied to the substantially full water storage tank A or the water storage tank B through the air supply equipment 21, and the liquid in the water storage tank A or the water storage tank B is pressurized by the high-pressure air to be pressurized. The gas-liquid hydraulic power generation device according to claim 3, wherein the liquid is pumped from the water pressure tube 8 to the power plant 17 together with the pressurized water from the gas-liquid separation device 10 through the water pressure tube 8 to generate hydraulic power. In this, ~ describes the configuration, and ~ describes the process and operation.

【0054】請求項4を更に詳しく説明すると、請求項
4は加圧液体だけでなく加圧気体のエネルギーをも放棄
せず加圧液体のエネルギーに変えて、水圧管8から発電
所へ圧送して発電に使用するもので、加圧空気のエネル
ギーを無駄に外部へ放気させないことにある。貯水タン
クは単数でもよいが、給水、注気(噴出)、排気の3行
程を繰り返す必要があるため、連続的に噴出(発電)さ
せるには貯水タンクを3箇所設けて、順次繰返し使用し
て常時噴出(発電)できる構成にするのが効果的であ
る。ただし図示はタンク2箇所設置した例を示す。
The fourth aspect of the present invention will be described in further detail. In the fourth aspect, not only the energy of the pressurized liquid but also the energy of the pressurized gas is converted into the energy of the pressurized liquid without being abandoned, and the energy is sent from the hydraulic pipe 8 to the power plant. It is used for power generation and does not wastefully release the energy of pressurized air to the outside. Although a single water storage tank may be used, it is necessary to repeat three steps of water supply, air supply (spout), and exhaust. Therefore, in order to continuously spout (power generation), three water storage tanks are provided and used repeatedly. It is effective to make a structure that can always eject (generate power). However, the illustration shows an example in which two tanks are installed.

【0055】請求項4を更に詳しく説明すると、すなわ
ち、気液分離機器10から圧送された加圧気体は、給気
設備21を経て切替設備23に至り、切替えに従って、
ほぼ満水の貯水タンクA(またはBのいずれか一方)に
入る。貯水タンクに入った加圧気体は、満水の貯水を加
圧し、加圧された液体は加圧水の圧送口29(又は3
0)から圧送管8を経て発電所へ圧送して発電するもの
である。貯水タンクAへ注気中は、貯水タンクBは給水
中であり、貯水タンクAが給水中の場合は、貯水タンク
Bへは排気又は注気して貯水タンクBの加圧水を発電所
17へ圧送するものである、また、図示はしてないが、
前述の通り貯水タンクを3箇所以上設置すると貯水タン
クの交替をスムーズにさせ、常時加圧水を圧送して発電
効果を高める効果がある。貯水タンクAおよびBへの外
部からの注水は、モーターやエンジンによる方法でもよ
く、自然の流れの流水の注入方式でもよい。
The fourth aspect of the present invention will be described in further detail. That is, the pressurized gas sent from the gas-liquid separation device 10 reaches the switching device 23 via the air supply device 21 and changes according to the switching.
The storage tank A (or one of B) is almost completely filled. The pressurized gas that has entered the water storage tank pressurizes the full water storage, and the pressurized liquid is supplied to the pressurized water supply port 29 (or 3).
0) through the pumping pipe 8 to the power station to generate power. During the filling of the water storage tank A, the water storage tank B is supplying water. When the water storage tank A is supplying water, the pressurized water of the water storage tank B is pumped to the power plant 17 by exhausting or filling the water storage tank B. Although not shown,
As described above, when three or more water storage tanks are installed, replacement of the water storage tanks is smoothly performed, and there is an effect that the pressurized water is constantly pumped to enhance the power generation effect. Water injection from the outside into the water storage tanks A and B may be performed by a method using a motor or an engine, or may be performed by a method of injecting natural flowing water.

【0056】請求項5は、パイプ巻体内の水量が多くな
ると回転軸に荷重や外力が大きくなるため、回転軸の軸
受に不都合が起きる、これを防止するため、回転軸の途
中に軸受を増設してスムーズな回転をさせるためであ
る。また、河川、水路、潮流等の低密度の水流エネルギ
ーを効果的に発電に利用するもので、回転軸を長くし、
パイプ巻体の直径を大きくし、水流の低密度のエネルギ
ーを多く吸収させるためである。軸受けは、両端の2箇
所に限定するものでなく、パイプ巻体2の回転軸1に3
箇所以上の軸受1を取付けて、回転軸の安全固定を図る
ものである。すなわち、両側の回転軸への外力や荷重が
過大集中して回転軸が中折れ等の危険性があるため、荷
重安定のため中央部にも1箇所以上を設けるものであ
る。この場合、図4(イ)及び図6の例図のように、パ
イプ巻体2のパイプは一旦回転軸1内に潜らせた後、再
度軸外に出てパイプ巻体のリングとして巻くことにな
る、この一旦回転軸内に潜らせた部分の回転軸に軸受を
取付けるものである。従って回転軸は同一であるがパイ
プ巻体は軸受毎に区切れることになる。
According to a fifth aspect of the present invention, when the amount of water in the pipe winding increases, the load and external force on the rotary shaft increase, causing inconvenience in the bearing of the rotary shaft. To prevent this, an additional bearing is provided in the middle of the rotary shaft. This is for smooth rotation. In addition, low-density water flow energy such as rivers, water courses, and tidal currents is effectively used for power generation.
This is because the diameter of the pipe winding is increased and a large amount of low-density energy of the water flow is absorbed. The bearing is not limited to the two places at both ends, but is attached to the rotating shaft 1 of the pipe winding 2.
At least a plurality of bearings 1 are mounted to secure the rotating shaft safely. That is, since external forces and loads on the rotating shafts on both sides are excessively concentrated and there is a risk that the rotating shafts may be broken, for example, one or more portions may be provided at the center for stability of the load. In this case, as shown in FIGS. 4A and 6, the pipe of the pipe winding 2 is once sunk into the rotating shaft 1, then goes out of the shaft again and is wound as a ring of the pipe winding. The bearing is attached to the portion of the rotating shaft once sunk into the rotating shaft. Therefore, the rotating shaft is the same, but the pipe winding is divided for each bearing.

【0057】本発明の図面には詳細の明示はないが、通
常必要とする技術は当然設備にも具備するものである。
例えば、貯水タンクの水位計、気体量や水量の調整機
器、自動切り替え装置、圧力計、各種の自動切替装置、
安全装置等や、パイプ巻体の外側のカバー等は、全て通
常の設備をもってするものである。
Although the drawings of the present invention do not show details in detail, the technology usually required is naturally provided in equipment.
For example, a water level gauge of a water storage tank, an adjusting device for gas amount and water amount, an automatic switching device, a pressure gauge, various automatic switching devices,
The safety device, the cover outside the pipe winding body, etc. are all provided with ordinary equipment.

【0058】本発明の、気液水流力発電装置に「気液ポ
ンプ等」を使用する理由は、以下に示す通りである、 水流力による低速回転で高所揚水ができ、また、気液
の高圧状態の創出ができるためである。 は、吸込行程がないためキャビテーションは起きず、
気体が衝撃を吸収するためウオーターハンマーも起きな
いためである。 気液が混在し、気体の中に高圧エネルギーを蓄積して
圧送可能となるため。 気泡効果(エアリフト効果)が起き、従来と同一圧力
でも従来の倍以上の揚程の可能性がある。 ポンプ内に羽根、歯車、ピストン、スクリュー等の一
切の機器が存在しない簡単な構成のため、機器の故障は
ないと言える、維持管費だけでなくトータルコストが小
さくて済むためであり、 圧送水の中に、不純物や多少の固形物が混入しても、
問題なく気液と共に圧送できるためである。 低速回転(1〜60rpm)のため、騒音振動が極め
て小さいためであり、従来、ターボ型やピストン型で起
きた、羽根等とケーシング等の隙間からの戻り水や残存
水が一切起きず体積効率が100%であるためである。
The reason for using a "gas-liquid pump or the like" in the gas-liquid hydraulic power generation device of the present invention is as follows. This is because a high pressure state can be created. Cavitation does not occur because there is no suction stroke,
This is because the gas absorbs the impact and no water hammer occurs. Because gas and liquid are mixed, high-pressure energy can be stored in gas and pumped. A bubble effect (air lift effect) occurs, and there is a possibility that the lift will be more than double the conventional pressure even at the same pressure. Since the pump has a simple configuration without any equipment such as blades, gears, pistons, screws, etc., it can be said that there is no equipment failure.This is because not only the maintenance cost but also the total cost can be reduced. Even if impurities and some solid matter are mixed in,
This is because it can be pumped together with gas and liquid without any problem. This is because noise and vibration are extremely small due to low-speed rotation (1 to 60 rpm), and there is no return water or residual water from the gap between the blades and the casing, which occurred in the conventional turbo-type or piston-type, and volumetric efficiency. Is 100%.

【0059】気液水流力発電装置の発電する場合の、概
数計算例を以下に示す。 試算例(
The following is an example of approximate calculation in the case of power generation by the gas-liquid hydraulic power generator. Estimation example (

【0060】試算例(Example of trial calculation (

【0061】以上の計算式及び計算値は本発明の主旨や
思想を主張するもので、他の多くの要素を含んでいない
ため学術的、実用的内容からは多少乖離も考えられる、
そのため、実際は多少ならず上下巾があると考えられ
る。
The above formulas and calculated values assert the gist and idea of the present invention, and do not include many other elements, which may cause some deviation from academic and practical contents.
For this reason, it is considered that there is actually some width in the vertical direction.

【0062】[0062]

【発明の効果】本発明によると、世界中に無数に近く存
在する、低密度の河川、水路、潮流等の豊水流のエネル
ギーを水流力発電へ利用する技術を開発した。これによ
って、CO、SO、NO発生しないクリーンエネ
ルギーの拡大に大きく前進させた。
According to the present invention, there has been developed a technology for utilizing the energy of abundant water flows, such as low-density rivers, waterways, tidal currents, etc., innumerable in the world for hydroelectric power generation. This has made a great strides toward expanding clean energy without generating CO 2 , SO x , and NO x .

【0063】更に、本発明によると、水流力で、小落差
の豊水流の一部の流水を高所へ揚水し、高落差、高圧水
に転換して発電する技術が実現した。
Further, according to the present invention, a technique is realized in which a part of the water flow of a small head is pumped to a high place by a water flow force, and is converted into a high head and high pressure water to generate power.

【0064】更に、本発明によると、水流力で、小落差
の豊水流の一部の流水を、高落差相当の高圧水に転換し
て、高圧タンク(高圧気液分離機器10)からの高圧水
を水力発電に使用する技術が実現した。
Furthermore, according to the present invention, a part of the water flow of the small head is converted into high pressure water equivalent to the high head by the hydraulic power, and the high pressure water from the high pressure tank (high pressure gas-liquid separation device 10) is converted. The technology to use water for hydropower has been realized.

【0065】更に、本発明によると、パイプ巻体が大き
くても、回転体(パイプ巻体)の支持、吊下げ等の場合
に、必要とする場所に軸受けの取り付けが可能となり、
比較的大規模の発電にも利用できる技術が実現した。
Further, according to the present invention, even when the pipe winding is large, it is possible to mount the bearing at a necessary place in the case of supporting or suspending the rotating body (the pipe winding),
A technology that can be used for relatively large-scale power generation has been realized.

【0066】従来の水力発電の欠点を改善した効果は、
ダム、導水路等による高落差を必要としない河川等
の長流域のせせらぎを残し動植物のダム上下通過を遮
断しない、自然生態を変えない水路等への導水で河川
流量を減少させることなくダム建設がないため自然へ
損傷は殆ど無くダム、トンネル、管路等を必要とせ
ず、設備費等の投資を小さくしたものである。
The effect of improving the disadvantages of the conventional hydroelectric power generation is as follows.
Dam construction without reducing river flow by conducting water to waterways that do not change the natural ecology, leaving streams in long streams such as rivers that do not require a high head due to dams, headraces, etc. Since there is no damage, there is almost no damage to nature, and there is no need for dams, tunnels, pipelines, etc., and investment such as equipment costs is reduced.

【0067】図7に示すように、自然環境をへの損傷を
小さくでき、場合によっては河川敷を一切損傷させない
で、水流力発電を可能にする技術がで確立された。
As shown in FIG. 7, a technique has been established which can reduce the damage to the natural environment, and in some cases, does not damage the riverbed at all, and enables hydroelectric power generation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、気液水流力発電装置の、水流量が豊
富な場合で、貯水設備を設けた場合の全体主旨説明の1
例を示し、(イ)は、5台のポンプ9を水流に設置し
て、気液を1本の圧送設備6に集中して気泡効果を利用
して貯水設備7へ揚水し、水圧管8から発電所17に送
水して発電する1例図を示す。(ロ)は、ポンプの巻体
側断面図、(ハ)は、正面断面図を示す。
FIG. 1 is a general description of a gas-liquid hydroelectric power generation apparatus according to the present invention in a case where a water flow rate is abundant and a water storage facility is provided.
An example is shown in (a), in which five pumps 9 are installed in a water flow, and gas and liquid are concentrated in one pumping equipment 6 and pumped to a water storage equipment 7 by utilizing a bubble effect. FIG. 1 shows an example of generating water by sending water to a power plant 17. (B) is a sectional view on the winding body side of the pump, and (c) is a front sectional view.

【図2】本発明の、気液水流力発電装置の、水流量が少
ない場合で、高圧気液分離機器10を設けた場合の全体
主旨説明の1例を示し、(イ)は、5台のポンプ9を水
流に設置して、気液を1本の圧送設備6に集中して高圧
気液分離機器10に入り、気液を別々に噴出させて水車
8を回転させて発電する1例図を示す。(ロ)は、ポン
プの側断面図、(ハ)は、正面断面図を示す。
FIG. 2 shows an example of a general description of the gas-liquid hydroelectric power generation device of the present invention when the water flow rate is small and a high-pressure gas-liquid separation device 10 is provided. An example of installing a pump 9 in a water stream, concentrating gas and liquid in one pumping equipment 6 and entering a high pressure gas / liquid separation device 10, injecting gas and liquid separately and rotating a water wheel 8 to generate electric power The figure is shown. (B) is a side sectional view of the pump, and (c) is a front sectional view.

【図3】本発明の、ポンプ9の詳細説明図を示し、
(イ)は、ポンプ9の側断面例図、(ロ)は、A部分の
側面断面例図、(ハ)は、B部分の側面断面例図を、
(ニ)は、C部分の側面断面例図を、(ホ)は、封水状
態の形成例図を示す。
FIG. 3 shows a detailed explanatory view of a pump 9 of the present invention,
(A) is a side sectional view of the pump 9, (B) is a side sectional view of the part A, (C) is a side sectional view of the part B,
(D) is a side cross-sectional example view of the portion C, and (e) is a formation example view in a sealed state.

【図4】本発明の、ポンプ9詳細説明図を示し、パイプ
巻体のパイプの内径を圧力が高まるにつれて小さくした
1例図、(イ)は、ポンプ9の正面断面図、(ロ)は、
A部分の側面断面図、(ハ)は、B部分の側面断面図
を、(ニ)は、C部分の側面断面図を示す。
FIG. 4 is a detailed explanatory view of the pump 9 of the present invention, in which an example of the inner diameter of the pipe of the pipe winding body is reduced as the pressure increases, (a) is a front sectional view of the pump 9, (b) is ,
FIG. 4C is a side sectional view of a portion A, FIG. 4C is a side sectional view of a portion B, and FIG.

【図5】本発明の、ポンプ9の詳細説明図を示し、
(イ)は、3箇所以上の軸受を設けた1例で、中間軸受
でパイプ巻体の荷重の負担を軽減させた方法である。
(ロ)(ハ)は、水流の水位変化に応じてパイプ巻体を
上下に位置調整する例を示す。
FIG. 5 shows a detailed explanatory view of a pump 9 of the present invention,
(A) is an example in which three or more bearings are provided, and is a method in which the load of the load on the pipe winding body is reduced by an intermediate bearing.
(B) and (c) show an example in which the position of the pipe winding is adjusted up and down according to a change in the water level of the water flow.

【図6】本発明の、高圧気液分離機器10で分離した高
圧気体を、複数の貯水タンクへ交互に給気して、貯水タ
ンクの液体を発電所へ圧送して発電に利用する例図を示
す。
FIG. 6 is an example of the present invention in which high-pressure gas separated by the high-pressure gas-liquid separation device 10 is alternately supplied to a plurality of water storage tanks, and the liquid in the water storage tanks is pumped to a power plant for power generation. Is shown.

【図7】本発明の、河川の水流の上に、橋梁や門型等で
ポンプ9を吊下げて設置した例図、(イ)は橋梁型吊下
式で5箇所の軸受けを設けた例図、(ロ)は吊下設置で
3箇所の軸受けを設けた正面例図、(ハ)は吊下設置の
側面図で水位の上下により巻体の位置を上下調節できる
例図。請求項5の軸受15を3箇所以上取付ける例図を
も示す。
FIG. 7 is an example of the present invention in which a pump 9 is suspended by a bridge or a gate over a water flow of a river, and FIG. 7A is an example in which five bearings are provided by a bridge-type suspension. Fig. 2B is a front view showing an example in which three bearings are provided in a suspended installation, and Fig. 3C is a side view of the suspended installation, in which the position of the winding body can be adjusted up and down by raising and lowering the water level. An example in which three or more bearings 15 are attached is also shown.

【図8】本発明の、パイプ巻体の軸構成に関する説明図
で、(イ)は、請求項1の場合の回転軸を例示し、パイ
プ巻体と回転軸が一体となって回転する例図、(ロ)
は、請求項2の場合の固定軸を示し、パイプ巻体と回転
軸受(軸受)が一体となって回転する例図。
FIG. 8 is an explanatory view of a shaft configuration of a pipe winding body according to the present invention. FIG. 8A illustrates an example of a rotating shaft in the case of claim 1, in which the pipe winding body and the rotating shaft rotate integrally. Figure, (b)
The figure which shows the fixed shaft in the case of Claim 2, The example figure which turns a pipe winding body and a rotary bearing (bearing) integrally.

【図9】本発明の、請求項2の場合を示し、両側からの
固定軸(固定端)に回転軸受(軸受)を付設して水流力
で回転する説明例図。
FIG. 9 is an explanatory view showing the case of claim 2 of the present invention, in which a rotating bearing (bearing) is attached to a fixed shaft (fixed end) from both sides to rotate by water flow force.

【符号の説明】 1 回転軸 2 パイプ巻体 3 流入口 4 回転圧送管 5 接続機器 6 圧送設備 7 貯水設備 8 水圧管 9 ポンプ 10 高圧気液分離機器 11 羽根(又はスクリュー、又はプロペラ) 12 気液流入管 13 水底凹部 14 スクリーン 15 固定軸受 16 封水状態 17 発電所 18 放流水 19 固定軸 20 回転軸受 21 給気設備 22 給水設備 23 気体切替設備 24 液体切替設備 25 給気口 26 給水口 27 圧送口 A 貯水タンクA B 貯水タンクB H 発電有効落差[Description of Signs] 1 Rotary shaft 2 Pipe winding 3 Inlet 4 Rotary pumping pipe 5 Connecting device 6 Pumping facility 7 Water storage facility 8 Hydraulic pipe 9 Pump 10 High pressure gas-liquid separator 11 Blade (or screw or propeller) 12 gas Liquid inflow pipe 13 Water bottom recess 14 Screen 15 Fixed bearing 16 Sealed state 17 Power plant 18 Discharged water 19 Fixed shaft 20 Rotary bearing 21 Air supply equipment 22 Water supply equipment 23 Gas switching equipment 24 Liquid switching equipment 25 Air supply port 26 Water supply port 27 Pumping port A Water storage tank A B Water storage tank B H Power generation effective head

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図6】 FIG. 6

【図8】 FIG. 8

【図4】 FIG. 4

【図5】 FIG. 5

【図7】 FIG. 7

【図9】 FIG. 9

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内部が空洞状で、ほぼ水平の回転軸1の周
りに連続したパイプを巻いたパイプ巻体2を作り、パイ
プの一端を流入口3とし、他端をパイプ巻体2のパイプ
リングを経て回転軸1の空洞状内を潜った後、回転圧送
管4として接続機器5に接続し、接続機器5から回転し
ない圧送設備6を延伸して噴出装置7に接続し、噴出装
置7の噴出する先には発電用の水車8を設ける、パイプ
巻体2を水面近くにに設けて、パイプ巻体2に、羽根1
1またはプロペラまたはスクリュー等を付設し、水流を
受けて回転する状態に設置し、流入口3をパイプ巻体2
の回転毎に水没する状態にする、パイプ巻体2に付設し
た羽根11またはプロペラまたはスクリュー等に水流を
受けて回転させ、パイプ巻体2の流入口3を回転毎に水
没させて気体と液体を交互に流入させ、各パイプリング
内で水位を形成する封水状態を保ちながらリングを移動
した後、回転軸1内に延伸した回転圧送管4に入り接続
機器5を通過して回転しない圧送設備6から、噴出装置
7に至り噴出装置7から加圧気体と加圧液体を噴出とて
水車8を回転させて発電する気液水流力発電装置。
1. A pipe winding body 2 having a hollow interior and a continuous pipe wound around a substantially horizontal rotating shaft 1 is formed. One end of the pipe is used as an inlet 3 and the other end of the pipe winding 2 is used. After diving through the cavity of the rotating shaft 1 through the pipe ring, it is connected to the connecting device 5 as the rotary pumping tube 4, the non-rotating pumping equipment 6 is extended from the connecting device 5 and connected to the jetting device 7, and the jetting device 7 is provided with a water turbine 8 for power generation. A pipe winding 2 is provided near the water surface.
1 or a propeller or a screw, etc., which are installed in a state where they rotate in response to a water flow.
The blade 11 attached to the pipe winding 2 or a propeller, a screw, or the like receives a water flow and rotates it, and the inlet 3 of the pipe winding 2 is submerged every rotation so that the gas and the liquid are submerged. Are alternately flown, and the ring is moved while maintaining a sealed state of forming a water level in each pipe ring, and then enters the rotary pumping pipe 4 extending into the rotary shaft 1, passes through the connecting device 5, and does not rotate. A gas-liquid hydroelectric power generator that generates water by rotating a water turbine 8 by ejecting pressurized gas and pressurized liquid from the ejector 7 to the ejector 7 from the equipment 6.
【請求項2】内部が空洞状の非回転軸19を両側の固定
端から内側に延伸し、非回転軸19の軸心線をほぼ水平
に設け、軸心線の周りに連続したパイプ1を巻いて連通
したリング状流路を形成したパイプ巻体2を、回転取付
部20を付設して非回転軸19の周りを回転可能に構成
し、水面近くに設け、パイプ巻体2のパイプの一端の開
口を流入口3とし、他端をパイプ巻体2のパイプリング
を経て非回転軸19の一端に接続した接続機器5の一端
に接続し、接続機器5の他端から回転しない圧送設備6
を、非回転軸19の空洞内を潜って後、延伸して噴出装
置7に接続し、噴出装置7の噴出する先には発電用の水
車8を設ける、パイプ巻体2に、羽根11またはプロペ
ラまたはスクリュー等を付設し、水流を受けて回転する
状態に設置し、流入口3をパイプ巻体2の回転毎に水没
する状態にする、パイプ巻体2に付設した羽根11また
はプロペラまたはスクリュー等に水流を受けて回転さ
せ、パイプ巻体2の流入口3を回転毎に水没させて気体
と液体を交互に流入させ、各パイプリング内で水位を形
成する封水状態を保ちながらリングを移動した後、接続
機器5を通過して回転しない非回転軸19の空洞内を潜
った後に圧送設備6から、噴出装置7に至り噴出装置7
から加圧気体と加圧液体を噴出とて水車8を回転させて
発電する気液水流力発電装置。
2. A non-rotating shaft 19 having a hollow interior extends inward from fixed ends on both sides, an axis of the non-rotating shaft 19 is provided substantially horizontally, and a pipe 1 continuous around the axis is formed. A pipe winding body 2 having a ring-shaped flow path which is wound and communicated is provided with a rotatable mounting portion 20 so as to be rotatable around a non-rotating shaft 19, and is provided near the water surface. An opening at one end serving as an inflow port 3 and the other end connected to one end of a connection device 5 connected to one end of a non-rotating shaft 19 via a pipe of a pipe winding 2, and a pumping device that does not rotate from the other end of the connection device 5. 6
After diving in the cavity of the non-rotating shaft 19, it is extended and connected to the jetting device 7, and a water turbine 8 for power generation is provided at the jetting destination of the jetting device 7. A blade 11 or a propeller or screw attached to the pipe winding 2 is provided with a propeller or a screw and the like, which is installed in a state of receiving a water flow and rotated so that the inflow port 3 is submerged every time the pipe winding 2 rotates. And the like, receiving the water flow and rotating it, and submerging the inlet 3 of the pipe winding body 2 with each rotation so that gas and liquid alternately flow in, and maintain the sealed state of forming a water level in each of the pipe rings. After moving, it dives through the cavity of the non-rotating shaft 19 that does not rotate through the connecting device 5 and then from the pumping equipment 6 to the ejection device 7 to the ejection device 7
A gas-liquid hydroelectric power generator that generates pressurized gas and liquid by ejecting pressurized gas from the turbine to rotate the water wheel 8.
【請求項3】圧送設備6に高圧気液分離機器10を付設
して加圧気体と加圧液体に分離して、加圧液体を噴出装
置7から噴出させて、水車8を回転させて発電する請求
項1又は請求項2記載の気液水流力発電装置。
3. A high-pressure gas-liquid separation device 10 is attached to the pressure feeding equipment 6 to separate the gas into a pressurized gas and a pressurized liquid, and the pressurized liquid is jetted from the jetting device 7 to rotate the water wheel 8 to generate electricity. The gas-liquid hydroelectric power generator according to claim 1 or 2, wherein
【請求項4】高圧気液分離機器10で加圧気体と加圧液
体に分離し、加圧気体は給気設備21を経て貯水タンク
Aへ接続し給気可能に設置し、給水設備22から貯水タ
ンクAへ接続して給水可能に設置し、貯水タンクAから
圧送設備31で噴出装置7に接続する、高圧気液分離機
器10から加圧気体のみを給気設備21を経て、ほぼ満
水の貯水タンクAへ給気し、加圧気体で貯水タンクA内
の液体を加圧して、加圧された液体は圧送設備31を経
て、気液分離機器10からの加圧液体と共に噴出装置7
から噴出させて、水車8を回転させて発電する請求項3
記載の気液水流力発電装置。
4. A pressurized gas and a liquid are separated by a high-pressure gas-liquid separating device 10, and the pressurized gas is connected to a water storage tank A through an air supply device 21 so as to be able to supply air. It is connected to the water storage tank A and installed so as to be able to supply water. From the water storage tank A, it is connected to the jetting device 7 by the pumping equipment 31. Only the pressurized gas from the high-pressure gas-liquid separation device 10 passes through the air supply equipment 21 and is almost full. The liquid is supplied to the water storage tank A, and the liquid in the water storage tank A is pressurized by the pressurized gas, and the pressurized liquid passes through the pumping equipment 31 and the ejection device 7 together with the pressurized liquid from the gas-liquid separation device 10.
4. The electric power is generated by rotating the water wheel 8 by ejecting the water from the water turbine.
A gas-liquid hydroelectric power generator according to claim 1.
【請求項5】パイプ巻体2の回転軸1に3箇所以上の軸
受15を取付ける請求項1または請求項2または請求項
3または請求項4記載の気液水流力発電装置。
5. The gas-liquid hydraulic power generator according to claim 1, wherein three or more bearings are mounted on the rotating shaft of the pipe winding body.
JP2000067692A 2000-02-07 2000-02-07 Gas-liquid stream force power generating set Pending JP2001221143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067692A JP2001221143A (en) 2000-02-07 2000-02-07 Gas-liquid stream force power generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067692A JP2001221143A (en) 2000-02-07 2000-02-07 Gas-liquid stream force power generating set

Publications (1)

Publication Number Publication Date
JP2001221143A true JP2001221143A (en) 2001-08-17

Family

ID=18586844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067692A Pending JP2001221143A (en) 2000-02-07 2000-02-07 Gas-liquid stream force power generating set

Country Status (1)

Country Link
JP (1) JP2001221143A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605122B1 (en) 2005-10-26 2006-07-28 박재홍 Equipment hydroelectric powergeneration using rotation drum many
WO2007023879A1 (en) * 2005-08-25 2007-03-01 Institute For Energy Application Technologies Co., Ltd. Power generating apparatus and power generating method
CN102269098A (en) * 2010-06-05 2011-12-07 许汉清 Sustainably-recyclable hydraulic power generating method and system
FR2994222A1 (en) * 2012-07-31 2014-02-07 Jean Joseph Picq Device for collecting and transforming hydraulic energy into electricity, has boat passage provided at location of channel, and turbine arranged under paddles under water, where paddles are grouped according to depth of river
WO2020031814A1 (en) * 2018-08-05 2020-02-13 株式会社興栄 Debris removal device for waterways

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023879A1 (en) * 2005-08-25 2007-03-01 Institute For Energy Application Technologies Co., Ltd. Power generating apparatus and power generating method
GB2442929A (en) * 2005-08-25 2008-04-16 Inst Energy Applic Technologie Power generating apparatus and power generating method
GB2442929B (en) * 2005-08-25 2011-02-16 Inst Energy Applic Technologies Co Ltd Power generator and power generation method
US7948106B2 (en) 2005-08-25 2011-05-24 Institute For Energy Application Technologies Co., Ltd. Power generator and power generation method
JP4947800B2 (en) * 2005-08-25 2012-06-06 株式会社エネルギー応用技術研究所 Power generation apparatus and power generation method
KR100605122B1 (en) 2005-10-26 2006-07-28 박재홍 Equipment hydroelectric powergeneration using rotation drum many
CN102269098A (en) * 2010-06-05 2011-12-07 许汉清 Sustainably-recyclable hydraulic power generating method and system
FR2994222A1 (en) * 2012-07-31 2014-02-07 Jean Joseph Picq Device for collecting and transforming hydraulic energy into electricity, has boat passage provided at location of channel, and turbine arranged under paddles under water, where paddles are grouped according to depth of river
WO2020031814A1 (en) * 2018-08-05 2020-02-13 株式会社興栄 Debris removal device for waterways

Similar Documents

Publication Publication Date Title
US8152441B2 (en) Submersible waterwheel with hinged rotor blades and spring-loaded water seals
JP6159335B2 (en) Tidal current generator
US9127639B2 (en) System and method for water expulsion from underwater hydropower plant and hydropower plant associated therewith
TWI437163B (en) Water current power generation system
US20090152870A1 (en) Apparatus for receiving and transferring kinetic energy from a flow and wave
JP5781052B2 (en) Offshore power generation system
JPH05501901A (en) water flow energy converter
CN114658588B (en) Wave-crossing type energy storage power generation and turbulent flow protection system and using method thereof
US20180106233A1 (en) Floating powerhouse
JP2001221143A (en) Gas-liquid stream force power generating set
JP3687790B2 (en) Hydroelectric power generation equipment
JP5451938B1 (en) Power generation equipment using water energy
JP5371081B2 (en) Water wheel and wave energy utilization device using the water wheel
JP2005023799A (en) Submerged power generating device
KR102070482B1 (en) High position turbine tidal electric power generation system
JP4681061B2 (en) Power generator
JP2005273464A (en) Generating equipment and deep water pumping device using sea-bottom tidal current hydraulic turbine
KR20150034337A (en) Ballast water generator and vessel comprising the same
GB2304353A (en) Underwater excavation apparatus
JPH05141340A (en) Hydraulic power generation in small flow velocity and large quantity flowing water
JP2019078265A (en) Tidal level power generator
CN111236133B (en) Floating spray type ice breaker
WO2014087702A1 (en) Marine power generating system
JP2004052646A (en) Submerged power generator
JP5102407B1 (en) Ocean power generation system and ocean power generation method